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Abstract. Linear regression outcomes (estimates, prevision) are known to be damaged by highly
correlated covariates. However most modern datasets are expected to mechanically convey more and
more highly correlated covariates due to the global increase of the amount of variables they contain. We
propose to explicitly model such correlations by a family of linear regressions between the covariates.
The structure of correlations is found with an mcmc algorithm aiming at optimizing a specific bic
criterion. This hierarchical-like approach leads to a joint probability distribution on both the initial
response variable and the linearly explained covariates. Then, marginalisation on the linearly explained
covariates produces a parsimonious correlation-free regression model from which classical procedures
for estimating regression coefficient, including any variable selection procedures, can be plugged. Both
simulated and real-life datasets from steel industry, where correlated variables are frequent, highlight
that this proposed covariates pretreatment-like method has two essential benefits: First, it offers a
real readability of the linear links between covariates; Second, it improves significantly efficiency of
classical estimation/selection methods which are performed after. An r package (CorReg), available
on the cran, implements this new method.

Keywords. Regression, correlations, steel industry, variable selection, generative models, model
selection

1 Introduction
Linear regression is a very standard and efficient method providing a predictive model with a good
interpretability even for non-statisticians. Therefore, it is used in nearly all the fields where statistics
are made [20]: Astronomy [11], Sociology [15], Industry (real datasets of the present paper), . . .With
the rise of informatics, datasets contain more and more covariates leading high variance estimates,
misleading interpretations and poor prediction accuracy for two different, quite related, reasons. First,
the number of covariates leads to more complex models. Second, the number of covariates mechanically
increases the chance to have correlated ones. Both situations are quite intricate and appear technically
in a similar manner in the estimate procedure through ill-conditioned matrices. As a consequence,
explicit break-up between them is not very common, most proposed methods focusing on the seminal
question of the number of covariates selection. Originality of this paper is to distinguish explicitly
them by proposing a specific decorrelation step followed by any classical variable selection step chosen
by the practitioner. The decorrelation step can be viewed as a variable selection step but it is focused
only on correlations, not on the number of covariates.

Reducing the variance induced by the large number of covariates can be reached by targeting a
better bias-variance trade off. Relating methods are numerous and continue to generate a lot of work.
Most traditional directions are shrinkage, including variable selection, and also variable clustering.

Ridge regression [16] is a shrinkage method which proposes possibly biased estimator that can be
written in terms of a parametric L2 penalty. It does not select variables since coefficients tend to 0 but
don’t reach 0, leading to difficult interpretations for a large number of covariates. Since real datasets
may imply many irrelevant variables, variable selection should be preferred for more interpretable
models. Variable selection methods may add also some bias by deleting some relevant covariates but
it may reduced drastically the variance by the dimension reduction. As an emblematic method, the
Least Absolute Shrinkage and Selection Operator (lasso [24]) consists in a shrinkage of the regression
coefficients based on a parametric L1 penalty to shrink some coefficients exactly to zero. But, like
the ridge regression, the penalty does not distinguish correlated and independent covariates so there
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is no guarantee to have less correlated covariates. It only produces a parsimonious model, that is
a gain for interpretation but only half the way from our point of view. In particular, lasso is also
known to face consistency problems [29] when confronted with correlated covariates. So the quality of
interpretation is compromised. Elastic net [30] is a method developed to reach a compromise between
Ridge regression and the lasso by a linear combination of L1 and L2 penalties. But, since it is based
on the grouping effect, correlated covariates get similar coefficients and are selected together.

Another way for improving the conditioning and the understandability is to consider clusters
of variables with the same coefficients, like the Octagonal Shrinkage and Clustering Algorithm for
Regression (oscar [2]) to reduce dimension and also correlations if correlated covariates are in the same
clusters. A possible bias is added by the dimension reduction inherent to the coefficients clustering.
The CLusterwise Effect REgression (clere [26]) describes the regression coefficients no longer as fixed
effect parameters but as unobserved independent random variables with grouped coefficients following
a Gaussian Mixture distribution. The idea is that if the model has a small number of groups of
covariates, the model will have a number of free parameters significantly lower than the number of
covariates. In such a case, it improves interpretability and ability to yeld reliable prediction with a
smaller variance on the coefficients estimator. Spike and Slab variable selection [10] also relies on a
Gaussian mixture (the spike and the slab) hypothesis for the regression coefficients and gives a subset
of covariates (not grouped) on which to compute the Ordinary Least Squares estimate (ols) but has
no specific protection against correlations issues.

None of the above methods takes explicitly the correlations into account, even if the clustering
methods may group the correlated covariates together. However, modeling explicitly linear correlation
between variables already exists in statistics. In Gaussian model-based clustering, [17] consider that
some irrelevant covariates for clustering are in linear regression with some relevant ones. The algorithm
used to find the structure is a stepwise-like algorithm [21] even if it is known to be often unstable
[19]. We propose to transpose this method for linear regression with a specifically adapted algorithm
to find the structure of sub-regression.

The idea of the present paper is that if we know explicitly the correlations, we could use this
knowledge to avoid this specific problem. Correlations are thus new information to reduce the variance
without adding any bias. More precisely, correlations are modeled through a system of linear sub-
regressions between covariates. The set of covariates which are never at the place of a response
variable in these sub-regressions is finally the greatest set of orthogonal covariates. Marginalizing over
the dependent co-variables leads then to a linear regression (in relation to the initial response variable)
with only orthogonal covariates. This marginalization step can be viewed also as a variable selection
step but guided only by the correlations between covariates. Advantages of this approach is twofold.
First, it improves interpretation through a good readability of dependency between covariates. Second,
this marginal model is still a “true” model provided that both the initial regression model and all the
sub-regressions are “true”. As a consequence, the associated ols will preserve an unbiased estimate
but with a possibly reduced variance comparing to the ols with the full regression model. The fact
that the variance decreases depends on the residual variances involved in the sub-regressions: The
more the sub-regressions are marked, the less will be the variance of associated ols. In fact, any
other estimation method than ols can be plugged after the marginalization step. Indeed, it can be
viewed as a pretreatment against correlation which can be chained after with dimension reduction
methods, without no more suffering from correlations this time. The sub-linear structure is obtained
by a mcmc algorithm optimizing a specific bic criterion associated to the joint distribution on the
covariates, regardless of the initial response variable. This algorithm is part of the R package CorReg
accessible on cran.

