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QUINTIC POLYNOMIALS OF HASHIMOTO-TSUNOGAI, BRUMER, AND
KUMMER

MASANARI KIDA, GUÉNAËL RENAULT, AND KAZUHIRO YOKOYAMA

Abstract. We establish an isomorphism between the quintic cyclic polynomi-
als discovered by Hashimoto-Tsunogai and those arising from Kummer theory
for certain algebraic tori. This enables us to solve the isomorphism problem for
Hashimoto-Tsunogai polynomials and also Brumer’s quintic polynomials.

1. Introduction

In their paper [6], Hashimoto and Tsunogai construct a quintic polynomial with
two parameters having cyclic Galois group by using an action of S5 on the moduli
space of the projective lines with ordered five marked points. Their polynomial is

HT(A,B; X) = Q−2
(
Q2X5 −Q

(
A3 + A2 + 10 B2A − 3 A + 20 B2 + 3

)
X4

+
(
−24 B2A + 28 B2 + 210 B4A + 3 − 28 B2A2 − 40 B4 − 625 B6

−8 A − 135 B4A2 − 3 A4 + 2 A5 − 7 B2A4 + 7 A2 + 44 A3B2
)

X3

+
(
4 A4 − 1 + A6 + 6 A + 305 B4 + 1250 B6 + 44 B2A2 − 220 B4A

−52 A3B2 + 345 B4A2 − 2 A5 + 12 B2A + 31 B2A4 + 11 B2 − 6 A2
)

X2

+
(
2 A5 − 2 A4 − 8 B2A4 + 36 A3B2 − 145 B4A2 + 3 A2

−22 B2A2 + 4 B2A + 120 B4A − 2 A − 13 B2 − 180 B4 − 625 B6
)

X

−Q
(
A3 + A2 + 7 B2A − B2

))
∈ Q(A,B)[X]

where Q = −A+1+B2A+7B2. The polynomial HT(A,B; X) is a generic polynomial
for the cyclic group C5 of order 5. By definition, all cyclic quintic extensions over
any fields K containingQ can be obtained from HT(A,B; X) by choosing appropriate
parameters A and B ∈ K. The polynomial HT(A,B; X) is also closely related to the
quintic polynomial given by Brumer (see Section 3). In contrast, from this kind
of geometric construction, it is usually difficult to extract algebraic or arithmetic
information. Typical examples are the decomposition law and the isomorphism
problem. We shall mainly discuss the latter problem in this paper. Namely we
give a condition for HT(A,B; X)’s with different parameters to define a same field.

On the other hand, a quintic Kummer polynomial is first computed by one of
the authors in [10]. It arises from the Kummer theory for certain algebraic torus. To
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be more precise, let ζ be a primitive fifth root of unity and k a field of characteristic
0 not containing Q(

√
5). Denote the automorphism of k(ζ) sending ζ to ζ2 by τ,

which generates the Galois group Gal(k(ζ)/k). From our assumption, k(ζ)/k is a
quartic extension. Let T = R(1)

k(ζ)/k(Gm) be the norm torus attached to the extension
k(ζ)/k. By definition, we have

T = ker
(
Nk(ζ)/k : Rk(ζ)/k(Gm) −→ Gm

)
.

In the paper [9], it is proved that T satisfies the Kummer duality

(1) T(k)/λT(k) � Homcont(Gal(k̄/k), kerλ),

where λ is a self-isogeny of T of degree 5 induced by the self-isogeny on the split
torus G3

m given by

(X1,X2,X3) 7→ (X1X−1
2 X−1

3 ,X1X2
2,X2X2

3)

(see also [10, Section 5]). Our quintic Kummer polynomial is a defining polynomial
of this descent Kummer extension. The explicit form of the quintic Kummer
polynomial 1 corresponding to the projective parameters

(u1 : u2 : u3 : u4) ∈ P3(k)� T(k)

is given by

Kum(u1,u2,u3,u4; X) =X5 +
1
2

Tr(ξ3α1α3)X3 + Tr(ξ2α1)X2

+
(
− 1

25
+ Tr(ξ11α

2
1α2α3) +

1
2

Tr(ξ12α
2
1α

2
3)
)

X

+
(
Tr(ξ01α

4
1α2α

2
3) + Tr(ξ02α1α2α3) + Tr(ξ03α

2
2α4)

)
∈ Q(u1,u2,u3,u4)[X],

where the constants ξ’s are defined by

ξ3 =
1
5

(3ζ + 2ζ2 + 3ζ4 + 2ζ3), ξ2 =
1
25

(2ζ − ζ2 − 2ζ4 + ζ3),

ξ11 =
1
25

(ζ + ζ4), ξ12 =
1
25

(−2ζ − ζ2 − 2ζ4 − ζ3),

ξ01 =
1

625
(ζ − 2ζ2 − ζ4 + 2ζ3), ξ02 =

1
125

(ζ2 − ζ3),

ξ03 =
1

125
(−ζ − ζ2 + ζ4 + ζ3).

