Distributed energy-efficient power optimization in cellular relay networks with minimum rate constraints
Giacomo Bacci, Elena Veronica Belmega, Luca Sanguinetti

To cite this version:

HAL Id: hal-01098829
https://hal.archives-ouvertes.fr/hal-01098829
Submitted on 29 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DISTRIBUTED ENERGY-EFFICIENT POWER OPTIMIZATION IN CELLULAR RELAY NETWORKS WITH MINIMUM RATE CONSTRAINTS

Giacomo Bacci⋆† E. Veronica Belmega♦ Luca Sanguinetti⋆‡

⋆ Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy, and CNIT, Parma, Italy
† Princeton University, Dept. Electrical Engineering, Princeton, NJ, USA
♦ ETIS / ENSEA - UCP - CNRS, Cergy-Pontoise, France
‡ Alcatel-Lucent Chair, Ecole supérieure d’électricité (Supélec), Gif-sur-Yvette, France

ABSTRACT

In this work, we derive a distributed power control algorithm for energy-efficient uplink transmissions in interference-limited cellular networks, equipped with either multiple or shared relays. The proposed solution is derived by modeling the mobile terminals as utility-driven rational agents that engage in a noncooperative game, under minimum-rate constraints. The theoretical analysis of the game equilibrium is used to compare the performance of the two different cellular architectures. Extensive simulations show that the shared relay concept outperforms the distributed one in terms of energy efficiency in most network configurations.

1. INTRODUCTION

The use of fixed relays to convey messages from the base station (BS) to user equipments (UEs) through multihop communications is nowadays considered by many upcoming wireless standards (such as the 3GPP’s LTE-Advanced [1]) as one of the most promising solutions to enhance cell-edge performance in cellular networks. One of the key challenges is to properly mitigate the intercell interference that arises among relays belonging to different neighboring cells. A possible solution is represented by the shared relay concept, originally proposed in IEEE 802.16m [2], that relies on the idea of placing a multiple-antenna relay at the intersection of two or more cells. The relay decodes the signals from the multiple users in neighboring cells using the multiple receive antennas to cancel interference, and then retransmits to the BSs of different cells using broadcast methods. Refs. [3–6] show that shared relays achieve a substantial improvement in terms of spectral efficiency compared to multiple relays placed within each macrocell. To the best of our knowledge, all works available in the literature focus on measuring the spectral efficiency of the two different architectures, whereas the problem of energy-efficient communications is not taken into account. However, the latter is becoming increasingly important as battery technology has not kept up with the increasing requirements stemming from ubiquitous multimedia applications. This is witnessed by the large number of works accounting for the cost of energy in the performance metrics. To this aim, the concept of link capacity per unit cost, originally proposed in [7], has been widely adopted in many different contexts (see for example [8–11] and references therein).

This work aims at revisiting the above concept to evaluate the energy efficiency of an uplink power control algorithm operating in conjunction with either multiple or shared relays. Unlike [3–6], we allow the multiple relays to interact in a distributed manner, by modeling the UEs as utility-driven rational agents that engage in a noncooperative game [12], using their own local information while satisfying quality-of-service (QoS) requirements in terms of minimum achievable rates. Note that a similar framework has been recently adopted in [11, 13] to study a K-user N-parallel Gaussian interference channel. Elaborating on this formulation, here we introduce the QoS requirements in the game, that thus becomes a generalized one [12, 14], also providing a simple method to compute the equilibrium point as a function of the network parameters using a fixed-point system of equations.

