W. Evert and . Beth, Semantic Entailment and Formal Derivability, Afdeling Letterkunde, vol.18, issue.13, pp.309-342, 1955.

R. Bonichon, D. Delahaye, and D. Doligez, Zenon: An Extensible Automated Theorem Prover Producing Checkable Proofs, In Logic for Programming Artificial Intelligence and Reasoning LNCS/LNAI, vol.4790, pp.151-165, 2007.
DOI : 10.1007/978-3-540-75560-9_13

URL : https://hal.archives-ouvertes.fr/inria-00315920

P. Brauner, C. Houtmann, and C. Kirchner, Principles of Superdeduction, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pp.41-50, 2007.
DOI : 10.1109/LICS.2007.37

URL : https://hal.archives-ouvertes.fr/inria-00133557

R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers, vol.35, issue.8, pp.677-691, 1986.
DOI : 10.1109/TC.1986.1676819

G. Burel, Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory Modulo, Logical Methods in Computer Science, vol.7, issue.1, pp.1-31, 2011.
DOI : 10.2168/LMCS-7(1:3)2011

URL : https://hal.archives-ouvertes.fr/inria-00278186

Y. Coscoy, A natural language explanation for formal proofs, Logical Aspects of Computational Linguistics (LACL), volume 1328 of LNCS, pp.149-167, 1996.
DOI : 10.1007/BFb0052156

M. Davis and H. Putnam, A Computing Procedure for Quantification Theory, Journal of the ACM, vol.7, issue.3, pp.201-215, 1960.
DOI : 10.1145/321033.321034

G. Dowek, T. Hardin, and C. Kirchner, Theorem Proving Modulo, Journal of Automated Reasoning, vol.31, issue.1, pp.33-72, 2003.
DOI : 10.1023/A:1027357912519

URL : https://hal.archives-ouvertes.fr/hal-01199506

G. Gentzen, Untersuchungen ???ber das logische Schlie???en. I, Mathematische Zeitschrift, vol.39, issue.1, pp.176-210, 1935.
DOI : 10.1007/BF01201353

K. Jaakko and J. Hintikka, Form and Content in Quantification Theory, Acta Philosophica Fennica, vol.8, pp.7-55, 1955.

M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois, Verifying B Proof Rules Using Deep Embedding and Automated Theorem Proving, Software Engineering and Formal Methods (SEFM), pp.253-268, 2011.
DOI : 10.1007/3-540-45648-1_8

URL : https://hal.archives-ouvertes.fr/hal-00722373

M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois, Tableaux Modulo Theories Using Superdeduction, International Joint Conference on Automated Reasoning (IJCAR), pp.332-338, 2012.
DOI : 10.1007/978-3-642-31365-3_26

URL : https://hal.archives-ouvertes.fr/hal-01099338

M. Jacquel and D. Delahaye, Super Zenon, version 0.0.1. Siemens and Cnam, 2012.

D. Pastre, Muscadet 4.1. Université Paris Descartes (Paris 5), 2011.

D. Prawitz, Natural Deduction. A Proof-Theoretical Study, Stockholm Studies in Philosophy, vol.3, 1965.

G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure, Journal of Automated Reasoning, vol.13, issue.2, pp.337-362, 2009.
DOI : 10.1007/s10817-009-9143-8

J. Daniel and . Velleman, How to Prove It: A Structured Approach, 2006.

M. Wenzel, Isar ??? A Generic Interpretative Approach to Readable Formal Proof Documents, Theorem Proving in Higher Order Logics (TPHOLs), pp.167-184, 1999.
DOI : 10.1007/3-540-48256-3_12