and the parameters are encoded by

α1 =
u1ζ + u2ζ2 + u3ζ4 + u4ζ3

(u1ζ + u2ζ2 + u3ζ4 + u4ζ3)τ
,

αi = α
τi−1

(i = 1, 2, 3, 4)

and Tr denotes the trace map from k(ζ) to k. Here and hereafter, we assume that τ
acts trivially on the parameters ui’s. More precisely, we have to assume

Gal (k(u1,u2,u3, u4, ζ)/k(u1,u2,u3,u4)) � Gal (k(ζ)/k) = 〈τ〉

1Note that in [10, Theorem 2] there is a typo in the third term of the degree-one term in
Kum(u1, u2,u3,u4; X).
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and the trace map is, in fact, defined on k(u1,u2,u3,u4, ζ). Though this polyno-
mial looks complicated and has more parameters than the Hashimoto-Tsunogai
polynomial, it has many nice properties since it comes from Kummer theory. In
addition to being a generic C5-polynomial over Q (except for fields containing
Q(
√

5)), it naturally preserves algebraic and arithmetic information. Actually we
can solve the isomorphism problem and deduce the prime decomposition law for
this Kummer family (see [10, Section 5]).

The first aim of this paper is to embed the Hashimoto-Tsunogai polynomial in
this Kummer’s quintic family. By doing so, we can settle the isomorphism problem
for HT(A,B; T). One of our main theorems is the following.

Theorem 1.1. The polynomial Kum(−A − 5B,−5B − 1,A − 5B, 1 − 5B; X) defines the
same cyclic quintic field as HT(A,B; X) over Q(A,B).

We prove this theorem in the next section.
The rest of the paper is organized as follows.
Choosing particular parameters in the Hashimoto-Tsunogai polynomial, we get

Brumer’s quintic polynomial, which is generic for the dihedral group of order 10.
Using the result on the Hashimoto-Tsunogai polynomial, we can also settle the
isomorphism problem for Brumer’s family. This is the main subject in Section 3.

In Section 4, we prove a supplementary result concerning Brumer’s quintic
polynomials in the case where its splitting field contains Q(

√
5).

In Section 5, we deduce a condition for a quadratic field to have an unramified
quintic extension. Such an unramified extension is a D5 extension over the rational
number field Q. Therefore it can be obtained by choosing appropriate parameters
in Brumer’s family.

In Section 6, we employ our method to study the isomorphism problems for
cubic polynomials.

In Section 7, we construct an infinite family of Brumer polynomials defining
an isomorphic splitting field. The technique of the proof used in this section is
different from other sections. But this topic is of independent interest and the
authors believe that it is worth including this section in this paper.

Throughout this paper, we denote a fixed primitive 5-th root of unity by ζ.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We write the proof in detail, since we use
a similar technique in the rest of this paper.

Let Q = −A + 1 + B2A + 7B2 be the quantity appeared in the denominator of
HT(A,B; X). We cancel the denominator of HT(A,B; X) by setting

ht(A,B; X) = Q5HT(A,B; X/Q).

We have ht(A,B; X) ∈ Q[A,B][X].
To cancel the denominators of Kum(u1,u2,u3,u4; X), let

N = NormQ(ζ)/Q(u1ζ + u2ζ
2 + u3ζ

4 + u4ζ
3)

be the norm form of Q(ζ)/Q. By the defining formula of the αi’s, only divisors of
N can appear in the denominators of Kum(u1, u2,u3,u4; X). By setting

u1 = −A − 5B, u2 = −5B − 1, u3 = A − 5B, u4 = 1 − 5B,
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we define

kum(A,B; X) = N5Kum(−A − 5B,−5B − 1,A − 5B, 1 − 5B; X/N) ∈ Q[A,B][X].

Now we use Trager’s scheme [15] (see also [4, 3.6.2]. In [1] this scheme is
presented with some tricks in order to compute the splitting field of a polynomial).
Let β = β(A,B) be a root of ht(A,B; X) and γ = γ(A,B) a root of kum(A,B; X). We
compute a polynomial satisfied by β + 2γ using the resultant

ResX(ht(A,B; Y − 2X), kum(A,B; X)) ∈ Q[A,B][Y]

with respect to X. This is a polynomial of degree 25 in Y. We factor this polynomial
over Q[A,B] and obtain five distinct factors of degree 5. This computation is
done by using Magma [2] and the result is checked again by Risa/Asir [12]. Since
the both polynomials have C5 as the Galois group, this result means that β + 2γ
is a primitive element of the composite field Q(A,B)(β, γ), which is equal to the
splitting field of ht(A,B; X) and kum(A,B; X). Therefore we have Q(A,B)(β, γ) =
Q(A,B)(β) = Q(A,B)(γ). This shows that ht(A,B; X) and kum(A,B; X) defines the
same field. This completes the proof of the theorem.