This paper will first present in Section 2 the modelisation of the correlations between covariates
by sub-regressions and the by-product marginal regression model. Section 3 is devoted to describe the
mcmc random walk used to find the structure of sub-regressions. Some numerical results on simulated
datasets (Section 4) and real industrial datasets (Section 5) are then conducted to quantify the added
value of our approach. Concluding remarks, including perspectives, are then given in Section 6.
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2 Model-based approach for selecting uncorrelated covariates

2.1 Sub-regressions between covariates

The classical linear regression model can be written

Y |X;β, σ2
Y = Xβ + εY (1)

withX = (X1, . . . ,Xd) the n×d matrix of d predictor variablesXj (j = 1, . . . , d), Y the n×1 vector
of the n response variables and εY ∼ Nn(0, σ2

Y I) the centered Gaussian noise of the regression with
standard deviation σY > 0, I denoting the identity matrix of suitable dimension. The d× 1 vector β
gathers the coefficients of the regression1, that can be estimated by Ordinary Least Squares (ols):

β̂ =
(
X ′X

)−1
X ′Y (2)

It is an unbiased estimate with variance matrix

Var(β̂) = σ2
Y

(
X ′X

)−1
. (3)

This estimate requires the inversion of X ′X which can lead to great variance estimates, so unstable
estimates, if it is ill-conditioned. Ill-conditioning increases when the number d of covariates grows
and/or when correlations within the covariates grow (in absolute value) [9]. At the limit, when d > n
and/or when some correlations are maximum, X ′X becomes singular. Note that d and correlations
are also two non unrelated factors since, in real applications, increasing d makes the risk to obtain
correlated covariates higher.

We focus now on an original manner to solve the covariates correlation problem. The covari-
ates number problem will be solved at a second stage by standard methods, once only decorrelated
covariates will be identified. The proposed method relies on the two following hypotheses.

Hypothesis 1 In order to take into account the covariates correlation problem, we make the hypoth-
esis correlation between covariates is only the consequence that some covariates linearly depend on
some other covariates. More precisely, there are dr ≥ 0 such “sub-regressions”, each sub-regression
j = 1, . . . , dr having the covariate XJj

r as response variable (J j
r ∈ {1, . . . , d} and J j

r 6= J j′
r if j 6= j′)

and having the dj
p > 0 covariates XJj

p as predictor variables (J j
p ⊂ {1, . . . , d}\J j

r and dj
p = |J j

p | the
cardinal of J j

p):
XJj

r |XJj
p ;αj , σ

2
j = XJj

pαj + εj , (4)

where αj ∈ Rdj
r (αh

j 6= 0 for all j = 1, . . . , dr and h = 1, . . . , dj
p) and εj ∼ Nn(0, σ2

j I).cf

Hypothesis 2 In addition, we make the complementary hypothesis that the response covariates and
the predictor covariates are totally disjoint: for any sub-regression j = 1, . . . , dr, J j

p ⊂ Jf where
Jr = {J1

r , . . . , J
dr
r } is set of all response covariates and Jf = {1, . . . , d}\Jr is the set of all non

response covariates of cardinal df = d − dr = |Jf |. This new assumption allows to obtain very
simple sub-regressions sequences, discarding hierarchical ones, in particular uninteresting cyclic sub-
regressions. However it is not too much restrictive since any hierarchical (but non-cyclic) sequence
of sub-regressions can be agglomerated into a non-hierarchical sequence of sub-regressions, even if
it may implies to partially loose information through variance increase in the new non-hierarchical
sub-regressions.

1Usually a constant is included as one of the regressors. For example we can take X1 = (1, . . . , 1)′. The corresponding
element of β is then the intercept β1.
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Further notations In the following, we will note also Jr = (J1
r , . . . , J

dr
r ) the dr-uple of all the

response variable (to be not confused with the corresponding set Jr previously defined), Jp =
(J1

p , . . . , J
dr
p ) the dr-uple of all the predictors for all the sub-regressions, dp = (d1

p, . . . , d
dr
p ) the as-

sociated number of predictors and S = (Jr,Jp) the global model of all the sub-regressions. As more
compact notations, we define also Xr = XJr the whole set of response covariates and also Xf = XJf

the all other covariates, denominating now as free covariates, including those used as predictor co-
variates in Jp. An illustration of all these notations is displayed through an example in Section 2.3.
The parameters are also stacked together: α = (α1, . . . ,αdr ) denotes the global coefficient of sub-
regressions and σ2 = (σ2

1, . . . , σ
2
dr

) denotes the corresponding global variance.

Remarks

• Sub-regressions defined in (4) are very easy to understand by any practitioner and, thus, will
give a clear view of all the correlations present in the dataset at hand.

• We have considered correlations between the covariates of the main regression on Y , not between
the residuals. Thus S does not depend on Y and it can be estimated independently as we will
see in Section 3.

• The model of sub-regressions S gives a system of linear regressions that can be viewed as a
recursive Simultaneous Equation Model (sem)[4, 25] or also as a Seemingly Unrelated Regression
(sur) [27].

2.2 Marginal regression with decorrelated covariates

The aim is now to use the model of linear sub-regressions S (that we assume to be known in this part)
between some covariates ofX to obtain a linear regression on Y relying only on uncorrelated variables
Xf . The way to proceed is to marginalize the joint distribution of {(Y ,Xr)|Xf ,S;β,α, σ2

Y ,σ
2} to

obtain the distribution of {Y |Xf ,S;β,α, σ2
Y ,σ

2} depending only on uncorrelated variables Xf :

P(Y |Xf ,S;β,α, σ2
Y ,σ

2) =
∫
Rdr

P(Y |Xf ,Xr,S;β, σ2
Y )P(Xr|Xf ,S;α,σ2)dXr. (5)

We need the following new hypothesis.

