Variable selection on large case-crossover data: application to a registry-based study of prescription drugs and road traffic crashes.

Marta Avalos 1, 2 Ludivine Orriols 1, 3 Hélène Pouyes 1 Yves Grandvalet 4, 5 Frantz Thiessard 1 E Lagarde 3, 1
2 SISTM - Statistics In System biology and Translational Medicine
Epidémiologie et Biostatistique [Bordeaux], Inria Bordeaux - Sud-Ouest
3 Prévention et prise en charge des traumatismes [Bordeaux]
Université Bordeaux Segalen - Bordeaux 2, Inria - Institut National de Recherche en Informatique et en Automatique, INSERM - Institut National de la Santé et de la Recherche Médicale : U897
Abstract : PURPOSE: In exploratory analyses of pharmacoepidemiological data from large populations with large number of exposures, both a conceptual and computational problem is how to screen hypotheses using probabilistic reasoning, selecting drug classes or individual drugs that most warrant further hypothesis testing. METHODS: We report the use of a shrinkage technique, the Lasso, in the exploratory analysis of the data on prescription drugs and road traffic crashes, resulting from the case-crossover matched-pair interval approach described by Orriols and colleagues (PLoS Med 2010; 7:e1000366). To prevent false-positive results, we consider a bootstrap-enhanced version of the Lasso. To highlight the most stable results, we extensively examine sensitivity to the choice of referent window. RESULTS: Antiepileptics, benzodiazepine hypnotics, anxiolytics, antidepressants, antithrombotic agents, mineral supplements, drugs used in diabetes, antiparkinsonian treatment, and several cardiovascular drugs showed suspected associations with road traffic accident involvement or accident responsibility. CONCLUSION: These results, in relation to other findings in the literature, provide new insight and may generate new hypotheses on the association between prescription drugs use and impaired driving ability.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01099301
Contributor : Marta Avalos <>
Submitted on : Friday, January 2, 2015 - 6:09:09 PM
Last modification on : Tuesday, September 18, 2018 - 4:24:01 PM

Links full text

Identifiers

Citation

Marta Avalos, Ludivine Orriols, Hélène Pouyes, Yves Grandvalet, Frantz Thiessard, et al.. Variable selection on large case-crossover data: application to a registry-based study of prescription drugs and road traffic crashes.. Pharmacoepidemiology and Drug Safety, Wiley, 2014, pp.140-51. ⟨http://onlinelibrary.wiley.com/doi/10.1002/pds.3539/abstract;jsessionid=A487F741570EFFE4734C25EEEBE4ACDC.f03t04⟩. ⟨10.1002/pds.3539⟩. ⟨hal-01099301⟩

Share

Metrics

Record views

213