Remark 2.1. In [10, Theorem 4], we embed Lehmer’s quintic family to Kummer’s
family. In doing this, we compute a Lagrange resolvent ([5, Theorem 5.3.5(4)]). But
in our present case, since the Galois action of HT(A,B; X) is not simply described,
computing this Lagrange resolvent is not easy.

Remark 2.2. Evaluating each factor obtained in the proof by β + 2γ in the quotient
ring Q[A,B][X]/(ht(A,B; X)), we can get an explicit expression of β in terms of a
polynomial in γ.

If the reader is interested in the explicit form of the factorization of the resultant
and the explicit expression of β, please refer to one of the authors’ webpage at
http://www-spiral.lip6.fr/˜renault/softwares en.html.

To state the isomorphism condition, the following definition is useful.

Definition 2.3. For the parameters A and B, we set

βi = βi(A,B) = ((−A − 5B)(ζ) + (−5B − 1)(ζ2) + (A − 5B)(ζ4) + (1 − 5B)(ζ3))τ
i−1

which is the numerator of αi with parameters A and B. Here we assume that τ acts
trivially on A and B. Using these βi, we define

(2) Γ(A,B) = β4
1β

2
2β3β

3
4 ∈ Q(A,B, ζ).

Corollary 2.4. Assume that Q(A,B) = Q(A′,B′) and that Q(A,B) does not contain
Q(
√

5). Then two polynomials HT(A,B; X) and HT(A′,B′; X) define the same quintic
field over Q(A,B) if and only if there exists an integer j prime to 5 such that

Γ(A,B) ≡ Γ(A′,B′) j (mod (Q(A,B, ζ)×)5).

Proof. Let LA,B be the cyclic quintic field defined by Kum(−A − 5B,−5B − 1,A −
5B, 1 − 5B; X). By Theorem 1.1, the field LA,B coincides with the splitting field of
HT(A,B; X). Now the extension LA,B(ζ)/Q(A,B, ζ) is a classical Kummer extension.
In [10, Equation (7)] it is shown that our Kummer duality (1) implies

LA,B(ζ) = Q(A,B, ζ)
(

5
√
α4

1α2α2
3

)
= Q(A,B, ζ)

(
5
√
Γ(A,B)

)
.
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Since LA,B is a unique cyclic quintic extension overQ(A,B) inside LA,B(ζ), two fields
LA,B and LA′,B′ are isomorphic if and only if LA,B(ζ) and LA′,B′ (ζ) are isomorphic.
Thus the result now follows from [5, Corollary 10.2.7(2)]. �

3. Brumer’s quintic family

Let a, b be rational parameters. Brumer’s quintic polynomial is given by

Bru(a, b; X) = X5 + (−3 + a)X4 + (3 + b − a)X3 + (−1 − a − 2b + a2)X2 + bX + a.

There are several known proofs showing that Bru(a, b; X) is a generic polynomial
for the dihedral group D5 of order 10 (see, for example, [8, Theorem 2.3.5] and [6,
Theorem 1]. See also [13], where a relation ideal for this polynomial is computed and
give another proof of this result). In this section, we solve the isomorphism problem
for Bru(a, b; X). This can be achieved by using the results in the previous section,
since Hashimoto and Tsunogai establish a relationship between HT(A,B; X) and
Bru(a, b; X). We now state this relation. We set

d(a, b) = −4b3− (−a2+30a−1)b2− (−24a3+34a2+14a)b− (4a5−4a4−40a3+91a2−4a).

Let c = c(a, b) be a zero of

(3) c2 − d(a, b) = 0.

It is known that the D5-extension over Q(a, b) defined by Bru(a, b; X) contains the
quadratic extension Q(a, b, c). With parameters given by

(4) A = −2a3 − 2a2 + 13a − 7ab + b
8a2 − 33a − ab − 7b + 2

, B = − c
8a2 − 33a − ab − 7b + 2

,

Hashimoto and Tsunogai ([6, Theorem 2]) proved that HT(A,B; X) and Bru(a, b; X)
define the same field over Q(a, b) .

Therefore, assumingQ(a, b) = Q(a′, b′), two polynomials Bru(a, b; X) and Bru(a′, b′; X)
define the same field if and only if the following two properties are satisfied:

(i) the quadratic fields Q(a, b, c) and Q(a′, b′, c′) coincide, where c′ = c(a′, b′).
(ii) HT(A,B; X) and HT(A′,B′; X) define the same cyclic quintic field over
Q(a, b, c), where A′ and B′ are given by (4) with a′ and b′.

For parameters a and b, we set

∆(a, b) = Γ(A,B) ∈ Q(ζ, a, b, c, ζ)

where A and B are substituted by (4).
The following theorem immediately follows from Corollary 2.4.