Hypothesis 3 We assume that all errors εY and εj (j = 1, . . . , dr) are mutually independent. It im-
plies in particular that conditional response covariates {XJj

r |XJj
p ,S;αj , σ

2
j }, with distribution defined

in (4), are mutually independent:

P(Xr|Xf ,S;α,σ2) =
dr∏

j=1
P(XJj

r |XJj
p ,S;αj , σ

2
j ). (6)

Noting βr = βJr
and βf = βJf

the regression coefficients associated respectively to the responses
and to the free covariates, we can rewrite (1):

Y |X,S;β, σ2
Y = Xfβf +Xrβr + εY . (7)

Combining now (7) with (4), (5) and (6), and also independence between each εj and εY , we obtain
the following closed-form for the distribution of {Y |Xf ,S;β,α, σ2

Y ,σ
2}:

Y |Xf ,S;β,α, σ2
Y ,σ

2 = Xf (βf +
dr∑

j=1
β

Jj
r
α∗j ) +

dr∑
j=1

β
Jj

r
εj + εY (8)

= Xfβ
∗
f + ε∗Y , (9)

where α∗j ∈ Rdf with (α∗j )
Jj

p
= αj and (α∗j )

Jf\Jj
p

= 0.
Consequently, we have obtained a new regression expression of Y but relying now only on uncorrelated
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covariates Xf . This decorrelation process has also acted like a specific variable selection process
because Xf ⊆ X. These two statements are expected to decrease the variance of further estimates
of β. However, the counterpart is twofold. First, this regression has a higher residual variance than
the initial one since it is now σ2∗

Y = σ2
Y +

∑dr
j=1 β

2
Jj

r
σ2

j instead of σ2
Y . Second, variable selection being

equivalent to set β̂r = 0, it implies possibly biased estimates of βr. As a conclusion, we are faced
with a typical bias-variance trade off. We will illustrate it in the next section in the case of the ols
estimate.

In practice, the strategy we propose is to rely estimate of β̂ upon Equation (9). The practitioner
can choose any estimate of its choice, like ols or any variable selection procedure like lasso. In other
words, it is possible to see (9) as a kind of pretreatment for decorrelating covariates, while assuming
nothing on the subsequent estimate process.

Remark

• As a consequence of Hypothesis 1 to 3 , “free” covariatesXf are all decorrelated (see the Lemma
in the Appendix about identifiability).

In the following, we will denote by CorReg the new proposed strategy.

2.3 Illustration of the bias-variance trade off with ols

Qualitative illustration Noting β∗ the vector of coefficients of the same dimension as β with
β∗Jr

= β∗r = 0 and β∗Jf
= β∗f , (9) can be rewritten

Y |Xf ,S;β,α, σ2
Y ,σ

2 = Xfβ
∗
f +Xrβ

∗
r + ε∗Y . (10)

The ols estimate of β∗ is then given by

β̂
∗
f =

(
X ′fXf

)−1
X ′fY and β̂

∗
r = 0. (11)

As usual, the ols estimate β̂∗ of β∗ is unbiased but, however, contrary to β̂, it could be a biased
estimate of β since

E(β̂∗f ) = βf +
dr∑

j=1
β

Jj
r
α∗j and E(β̂∗r) = 0. (12)

In return, its variance could be reduced compared to this one of β̂ given in (3) as soon as values of
σj are small enough (it means strong correlations in sub-regressions) as we can see in the following
expression

Var(β̂∗f ) = (σ2
Y +

dr∑
j=1

σ2
jβ

2
Jj

r
)(X ′fXf )−1 and Var(β̂∗r) = 0. (13)

Indeed, no correlations between covariates Xf imply that the matrix X ′fXf could be sufficiently
better conditioned than the matrix X ′X involved in (3) to balance the added variance

∑
j∈Ir

σ2
jβ

2
j

in (13). This bias-variance trade off can be resumed by the Mean Squared Error (mse) associated to
both estimates:

mse(β̂) = σ2
Y Tr((X ′X)−1), (14)

mse(β̂∗) = ‖
dr∑

j=1
β

Jj
r
α∗j ‖22 + ‖ βr ‖22 +(σ2

Y +
dr∑

j=1
σ2

jβ
2
Jj

r
) Tr((X ′fXf )−1). (15)
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Numerical illustration We now illustrate the bias-variance trade off, through a numerical example.
Let a simple case with d = 5 covariatesX = (X1,X2,X4,X5) independently drawn by four indepen-
dent Gaussian Nn(0, I). Thus, Jf = {1, 2, 4, 5}, df = 4 and Xf = (X1,X2,X4,X5). Let also dr = 1
response covariate X3|X1,X2 = X1 +X2 + ε1 where ε1 ∼ Nn(0, σ2

1I). Thus, α1 = (1, 1)′, Jr = (3),
Jr = {3}, Xr = (X3), dp = (2), Jp = ({1, 2}), XJ1

p = (X1,X2) and S = ((3), ({1, 2})). Concerning
now the regression with Y , we define Y |X = X1 +X2 +X3 +X4 +X5 +εY = Xβ+εY , where β =
(1, 1, 1, 1, 1)′ and σY ∈ {10, 20}. Finally, we deduce that Y |Xf ,S = 2X1 + 2X2 +X4 +X5 +ε1 +εY

It is clear that X ′X will become more ill-conditioned as σ1 gets smaller.
We compute now the theoretical mse of the ols estimates β̂ and β̂∗ for several values of σ1

(strength of the sub-regression) and the sample size n. Figure 2.3 displays the mse evolution with the
strength of the sub-regression expressed by a function of the standard coefficient of determination

1−R2 = Var(ε1)
Var(X3)

= σ2
1

σ2
1 + 2

. (16)

The lower is the value of 1−R2, the larger is the strength of the sub-regression.

Figure 1: Values of mse(β̂) (plain) and of mse(β̂∗) (dotted) when varying the strength (1 − R2) of
the sub-regression, and also the values n and σY .

It appears that, when the sub-regression is strong (low 1−R2), β̂∗ is a better estimate than β̂: the
gain on mse can even be very significant. This effect is amplified by the σY increase but is reduced
by the n increases. Thus, the estimate β̂∗ should be particularly useful when some covariates are
highly correlated, when also the sample sizes is small and when the residual variance of Y is large. It
corresponds to expected difficult practical situations.

Further results will be provided in Section 4 and 5.