Theorem 3.1. Assume thatQ(a, b) = Q(a′, b′) and thatQ(a, b, c) does not containQ(
√

5).
Then two Brumer polynomials Bru(a, b; X) and Bru(a′, b′; X) define the same D5-extension
over Q(a, b) if and only if the following two conditions holds:

(i) d(a, b) ≡ d(a′, b′) (mod (Q(a, b)×)2);
(ii) ∆(a, b) ≡ ∆(a′, b′) j (mod (Q(a, b, c, ζ)×)5) for some integer j coprime to 5.

Example 3.2. Let us consider

Bru(1, 0; X) = X5 − 2X4 + 2X3 − X2 + 1.
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The discriminant of this polynomial is 472. Its splitting field K0 is an unramified
cyclic quintic extension over k0 = Q(

√
−47), which coincides with the Hilbert class

field of k0, since the class number of k0 is 5. We shall show that

Bru(5,−43; X) = X5 + 2X4 − 45X3 + 105X2 − 43X + 5

has the same splitting field as Bru(1, 0; X) does. In fact, we have

d(1, 0) = −47, d(5,−43) = −7943 = 132 · d(1, 0).

Thus they have the same quadratic subfield k0. We compute

∆(1, 0) =
1

51764766400764507882149
× (−138959809037984601600θ7 + 32758534569370905600θ6

− 22788447658717288729600θ5 + 12647305299183312576000θ4

− 1217762316893024257651200θ3 + 1230355458154949146534400θ2

− 21007132287745485900582400θ + 36151271313155868418534400)

and

∆(5,−43) =
1

3342005893184375612029355674097696549
× (2721399123969102591100871012024723238400θ7

− 984128627767541043169533555526595110400θ6

+ 406072643864338289550545501576533374566400θ5

− 355974375777555499412581233064439118080000θ4

+ 20107103247684822255556703257391117806732800θ3

− 28120459386200154473752354421698218101273600θ2

+ 328174775612278826635845321406573711156121600θ
− 612830125143556463729800291474339929514777600),

where θ =
√
−47 + ζ is a primitive element of Q(

√
−47, ζ). Then we have

∆(1, 0) = ∆(5,−43)2w5

with

w = − 1
173090050420619597229035703956780

× (−17923362519164587812721632θ7 − 61021321258567091804980913θ6

− 2686483964275441200972476522θ5 − 8616219169821887737762799108θ4

− 133820593407682936889507718982θ3 − 373410590307164678518505330012θ2

− 2233951589182294138861258045092θ − 4879013567822472723002536226734).

Among the rational integers in the range −400 ≤ a, b ≤ 400, there are 25 pairs
defining the same field as Br(1, 0):

(a, b) = (−23, 125), (−5, 36), (−5, 59), (−5, 372), (−1,−1), (−1, 4), (−1, 5), (−1, 46),
(1,−6), (1,−1), (1, 0), (1, 41), (5,−43), (5, 4), (11, 34), (11, 149), (13, 47),
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(19,−24), (19, 59), (19, 101), (23,−188), (25, 155), (31, 264), (43, 378), (55,−169).

One naturally makes a question whether there are infinitely many these pairs or
not. We will discuss this issue in the final section.

4. Supplementary result

In the previous section, we have settled the isomorphism problem for Brumer’s
polynomials in almost all cases. The exception is the case where the quadratic
subfield of the D5-extension contains Q(

√
5). Even if Q(u1,u2,u3,u4) contains

Q(
√

5), Kum(u1,u2,u3,u4; X) gives all cyclic quintic extensions over Q(a, b, c) by
Theorem 1.1. But in this case the Galois action on the parameters is no more trivial
and the Kummer duality (1) does not holds. This means that we cannot conclude
the Kummer generator is given by (2). To resolve the isomorphism problem for this
case, instead of quartic descent (1), we use a quadratic descent Kummer theory.

Let k be a field not containing the fifth root of unity ζ but contain
√

5. Then
the 5-th power map [5] on the 1-dimensional norm torus T = R(1)

k(ζ)/kGm induces the
Kummer duality

(5) T(k)/[5]T(k) � Homcont(Gal(k̄/k), ker[5]).

Setting δ = (ζ2 − ζ−2)2 =
−5 +

√
5

2
, we have k = k(δ) and k(ζ) = k(

√
δ). The quintic

cyclic polynomial arising from this duality is computed in [9, Example 6.1]:

Kum2(u1,u2; X) = 16X5 − 20X3 + 5X −
u2

1 + δu
2
2

u2
1 − δu2

2

.

with parameters (u1 : u2) ∈ P1(k). The Galois group of Kum2(u1,u2; X) over k is C5.
We prove the following theorem.

Proposition 4.1. Assume that Q(A,B, ζ) ∩Q(δ,A,B) = Q(δ) holds. Let

u1 =
1
4
{(A3 + 2A − 4A2 − 75B2 + 25B2A + 3) + δ(−20B2 + 15B2A − A2 + A + 1)},(6)

u2 =
1
4
{(20B − 5A2B − 75B3) + δ(−25B3 + 5B)}.(7)

Then HT(A,B; X) and Kum2(u1,u2; X) define the same quintic cyclic field overQ(δ,A,B).

Proof. The proof is almost the same as that of Theorem 1.1. We cancel the denomi-
nators and compute the factorization of the resultant

ResX(ht(A,B; Y − 2X),kum2(A,B; X)) ∈ Q[A,B][Y].

Since the base field is larger than before, the computation becomes harder. But
again in this case, we obtain five distinct factors of degree 5. �

Using the quadratic descent Kummer theory (5), the solution of the isomor-
phism problem for this case can be given. Before stating it, we need the following
definition.

Definition 4.2. For the parameters a and b, we have set

A = −2a3 − 2a2 + 13a − 7ab + b
8a2 − 33a − ab − 7b + 2

, B = − c
8a2 − 33a − ab − 7b + 2
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where c = c(a, b) is a solution of c2 − d(a, b) = 0 (see (3) and (4)). Using these A and
B, we define

Λ(a, b) =
u1 +

√
δu2

u1 −
√
δu2

and

Kum2(a, b; X) = Kum2(u1,u2; X)

where u1 and u2 are given by (6) and (7).

Corollary 4.3. Suppose that Q(a, b, c) = Q(a′, b′, c′) ⊃ Q(
√

5) where c′ = c(a′, b′). Then
Bru(a, b; X) and Bru(a′, b′; X) define the same D5 extension if and only if there exists an
integer j coprime to 3 satisfying

(8) Λ(a, b) ≡ Λ(a′, b′) j (mod (Q(a, b, ζ)×)5).

Proof. By Proposition 4.1, we have only to show that Kum2(a, b; X) and Kum2(a′, b′; X)
define the same field overQ(a, b, c). By the argument similar to those given in [10],
we can prove that the field defined by Kum2(a, b; X) is contained in

Q(a, b, ζ)
(

5
√
Λ(a, b)

)
.

Thus by the same argument as Corollary 2.4, this corollary follows again from [5,
Corollary 10.2.7(2)]. �

We give the condition (8) in a computationally convenient form. We can rewrite
it using the following general lemma.

Lemma 4.4. Let k be a field of characteristic 0. We assume that K = k(ζn) is a cyclic
extension over k, where ζn is a primitive n-th root of unity. Let τ be a generator of the

Galois group of K/k. Let a1, a2 be elements of K×. Then K
(

n

√
a1

aτ1

)
� K

(
n

√
a2

aτ2

)
if and only

if there exist an integer j prime to n and t ∈ k and γ ∈ K× so that a1 = ta j
2γ

n holds.

Proof. By [5, Corollary 10.2.7(2)], these two fields are isomorphic if and only if there

exist an integer prime to n and δ ∈ K× such that
a1

aτ1
=

(
a2

aτ2

) j

δn. Taking the norm to

k, we see NK/kδ = 1. By Hilbert’s theorem 90, we can find γ ∈ K satisfying δ = γ/γτ.
It yields that a j

2γ
n

a1


τ

=
a j

2γ
n

a1
.

This shows that t = a j
2η

n/a1 is an element of k. Since the opposite direction is almost
obvious, this completes the proof. �

By noting that the generator of Gal(Q(a, b, ζ)/Q(a, b, c)) acts by
√

d 7→ −
√

d, it
follows from Lemma 4.4 that the condition (8) is equivalent to

u1 +
√

du2 ≡ t(u′1 +
√

du′2) j (mod (Q(a, b, ζ)×)5)

for some t ∈ Q(a, b, d) and some integer j prime to 3.
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5. Arithmetic application

Since we have embedded the Brumer family to the Kummer family, it becomes
easier to deduce arithmetic information. The decomposition law in the quintic
Kummer family is essentially given in [10, Theorem 2]. Here in this section, we
use this decomposition law to construct quadratic fields whose class number is
divisible by 5.

We have the following proposition.

Proposition 5.1. Let a and b be rational numbers and Ba,b the splitting field of Br(a, b; X).
Assume that Q(c) is neither Q(

√
5) nor Q. Let p be a prime ideal of Q(ζ, c) and vp the

normalized exponential discrete valuation associated to p. We set pc = p ∩ OQ(c). For
i = 1, . . . , 4, we define

si = v
pτ

i−1 (β1),

u(p) = 4s1 + 2s4 + s3 + 3s2.

When p is prime to 5, then pc is unramified in Ba,b/Q(c) if and only if

(9) u(p) ≡ 0 (mod 5)

holds. When p is lying above 5, pc is unramified in Ba,b/Q(c) if and only if, in addition to
that (9) holds, the congruence

(10) x5 ≡ ∆(a, b) (mod p5+vp(∆(a,b)))

has a solution x in OQ(ζ,c).