3 Sub-regressions model selection
The question we address now is twofold: which criterion to retain for selecting a sub-regression struc-
ture S and which strategy to adopt for exploring the large space of models S. Obviously, S being
very simply understood even by non statisticians, practitioners could easily transform their expert
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knowledge on the phenomenon at hand, if any, into a given structure S. For instance, Structural
Equations Models (sem), which are related to our model as already mentioned in Section 1, are often
used in social sciences and economy where a structure S is generally “hand-made”. However, in the
general situation, S has to be estimated. A standard method as graphical lasso [6], which searches
for a structure on the precision matrix (inverse of the variance-covariance matrix) by setting some
coefficients of the precision matrix to zero, can not be applied since it is not designed to estimate
oriented structures like S.

It is important to note that selecting S only relies on X, not on Y .

3.1 Designing two specific bic criteria

The Bayesian model selection paradigm consists of retaining the model S maximizing the posterior
distribution [22, 1, 3]

P(S|X) ∝ P(X|S)P(S) (17)
= P(Xr|Xf ,S)P(Xf |S)P(S). (18)

In order to implement this paradigm, we need first to define the three probabilities which are in the
right hand of the previous equation.

Defining P(Xr|Xf ,S) corresponds to the integrated likelihood based on P(Xr|Xf ,S;α,σ2). It
can be approximated by a bic-like approach [23]

−2 lnP(Xr|Xf ,S) ≈ −2 lnP(Xr|Xf ,S; α̂, σ̂2) + (|α|+ |σ2|) ln(n) = bicr(S), (19)

where α̂ and σ̂2 designate respectively the Maximum Likelihood Estimates (mle) of α and σ2, and
|ψ| designates the number of free continuous parameters associated to the space of any parameter ψ.

Defining P(Xf |S) It corresponds to the integrated likelihood based on a not yet defined distribution
P(Xf |S;θ) on the uncorrelated covariates Xf and parameterized by θ. In this purpose, we need the
following new hypothesis.

Hypothesis 4 All covariates Xj with j ∈ Jf are mutually independent and arise from the following
Gaussian mixture of kj components

P(Xj
f |S;πj ,µj ,λ

2
j ) =

kj∑
h=1

πhjNn(µhj .(1, . . . , 1)′, λ2
hjI), (20)

where πj = (π1j , . . . , πkjj) is the vector of mixing proportions with ∀1 ≤ h ≤ kj , πhj > 0 and∑kj

h=1 πhj = 1, µj = (µ1j , . . . , µkjj) is the vector of centers and λ2
j = (λ2

1j , . . . , λ
2
kjj) is the vector

of variances. We stack together all the mixture parameters in θ = (πj ,µj ,λ
2
j ; j ∈ Jf ).

Noting θ̂ the mle of θ, the bic approximation can then be used again:

−2 lnP(Xf |S) ≈ −2 lnP(Xf |S; θ̂) + |θ| ln(n) = bicf (S). (21)

Defining P(S) The most standard choice consists of putting a uniform distribution on the model
space S, this choice being noted PU (S) = |S|−1, with |S| the space dimension of S.

However, S being combinatorial, |S| is huge. It has two cumulated consequences: First, the
exact probability P(S|X) may be of the same order of magnitude for a large number of candidates
S, including the best one; Second, the bic approximations of this quantity may introduce additional
confusion to wisely distinguish between model probabilities. In order to limit this problem, we propose
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to introduce some information in P(S) promoting simple models through the following hierarchical
uniform distribution denoted by PH(S):

PH(S) = PH(Jr,Jp) (22)
= PH(Jr,Jp, dr,dp) (23)
= PU (Jp|dp,Jr, dr)× PU (dp|Jr, dr)× PU (Jr|dr)× PU (dr) (24)

=

 dr∏
j=1

(
d− dr

dj
p

)−1

× [d− dr]−dr ×
[(

d
dr

)]−1

× [d+ 1]−1, (25)

where
(
a
b

)
means the number of b-element subsets of an a-element set and where all probabilities

PU (·) denote uniform distribution on the related space at hand. PH(S) gives decreasing probabilities
to more complex models, provided that the following new hypothesis is verified:

Hypothesis 5 We set dr < d/2 and also dj
p < d/2 (j = 1, . . . , dr).

These two thresholds are sufficiently large to be wholly realistic.

Final approximation of P(S|X) Merging the previous three expressions, it leads to the following
two global bic criteria, to be minimized, denoted by bicU or bicH , depending on the choice of PU (S)
or PH(S) respectively:

bicU (S) = bicr(S) + bicf (S)− 2 lnPU (S) (26)
bicH(S) = bicr(S) + bicf (S)− 2 lnPH(S). (27)

In the following, we will denote by bic∗ any of both bicU and bicH . Numerical results in Section 4.2
will allow to compare behaviour of both criteria.

Remarks

• Hypothesis 4 is the keystone to define a full generative model on the whole covariates X. On
the one hand, the bic criterion can be applied in this context, avoiding to use a cross-validation
criterion which can be much more time-consuming. On the other hand, the great flexibility of
Gaussian mixture models [18], provided that the number of components kj has to be estimated,
implies that Hypothesis 4 is particularly weak in fact.

• In practice, Gaussian mixture models are estimated only once for each variableXj (j = 1, . . . , d).
Thus, there is no combinatorial difficulty associated with them. An em algorithm [5] will be
used for estimating the mixture parameters and a classical bic criterion [23] will be used for
selecting the different number of components kj .

• A sufficient condition for identifiability of the structure of sub-regressions S is that all sub-
regressions contain at least two predictor covariates (dj

p ≥ 2 for all j = 1, . . . , dr). In fact,
if there exists some sub-regressions with only one regressor, identifiability holds for these sub-
regressions only up to a permutation between the related response and predictor covariates.
However, even in this case, full identifiability may occur thanks to constraints on response and
predictor covariates given in Hypothesis 1 and 2.

• As any bic criterion, the bicU and bicH criteria are consistent [13].

• Even if it favors more parsimonious models, PH(S) can be also viewed as a poor informative
prior on S since it is a combination of non informative priors.
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3.2 Exploring the structure space with an mcmc algorithm

We present now an mcmc algorithm devoting to minimize the criterion bic∗ to find the optimal
estimate of the structure S. This Markov chain is regular and ergodic with a finite state space, thus
it has a stationary distribution π ∝ exp(−bic∗) on the space S of S [8]. Consequently, the chain is
expected to be more concentrated around the mode of π, where the optimal value of S stands.