Proof. Since the extension degree [Q(ζ) : Q(c)] is prime to 5, the extension Ba,b/Q(c)
is unramified at pc if and only if p is unramified in Q(ζ, 5

√
∆(a, b))/Q(ζ, a, b). It

is easy to deduce from Hecke’s theory [5, 10.2.3] that the Kummer extension
Q(ζ, 5

√
∆(a, b))/Q(ζ, a, b) is unramified at p if and only if the following two con-

ditions are satisfied:

vp(∆(a, b)) ≡ 0 (mod 5) for all p,
and (10) has a solution x in OQ(ζ,c) if p|5.

We can readily show that the first condition is equivalent to (9). �

Corollary 5.2. Let S be a set of prime ideals ofQ(ζ, c) containing prime ideals lying above

5 and prime divisors of β1 lying above rational primes p satisfying
(

dQ(c)

p

)
≡ p (mod 5).

Then the class number hc ofQ(c) is divisible by 5 if and only if the following two conditions
are satisfied:

For all prime ideals in S, we have u(p) ≡ 0 (mod 5).
For prime ideals p lying above 5, the congruence (10) has a solution.

Proof. By class field theory, the class number hc is divisible by 5 if and only if there
exists an unramified extension of degree 5 over Q(c). It is easy to observe that the
unramified extension is a D5-extension over Q. Thus we can apply Proposition
5.1 to our case. Let p be a prime ideal of Q(ζ, c). If the decomposition group of p
in Q(ζ, c)/Q(c) is not trivial, then u(p) = 10s1 or 5s1 + 5s4 and the condition (9) is
always satisfied. From the prime decomposition law in cyclotomic fields, we have
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the decomposition group is trivial if and only if
(

dQ(c)

p

)
≡ p (mod 5). The prime

ideals lying above these primes are possibly ramified primes inQ(ζ, 5
√
∆(a, b)). The

corollary now follows from Proposition 5.1. �

The general solution of (9) is

(s1, s2, s3, s4) = (5k + a + b,−5k − 2a − c, 10k + 4a + 3c,−5k − a − 2b)

and typical solutions are (s1, s2, s3, s4) = (s, s, s, s), (0, 0, 1, 2), . . . etc. Note that
u(p) mod 5 does not depend on the choice of p lying above pc.

There is an algorithm to solve the congruence (10). This algorithm is explained
in [5, 10.2.4]. Since our case is one of the easiest case, we write it down here.
Dividing ∆(a, b) by an appropriate powers of uniformizer at p, we may assume
vp(∆(a, b)) = 0. Now we find an element y satisfying y5 ≡ ∆(a, b) (mod p). This
requires only a cheap computation because (OQ(ζ,c)/p)∗ is of order 4 or 24. Then the
congruence (10) is solvable if and only if vp(y5 − ∆(a, b)) ≥ 5.

Example 5.3. We consider Bru(1, 0) in Example 3.2 again. We compute

β1 =
1

988907761786907
× (26734973820θ7 + 153390271617θ6

+ 4129151145516θ5 + 30213394778415θ4

+ 225719687216740θ3 + 1811781568653621θ2

+ 4453961936034319θ + 33723166487238680).

The prime ideal lying above 19 appear as a prime divisor of β1. Since
(−47

19

)
=

−1 ≡ 19 (mod 5), the prime ideal lying above 19 is possibly ramified. We compute
(s1, s2, s3, s4) = (2, 0, 0, 1) for a choice of p and u(p) = 5. Thus the prime ideal in
Q(
√
−47) lying above 19 does not ramify in B0,1.

6. Cubic polynomials

In this section, we apply our method to cubic generic polynomials to solve
the isomorphism problems for cubic polynomials. Several authors considered the
isomorphism problems for this cubic case. See, for example, [3], [11] and [7].
The authors are indebted to Akinari Hoshi for these references. Our approach is
similar to that of Chapman [3]. He uses classical Kummer theory to characterize
the isomorphisms among cyclic cubic polynomials. On the other hand, we use a
descent Kummer theory.

If the base field k contains
√
−3, the classical Kummer theory takes care of it.

Thus we may assume that the base field k does not contain
√
−3. Consider the

1-dimensional norm torus T = R(1)

k(
√
−3)/k
Gm. Then the third power map [3] on T

induces the Kummer duality

T(k)/[3]T(k) � Homcont(Gal(k̄/k), ker[3]).
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The Kummer polynomial for this case is computed in [9, Example 6.1]:

Kum3(u1,u2; X) = 4X3 − 3X −
u2

1 + du2
2

u2
1 − du2

2

.

with parameters (u1 : u2) ∈ P1(k).
We start with Shanks’ simplest cubic polynomial

Sha(t; X) = X3 − tX2 + (t − 3)X + 1,

which is a generic C3-polynomial over Q.
The relationship between these two cubic polynomials is given by the following

proposition.

Proposition 6.1. Let

u1 = 8t3 − 36t2 + 108t − 108, u2 = 12t2 − 36t + 108.