This algorithm alternates two steps: the definition of a neighbourhood V(S) around the current
structure S and then the generation of a new structure S+ belonging to this neighbourhood according
to its posterior probability.

Note that the S has to be a regular space. It means that it has to verify Hypothesis 1, 2 and 5.
In addition, we note below S and S+ the structures at the current and the next iteration of the
algorithm, respectively.

3.2.1 Definition of a neighbourhood V(S)

We define a global neighbourhood space V(S) of S composed by the following four specific neighbour-
hood spaces V(S) = Vr+(S) ∪ Vr−(S) ∪ Vp+(S) ∪ Vp−(S) described below:

• Adding a sub-regression: a new sub-regression with only one predictor covariate is added to
S

Vr+(S) =
{
S̃ : S̃ ∈ S, (J̃r, J̃p)1,...,dr = (Jr,Jp), J̃dr+1

r ∈ Jf , J̃
dr+1
p = {j}, j ∈ Jf

}
. (28)

• Removing a sub-regression: a sub-regression is removed from S

Vr−(S) =
{
S̃ : S̃ ∈ S, (J̃r, J̃p) = (Jr,Jp){1,...,dr}\j , j ∈ {1, . . . , dr}

}
. (29)

• Adding a predictor covariate: a predictor covariate is added to one sub-regression of S

Vp+(S) =
{
S̃ : S̃ ∈ S, J̃r = Jr, J̃p

{1,...,dr}\{j} = J{1,...,dr}\{j}
p , J̃ j

p = J j
p ∪ {h}, j ∈ {1, . . . , dr}, h ∈ Jf \ J j

p

}
.

(30)

• Removing a predictor covariate: a predictor covariate is removed from one sub-regression
of S

Vp−(S) =
{
S̃ : S̃ ∈ S, J̃r = Jr, J̃p

{1,...,dr}\{j} = J{1,...,dr}\{j}
p , J̃ j

p = J j
p\{h}, j ∈ {1, . . . , dr}, h ∈ J j

p

}
.

(31)

3.2.2 Generation of a new structure S+

We then generate S+ from the following transition probability defined in V(S)

P(S+|V(S)) = exp (−bic∗(·))∑
S̃∈V(S) exp (−bic∗(S̃))

. (32)

3.2.3 Detailed use of the algorithm

• Estimate Ŝ: we retain the structure Ŝ having the lowest value of the criterion bic∗(S̃) during
the walk.

• Initialization: the initial structure is randomly from a distribution taking into account the
absolute value of the correlations.

• Long versus short runs: we prefer to run multiple short chains than to run a unique long
chains [7].
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4 Numerical results on simulated datasets
We now aim to access the numerical behaviour of the proposed strategy CorReg, and its related
estimation and model selection processes, through some simulated datasets. We will also evaluate
robustness of the method in some disadvantageous situations as non linear correlations between co-
variates.

4.1 Experimental design

We consider regressions on Y with d = 40 covariates and with a R2 value equal to 0.4. Sub-regressions
will have R2 successively set to (0.1, 0.3, 0.5, 0.7, 0.99). Variables in Xf arise from a Gaussian mixture
model whose the number of components follows a Poisson’s law of mean parameter equal to 5. The
coefficients of β and of the αj ’s are independently generated according to the same Poisson distribution
but with a uniform random sign. All sub-regressions are of length two (∀j = 1, . . . , dr, d

j
p = 2 and

we have dr = 16 sub-regressions. The datasets are then scaled, so that covariates Xr avoid large
distortions for variances or for means. Different sample sizes n ∈ (30, 50, 100, 400) are chosen, thus
considering experiments in both situations n < d and n > d. In all figures, the thickness of the lines
will represent various values of n, the thicker being the greater.

We used Rmixmod [14] to estimate the Gaussian mixture densities of each covariate X, settings
being used at default values both for parameter and the number of components estimation. For each
configuration, the mcmc walk was launched on 10 initial structures with 1 000 iterations each time.
All the results are provided by the CorReg package available on the cran2.

In the following, Section 4.2 evaluates the quality of the procedures to estimate the structure Ŝ.
Section 4.3 and 4.4 compare predictive performance of standard methods with/without CorReg in
some “standard” and “robustness” cases, respectively.

4.2 Evaluation of bic∗ to estimate S

To evaluate the quality of the estimated structure Ŝ structure retained both by bicU and bicH we
define two complementary indicators to compare it to the true model S.

• Tr = |Jr ∩ Ĵr| (“True Response”): it corresponds to the number of estimate response covariates
in Ŝ which are truly response covariates in the true model S.

• Wr = |Ĵr|−Tr (“Wrong Response”): it corresponds to the number of estimate response covariates
in Ŝ which are are wrongfully response covariates in the true model S.

The Tr and Wr quality values are displayed in Figure 2(a) and (b) for the bicU and bicH respectively.
We observe that bicH provides notably less wrong sub-regressions than bicU for any strength R2 of
the true sub-regressions. In addition, bicH need to have significantly strong sub-regressions (R2 > 0.4)
to detect them. However, this is not a problem since our CorReg strategy is expected to involve only
quite strong correlated covariates to have potential interest. Finally, we keep now the bicH criterion
as the best one for our purpose.

2http://cran.r-project.org/web/packages/CorReg/index.html
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(a) bicU criterion (b) bicH criterion

Figure 2: Average quality of the estimate subregressions Ŝ (dotted for Tr, plain for Wr) obtained by
(a) bicU and (b) bicH . Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also
displayed.

4.3 Evaluation of the prediction quality

To evaluate the prediction quality of CorReg as a pretreatment method, we consider three scenarii:
First, the response variable Y depends on all covariates X; Second, Y depends on only covariates
Xf ; Finally, Y depends on only covariates Xr. It correspond respectively to a neutral situation for
CorReg, a favorable one and an unfavorable one. The bicH criterion is always used for the model
selection.

4.3.1 Y depends on all X

We compare different standard estimation methods (ols, lasso, ridge, stepwise) with and without
CorReg as a pre-treatment. When n < p, the ols method is associated as usual with the Moore-
Penrose generalized inverse [12]. In addition, when using penalized estimators for variable selection like
lasso, an ols step is used for coefficient estimation after shrinkage for better estimation [28]. When
CorReg is combined with a standard estimation method, ols for instance, the whole method will be
simply noted CorReg+ols. Results will be evaluated though a predictive Mean Squared Error value
(mse) on a validation sample of 1 000 individuals and also by the complexity of the regression in Y
(i.e. its number of variables). Associated figures will display both mean and inter-quartile intervals
of this predictive mse.

Comparison 1 We compare ols with CorReg+ols. Figure 3 (a) shows that CorReg improves
significantly the prediction power of ols for small values of n and/or heavy sub-regression structures.
This advantage then shrinks when n increases because the matrix to invert becomes better-conditioned
and since CorReg does not allow to retrieve that Y depends on all X because of the marginalization
of some covariates implicated in the sub-regressions. Figure 3 (b) illustrates also the model regression
in Y retained by CorReg is more parsimonious, provided that sub-regressions are strong enough.

Comparisons 2 to 4 We compare now three variable selections methods: lasso with Cor-
Reg+lasso, elasticnet with CorReg+electicnet and also stepwise with CorReg+stepwise. Fig-
ures 4, 5 and 6 respectively display the results on the same manner as the previous ols with Cor-
Reg+ols. We see that CorReg, used as a pre-treatment, provides similar prediction accuracy as
the three variable selection methods (this prediction is often better for small datasets) but with much
more parsimonious regression models on Y . This is remarkable because the true model depends on

11



(a) mse on a validation subset (b) Complexity

Figure 3: Comparison of ols (dotted) and CorReg + ols (plain) when Y depends on all covariates
X. Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

all covariates, so it highlights that other variable selection methods may be really penalized by the
correlations between the covariates.

(a) mse on a validation subset (b) Complexity

Figure 4: Comparison of lasso (dotted) and CorReg + lasso (plain) when Y depends on all
covariates X. Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

Comparison 5 We compare now ridge with CorReg+ridge. Figure 7 shows that the ridge re-
gression is efficient in prediction when confronted to correlated covariates. It is directly made to
improve the conditioning and keeps all the covariates (as the true model) so it logically gives better
predictions than CorReg which removes some covariates. Nevertheless, we notice that the CorReg
pre-treatment before the ridge regression gives mse values that are really close to the ridge regression
ones (inter-quartile intervals are very mingled) but with drastically more parsimonious models. In-
deed, ridge regression alone gives a full model (40 covariates even with only 30 individuals) and will
give models too complex to be easily interpreted. Thus, the combination CorReg+ridge provides
high benefits for interpretation while preserving good prediction accuracy.
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(a) mse on a validation subset (b) Complexity

Figure 5: Comparison of elasticnet (dotted) and CorReg + elasticnet (plain) when Y depends on
all covariates X. Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

(a) mse on a validation subset (b) Complexity

Figure 6: Comparison of stepwise (dotted) and CorReg + stepwise (plain) when Y depends on all
covariates X. Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

4.3.2 Y depends only on Xf

Figures 8 and 9 display results for, respectively, ols with CorReg+ols and lasso with Cor-
Reg+lasso. Even if the true model involved correlated but irrelevant covariates then classical vari-
able selection methods gain to be associated with a pre-treatment by CorReg. Figure 10 displays
results for ridge with CorReg+ridge. It shows the accuracy prediction of ridge regression is heav-
ily penalized since the true model is parsimonious. In that case, CorReg can significantly help to
improve the results.

4.3.3 Y depends only on Xr

We now try the method with a response depending only on variables in Xr. Depending only on Xr

implies sparsity and impossibility to obtain the true model, even if using the true structure S.
Figure 11 compares ols with CorReg+ols. It reveals that CorReg is still better than ols for

strong correlations and limited values of n. When n rises, the sub-regression are detected and relevant
covariates are removed. As a consequence, CorReg can not improve the results and increases the
mse. However, for strong correlations, the error shrinks as the model tends to be less identifiable and
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(a) mse on a validation subset (b) Complexity

Figure 7: Comparison of ridge (dotted) and CorReg + ridge (plain) when Y depends on all covariates
X. Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

(a) mse on a validation subset (b) Complexity

Figure 8: Comparison of ols (dotted) and CorReg + ols (plain) when Y depends only on Xf .
Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

switching variables is not a problem anymore even with large values of n.
Figure 12 compares lasso with CorReg+lasso. It shows that lasso naturally tends to keep

Xr and thus is better because it corresponds to the true model. So CorReg is almost always the
worst method. In such a case, it is recommended to compare both lasso with CorReg+lasso
with a model choice criterion. Note that this model choice is only between two models so it avoids
multiple tests issues and computational cost explosion. Thus, we suggest to always compute the “with
CorReg” and the “without CorReg” solutions and then to compare them with the more pertinent
criterion (AIC, cross-validation, validation sample, etc.) according to the context (size of the datasets
for example).

Remark Since the structure S does not depend on Y , it can be interesting for interpretation in cases
when the “with CorReg” solutions are not kept in favor of “without CorReg” solutions. CorReg
can then be seen both not only like a pre-treatment but also like a pre-study.
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(a) mse on a validation subset (b) Complexity

Figure 9: Comparison of lasso (dotted) and CorReg + lasso (plain) when Y depends only on Xf .
Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

(a) mse on a validation subset (b) Complexity

Figure 10: Comparison of ridge (dotted) and CorReg + ridge (plain) when Y depends only on Xfy.
Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

4.4 Robustess study through a non-linear case

We have generated a non-linear sub-regression to test the robustness of our model. Xf is a set of
6 independent Gaussian mixtures defined as before. We design a unique, possibly non linear, sub-
regression X7 = aX2

1 +X2 +X3 + ε1. The matrix X is then scaled and we set Y =
∑7

i=1Xi + εY .
We let a vary between 0 and 10 to increase progressively the non-linear part of the sub-regression.
Figure 13 shows that the mcmc algorithm has more difficulties to find a linear structure (by bicH as
the non-linear part of the sub-regression increases with a. But the model is quite robust, preserving
good efficient for small values of a. In addition, Figure 14 illustrates the advantage of using CorReg,
even with non-linear sub-regressions, concerning the quality of the mse.
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(a) mse on a validation subset (b) Complexity

Figure 11: Comparison of ols (dotted) and CorReg + ols (plain) when Y depends only on Xr.
Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

(a) mse on a validation subset (b) Complexity

Figure 12: Comparison of lasso (dotted) and CorReg + lasso (plain) when Y depends only on
Xr. Thickness represents n = 30, 50, 100, 400. Inter-quartile intervals are also displayed.