The cubic polynomials Sha(t; X) and Kum3(u1,u2; X) define the same cyclic cubic field
over Q(t).

We can prove this proposition by the same method used in Theorem 1.1. Thus
we omit the proof.

Corollary 6.2 (cf. [3, Proposition 4]). We assume Q(t) = Q(t′). Then two Shanks’
polynomials Sha(t; X) and Sha(t′; X) define the same field if and only if there exists an
integer j prime to 3 and s ∈ Q(t) such that

u1 +
√
−3u2 ≡ s(u′1 +

√
−3u′2) j (mod (Q(t,

√
−3)×)3)

holds.

Proof. As in Corollary 4.3, we know that the field defined by Kum3(u1, u2; X) is

contained in Q(a, b,
√
−3)

(
3
√

u1+
√
−3u2

u1−
√
−3u2

)
. Therefore the corollary is derived by a

similar argument as Corollary 4.3 using Lemma 4.4. �

Of course we can rewrite the condition as in [3, Corollary 1 to Proposition 4].
Next we consider the following generic S3-polynomial:

G(t; X) = X3 + tX + t.

Although Chapman’s method is limited to the cyclic case, we can deal with this
S3-polynomial in a similar manner.

We can show:

Proposition 6.3. The two cubic polynomials G(t; X) and Kum3(4
√
−4t3 − 27t2, 12t; X)

define the same S3-extension over Q(t).

Proof. It is easy to show that the splitting field SplG of G(t; X) contains the quadratic
field Q(

√
−4t3 − 27t2) = Q(

√
−4t − 27). We factorize

ResX(G(t; Y − 2X),Kum3(4
√
−4t3 − 27t2, 12t; X)) ∈ Q(t)[Y].

It decomposes into a cubic and a sextic irreducible factors. This means that SplG

contains the stem field of Kum3(4
√
−4t3 − 27t2, 12t; X), which is a cubic extension.

Thus SplG is a S3-extension overQ(t) containing a root of Kum3(4
√
−4t3 − 27t2, 12t; X),

hence the splitting fields of these two polynomials coincide. �
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As a corollary, we obtain:

Corollary 6.4. Assume that Q(t) = Q(t′). Define

u1 = u1(t) = 4
√
−4t3 − 27t2 and u2 = u2(t) = 12t.

Two polynomials G(t; X) and G(t′; X) define the same field if and only if the following two
conditions are satisfied:

(i) 4t + 27 = (4t′ + 27)v2 for some v ∈ Q(t)×;
(ii) u1(t)+

√
−3u2(t) ≡ s(u1(t′)+

√
−3u2(t′)) j (mod (Q(

√
−4t3 − 27t2,

√
−3)×)3)

for some integer j prime to 3 and s ∈ Q(
√
−4t3 − 27t2).

We also omit the proof of this corollary.
It is interesting to know a relationship between this corollary and Theorem 1 in

[7].

7. Brumer’s quintic polynomials defining theHilbert class field of Q(
√
−47)

This section serves as an appendix of this paper. Here we shall construct an
infinite family of Brumer polynomials defining an isomorphic splitting field. We
prove the following theorem.

Theorem 7.1. Let E be an elliptic curve defined by

E : y2 = x3 + 1316x2 + 212064x + 78074896.

For a rational point (x, y) ∈ E(Q), let b = x/188. If Bru(1, b; X) is irreducible, then
Bru(1, b; X) has the same splitting field as Bru(1, 0; X). Moreover, there are infinitely
many b’s for which Bru(1, b; X) is irreducible.

Proof. Let K0 be the splitting field of Bru(1, 0; X). As we see in Example 3.2, K0 is
the Hilbert class field of k0 = Q(

√
−47). We consider

Bru(1, b; X) = X5 − 2X4 + (2 + b)X3 + (−1 − 2b)X2 + bX + 1.

The splitting field of Bru(1, b; X) contains k0 if and only if the Diophantine equation
−47u2 = d(1, b) has a solution u ∈ Q. Namely we have

−47u2 = −4b3 − 28b2 − 24b − 47.

Setting x = 188b, y = 8836u, we have the elliptic curve E in the statement of the
theorem. The elliptic curve E is of conductor 11 · 472 and the discriminant of the
model is 212 · 115 · 476. The Mordell-Weil group is a torsion-free group of rank 2
generated by P1 = (−188, 8836) and P2 = (0,−8836). We write the rational point
(x, y) ∈ E(Q) by the fractions

x =
r
t2 , y =

s
t3 (r, s, t ∈ Z)

in the lowest terms. Then we have

b =
r

22 · 47t2 .