Figure 13: Evolution of the quality of Ŝ when
the paramater a increases.

Figure 14: mse on the main regression for ols
(thick) and lasso (thin) used both with (plain)
or without CorReg (dotted).
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5 Numerical results on two real datasets

5.1 Quality case study in steel industry

This work takes place in steel industry context, with a quality oriented objective. Indeed, the purpose
is to understand and to prevent quality problems on finished products, knowing the whole process.
The correlations between involved features can be strong here because many parameters of the whole
process are highly correlated (physical laws, process rules, etc.). We have a quality parameter (confi-
dential) as response variable Y and d = 205 variables from the whole process to explain it. We get
a training set of n = 3 000 products described by these 205 variables from the industrial process and
also a validation sample of 847 products.

The objective here is not only to predict non-quality but to understand and then to avoid it.
CorReg provides an automatic method without any a priori and can be combined with any variable
selection methods. So it allows to obtain, in a small amount of time (several hours for this dataset),
some indications on the source of the problem, and to use human resources efficiently. When quality
crises occur, time is extremely precious so automation is a real stake. The combinatorial aspect of the
sub-regression models makes it impossible to do manually.

To illustrate that some industrial variables are naturally highly correlated, we can measure the
correlation ρ between some couple of variables. For instance, the width and the weight of a steel slab
gives |ρ| = 0.905, the temperature before and after some tool gives |ρ| = 0.983, the roughness of both
faces of the product gives |ρ| = 0.919 and a particular mean and a particular max gives |ρ| = 0.911.
For an overview of correlations, Figure 15(a) gives an histogram of ρ where we can see that, however,
many other variables are not so highly correlated.

CorReg estimated a structure of dr = 76 sub-regressions with a mean of d̄p = 5.17 predictors.
In the resulting uncorrelated covariate set Xf the number of values |ρ| > 0.7 is 79.33% smaller than
in X. Indeed, Figure 15(b) displays the histogram of adjusted R2 value (R2

adj) and we can see that
essentially large values of R2

adj are present. When we have a look at a more detailed level, we can
see also that CorReg has been able non only to retrieve the above correlations (the width and the
weight of a steel slab, etc.) but also to detect more complex structures describing physical models,
like the width in function of the mean flow and the mean speed, even if the true physical model is not
linear since “width = flow / (speed * thickness)” (here thickness is constant). Non-linear regulation
models used to optimize the process were also found (but are confidential). These first results are
easily understandable and meet metallurgists expertise. Sub-regressions with small values of R2 are
associated with non-linear model (chemical kinetics for example).

(a) (b)

Figure 15: Quality case study: (a) Histogram of correlations ρ in X, (b) histogram of the adjusted
R2

adj for the dr = 76 sub-regressions.

Note that the uncorrelated variables can be very well-modeled by parsimonious Gaussian mixtures
as it is illustrated by Figure 16(a). In particular, the number of components is quite moderate as seen
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in Figure 16(b).

(a) (b)

Figure 16: Quality case study: (a) Example of a non-Gaussian real variable easily modeled by a
Gaussian mixture, (b) distribution of the number of components found for each covariate.

Table 1 displays predictive results associated to different estimation methods with and without
CorReg. We can see that CorReg improves the results for each method tested in terms of prediction,
with generally a more parsimonious regression on Y . In terms of interpretation, this regression gives
a better understanding of the consequences of corrective actions on the whole process. It typically
permits to determine the tuning parameters whereas variable selection alone would point variables we
can not directly act on. So it becomes easier to take corrective actions on the process to reach the
goal. The stakes are so important that even a little improvement leads to consequent benefits, and we
do not even talk about the impact on the market shares that is even more important.

Method Indicator With CorReg Without CorReg
ols mse 13.30 14.03

complexity 130 206
lasso mse 12.77 12.96

complexity 24 21
elasticnet mse 12.15 13.52

complexity 40 78
ridge mse 12.69 13.09

complexity 130 206

Table 1: Quality case study: Results obtained on a validation sample (n = 847 individuals). In bold,
the best mse value.

5.2 Production case study

This second example is about a phenomenon that impacts the productivity of a steel plant. It is
described by a (confidential) response variable Y and d = 145 covariates from the whole process to
explain it but only n = 100 individuals are present. The stake is to gain 20% of productivity on a
specific product with high added value.

Figure 17(a) shows that many variables are highly correlated. CorReg found dr = 55 sub-
regressions and corresponding R2

adj values are displayed in Figure 17(b). One of them seems to be
weak (R2

adj = 0.17) but it corresponds in fact to a non-linear regression: It points out a link between
diameter of a coil and some shape indicator. In this precise case, CorReg found a structure that
helped to decorrelate covariates and to find the relevant part of the process to optimize. This product
is made by a long process that requires several steel plants so it was necessary to point out the steel
plant where the problem occurred.
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(a) (b)

Figure 17: Production case study: (a) Histogram of correlations ρ inX, (b) histogram of the adjusted
R2

adj for the dr = 55 sub-regressions.

As in the previous quality case study, we note that the uncorrelated variables can be very well-
modeled by parsimonious Gaussian mixtures as it is illustrated by Figure 18(a). In particular, the
number of components is really moderate as seen in Figure 18(b).

(a) (b)

Figure 18: Production case study: (a) Example of a non-Gaussian real variable easily modeled by a
Gaussian mixture, (b) distribution of the number of components found for each covariate.

Table 2 displays predictive results associated to different estimation methods with and without
CorReg. Note that mse is calculated though a leave-one-out method because of the small sample
size. We can again see that CorReg globally improves the results for each method tested in terms
of prediction, with always a more parsimonious regression on Y .
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Method Indicator With CorReg Without CorReg
ols mse 1.95 51 810

complexity 91 100
lasso mse 0.106 0.120

complexity 27 34
elasticnet mse 0.140 0.148

complexity 10 13
ridge mse 0.179 0.177

complexity 91 146

Table 2: Production case study: Results obtained with leave-one out cross-validation (n = 100, d =
145). mse is calculated though a leave-one-out method because of the small sample size. In bold, the
best mse value.

6 Conclusion and perspectives
We have seen that correlations can lead to serious estimation and variable selection problems in linear
regression. In such a situation, it can be useful to explicitly model the structure between the covariates
and to use this structure by simple probabilistic marginalization to avoid correlations issues. It has led
to the so called CorReg method, which can be viewed as a variable pre-selection based on covariates
correlations and which has to be then combined with any standard estimate and variable selection
procedure. The CorReg strategy is able to give not only efficiently prediction but also a better
understanding of the phenomenon at hand thanks to the sub-regressions description of correlated
covariates. Its strength is then its great interpretability of the model, composed of several short linear
regression easily managed by non-statisticians. In particular, we have illustrated both advantages of
CorReg in two industrial contexts related to the steel industry.

Future works we plan is to allow CorReg to manage missing values. They are very common
in industry for instance. Indeed, the structure can be used to estimate missing values in X thanks
to the full generative model assumed in CorReg. Another perspective would be to take back lost
information (the residual of each sub-regression) to improve predictive efficiency when needed. It
would only consists in a second step of linear regression between the residuals and would thus still be
able to use any selection method.

Package CorReg is accessible on cran: http://cran.r-project.org/web/packages/CorReg/index.html
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Appendix

7 Identifiability

7.1 Definition

We call identifiability:

@(S, S̃) ∈ Sd × Sd with S 6= S̃ and P(X;S) = P(X; S̃) (33)

To avoid label-switching consideration, we suppose here (without loss of generality) that Jr is ordered
by ascending order of the labels of the covariates. Hence identifiability is paired with the hypotheses
we made on Sd. It is not sufficient to find a structure of linear sub-regression, the structure also has to
verify hypotheses 1 to 3 (uncrossing rule + dependencies exhaustively described by the structure and
then independence between the conditional response covariates). As a consequence, the covariance
between two covariates is not null if and only if these covariates are linked by some sub-regressions.

7.2 Sufficient condition for identifiability

Identifability criterion: The model S is identifiable if

∀j ∈ {1, . . . , dr}, dj
p > 1. (34)

That is to have at least two regressors in each sub-regression.

To prove the sufficiency of this condition for identifiability we rely on the following lemma.

Lemma: With X and S following hypotheses 1 to 3, covariance between two distinct covariates
does differ from 0 in only two cases:

1. One of the two variables is a regressor of the other in a sub-regression

j ∈ {1, . . . , dr}, i ∈ J j
p then cov(Xi,XJj

r ) 6= 0 (35)

2. Both variables are regressed by a common covariate in their respective sub-regression:

∃k ∈ Jf , ∃(i, j) ∈ {1, . . . , dr} × {1, . . . , dr} with i 6= j, k ∈ J i
p and k ∈ J j

p (36)

then cov(XJi
r ,XJj

r ) 6= 0
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proof of the lemma: The two cases lead immediately to non-zero covariance so we just look at
other combinations of covariates.

• if ∃(i, j) ∈ {1, . . . , dr} × {1, . . . , dr}, cov(XJi
r ,XJj

r ) 6= 0 then hypothesis 2 (uncrossing rule)
guarantee that the two covariates are not in a same sub-regression so the covariance must come
from the noises of the sub-regression but hypothesis 3 say that they are independent. The only
remaining case is then the second case of the lemma: common covariate in the sub-regressions.

• if (i, j) ∈ Jf ×Jf then cov(Xi,Xj) = 0 because covariates in Xf are orthogonal (by hypotheses
1 and 2).

• if j ∈ {1, . . . , dr}, i ∈ Jf and cov(XJj
r ,Xi) 6= 0 then i ∈ J j

p by hypotheses 1 and 3 and equation
6.

�

proof of the identifiability criterion: We suppose that 34 is verified and the model is not iden-
tifiable:

∃(S, S̃) ∈ Sd × Sd with S 6= S̃ and P(X;S) = P(X; S̃) (37)

S̃ = (J̃r, J̃p) contains d̃r sub-regressions and is characterized by J̃r = (J̃1
r , . . . , J̃

d̃r
r ), J̃p = (J̃1

p , . . . , J̃
d̃r
p ).

Because S 6= S̃ we have Jr 6= J̃r or Jp 6= J̃p.

• If Jr = J̃r and S 6= S̃ then one sub-regression as a predictor that stands only in one of the two
structures. We suppose (without loss of generality) that ∃j ∈ {1, . . . , dr} for which ∃i ∈ J j

p with
i /∈ J̃ j

p so covS(XJj
r ,Xi) 6= 0 and covS̃(XJj

r ,Xi) = 0 (from the lemma) so the two structure
don’t give the same joint distribution, leading to a contradiction.

• If Jr 6= J̃r then one of the two models has a sub-regression that is not in the other. We suppose
(without loss of generality) that ∃J j

r ∈ Jr with J j
r /∈ J̃r then J j

r ∈ J̃f (recall Jf = {1, . . . , d} \
Jr). We note that J j

r ∈ Jr means ∃k1 6= k2, {k1, k2} ⊂ J j
p ⊂ Jf . Then covS(XJj

r ,Xk1) 6= 0
and covS(XJj

r ,Xk2) 6= 0 so by the lemma k1 and k2 are responses variables in S̃: ∃(l1, l2) ∈
{1, . . . , d̃r}× {1, . . . , d̃r}, J̃ l1

r = k1, J̃
l2
r = k2 and J j

r is a regressor of k1 and k2: J j
r ∈ J l1

p , J
j
r ∈ J l2

p

thus covS̃(Xk1 ,Xk2) 6= 0 that is not possible because {k1, k2} ⊂ J j
p ⊂ Jf and covariates in XJf

are orthogonal by hypotheses.

Finally, condition 34 is sufficient for identifiability of S. �

Remark: Because sub-regressions with at least two regressors are identifiable, the only non-identifiable
sub-regressions could be those with only one regressor, leading only to pairwise correlations that can
be seen directly in the correlation matrix. Such sub-regression can be permuted without any impact
on interpretation so such trivial sub-regression are not a problem even if they may occur with real
datasets. One more thing: exact sub-regression with at least two sub-regressors are identifiable with
our hypotheses.
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