We substitute these equations to Bru(1, b; X) and clear the denominators and obtain
the following equivalent polynomial:
(11)
B(b; X) = X5−22 ·47X4+(23 ·47t2+47r)X3+(−23 ·473t3−22 ·472)X2+22 ·473rt2X+25 ·475t5
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whose discriminant is 212 · 4714t8s4. Let F be a quintic field generated by a zero of
B(b; X). We shall show that the splitting field of B(b; X) coincides with the Hilbert
class field of k0. To prove this, by Sase’s argument in [14], it is enough to show
that there is no fully ramified prime in F/Q. The extension F/Q is unramified
out side 2, 47, and the primes dividing t and s. As we see in Section 5, the only

primes satisfying
(
−47

p

)
≡ p (mod 5) possibly ramify in the splitting field over k0.

Therefore, in particular, we can ignore those primes not congruent to ±1 modulo
5. Hence, we may and do assume that the possible ramifying prime p is neither
2 nor 47. If p ramifies totally in F/Q, then it follows from [4, Proposition 6.2.1] that

(12) B(b; X) ≡ (X + a)5 (mod p)

for some a ∈ Z. If p is a prime divisor of t, then we have

B(b; X) ≡ X5 + 47rX3 (mod p).

This yields p|r. This contradicts to (t, r) = 1. Thus we may assume that p does not
divides t. The remaining possibility of p is a prime divisor of s. Comparing the
constant terms of (11) and (12), we must have

a5 ≡ 25 · 475t5 (mod p).

If a ≡ 2 ·47t (mod p), then, by looking at the fourth-degree term, we have 2 ·5 ·47t ≡
−22 ·47t (mod p). It follows 7t ≡ 0 (mod p). This is impossible by our assumption.
If a . 2 · 47t (mod p), then p ≡ 1 (mod 5) must hold. Then we have a ≡ 2 · 47tv
(mod p) for some element v ∈ F×p of order 5. Comparing the fourth-degree term, we
obtain 5u ≡ −2 (mod p). In particular, p cannot be 5. Using this relation, we derive
a condition on p from other terms. From the degree-one term and the degree-two
term, we have

53t2r ≡ 26 · 47t4 (mod p),

2 · 32 · 47t3 ≡ −52tr (mod p),

respectively. Noticing that (t, p) = 1, we eliminate r in these congruences and get
2 · 11 · 47t2 ≡ 0 (mod p). Therefore the only possible ramifying prime is 11. Using
the degree three-term does not make any further restriction. Now let p = 11. Since
p|s, we have p|Y and also b ≡ X (mod p). We consider the reduction Ẽ of E modulo
11. The curve Ẽ is singular and defined by

y2 = (x + 4)(x + 7)2

over Fp. It follows from y = 0 that b = x = 4 or 7. But the points P1 mod p
and P2 mod p do not fall on the singular point (4, 0). Therefore no rational point
P ∈ E(Q) maps to (4, 0) under the reduction map E −→ Ẽ modulo 11. Thus we
conclude b ≡ 7 (mod p). In this case, B(b; X) does not become a 5-th power of a
linear factor modulo 11. Thus we conclude that there is no fully ramified prime in
F/Q. This completes the proof of the first half of the theorem.

Next we consider the reduction map modulo 2: E −→ Ẽ. Here Ẽ is a singular
curve over F2 defined by y2 = x3. There are two F2-rational points on the curve:
(0, 0) and (1, 1). The former point is singular and the latter is non-singular. We can
prove that if (x, y) ∈ E(Q) maps to the singular point (0, 0) ∈ Ẽ(F2), then Bru(1, b; X)
is irreducible with b = x/188. In fact, if the assumption is satisfied, then b = 0 in
F2. Then Bru(1, b; X) is congruent to X5 +X2 + 1, which is a irreducible polynomial
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in F2[X]. This shows that Bru(1, b; X) is irreducible in Q[X]. The rational points in
E(Q) reducing to the non-singular point (1, 1) forms a subgroup E0 in E(Q). By a
simple computation, the group E0 is generated by P1 − 2P2 and 5P2. Thus it is of
index 5 in E(Q). Therefore there are infinitely many P ∈ E(Q) which is not reduced
to (1, 1). This completes the proof of the theorem. �

We compute several b’s satisfying the assumptions of the theorem. In the follow-
ing, the triples (n1, n2, b) are listed where P = n1P1 + n2P2 (0 ≤ n1 ≤ 3,−3 ≤ n2 ≤ 3)
and b = x(P)/188:

(0, 2,−293/47), (0, 3,−61429/85849), (1,−3, 66390/121), (1,−1,−6), (1, 0,−1),
(1, 1, 41), (1, 2, 2220/1681), (2,−3,−67116/51529), (2,−2, 1135/47), (2,−1, 47/25),

(2, 0,−210/47), (2, 2, 2801442/323783), (2, 3, 18802504019/4449023401), (3,−3,−7947571/2007889),
(3,−2,−102024/38809), (3, 0, 153864/26569), (3, 1,−12424675/4566769),

(3, 2,−22382213557/5810250625), (3, 3, 304170202183950/109697574742921).

Note that −P gives the same b as P, therefore we omit such triples.
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