2. SYSTEM AND SIGNAL MODEL

2.1. System model

We consider the uplink of an arbitrary hexagonal orthogonal frequency-division multiple-access (OFDMA) multicellular network with universal frequency reuse. Each cell is divided into an inner and outer sector. The macro BS is placed at the cell center, whereas the outer sector is further divided into a certain number of adjacent sectors that are served using two different architectures. The first one, depicted in Fig. 1(a), refers to a network in which each sector is served by a fixed relay. The second one, shown in Fig. 1(b), accounts for a network in which the three adjacent sectors are served...
by a shared relay placed at their intersection. In both cases, the UEs are assumed to be uniformly distributed within the cell, and equipped with single antennas, and perfect channel knowledge is assumed at the relays. The communication between the BS and the UEs takes place in a single-hop if the UEs are placed within the inner sector, whereas a two-hop carrier only, that is still expedient to draw some insights on the clusters of neighboring cells sharing the same subcarrier. However, interference may arise among UEs in adjacent cells, and let \(\mathbf{h}_i \) denote the uplink channel vector whose \(\mathbf{h}_i \in \mathbb{C}^{MD \times 1} \) denote the uplink channel vector whose entries \([\mathbf{h}_i]_{m} \) represent the channel gains from the \(m \)th UE to the \(n \)th receive antenna of user \(k \)'s serving relay. Denoting by \(\mathbf{x}_k \) the vector collecting the samples received at UE \(k \)'s serving relay, we may write \(\mathbf{x}_k = \sum_{i=1}^{K} \mathbf{h}_{ki} \sqrt{p_i s_i} + \mathbf{w}_k \), where \(p_i \) and \(s_i \) denote UE \(i \)'s transmit power and data symbol, respectively, whereas \(\mathbf{w}_k \in \mathbb{C}^{MD \times 1} \) is a Gaussian vector accounting for the additive noise and possibly other sources of interference, with zero mean and covariance matrix \(\sigma^2 \mathbf{I}_{MD} \), where \(\mathbf{I}_L \) is the \(L \times L \) identity matrix. To keep the complexity of the relay at a tolerable level, a simple linear detection scheme is employed for data detection. This means that the entries of \(\mathbf{x}_k \) are linearly combined to form \(y_k = \mathbf{g}_k^H \mathbf{x}_k \), where \(\mathbf{g}_k \) is the vector employed for recovering the data of a generic user \(k \). The signal-to-interference-plus-noise ratio (SINR) achieved by user \(k \) at its serving relay takes the form

\[
\gamma_k(p) = \frac{\left| \mathbf{g}_k^H \mathbf{h}_{kk} \right|^2 p_k}{\| \mathbf{g}_k \|^2 \sigma^2 + \sum_{i \neq k} \left| \mathbf{g}_k^H \mathbf{h}_{ki} \right|^2 p_i} = \mu_k(p) p_k
\]

where we explicitly report the dependence on the vector \(p = [p_1, \ldots, p_K]^T = [p_k, p_k, \ldots, p_k] \), with \(p_{vk} = p \setminus p_k \) denoting the vector of all powers except user \(k \)'s one. Using (1), user \(k \)'s achievable data rate equals \(r_k(p) = B \log_2 \left(1 + \gamma_k(p) \right) \), where \(B \) is the subcarrier bandwidth.

When multiple relays are used, a maximum ratio combining (MRC) technique is employed. This amounts to setting \(\mathbf{g}_k = \mathbf{h}_{kk} \), which requires no channel knowledge of the interfering users within neighboring cells. On the other hand, when a shared relay is employed, we resort to a zero-forcing (ZF) strategy, by setting \(\mathbf{g}_k \) equal to the \(k \)th column of the matrix \(\mathbf{H}_k (\mathbf{H}_k^H \mathbf{H}_k)^{-1} \) with \(\mathbf{H}_k = [\mathbf{h}_{k1}, \mathbf{h}_{k2}, \ldots, \mathbf{h}_{kK}] \in \mathbb{C}^{MD \times K} \). As seen, the computation of \(\mathbf{H}_k \) requires knowledge of all \(\mathbf{h}_{ki} \) for \(i \neq k \). This can easily be acquired by the shared relay using conventional estimation schemes [3].

3. ENERGY-EFFICIENT POWER OPTIMIZATION

An accurate modeling of the system energy consumption is of primary importance when dealing with energy efficiency. To this end, note that, beside the radiative powers \(p_t \) at the output of the RF circuit, UEs also incur circuit power consumption during transmission. The overall power consumption \(p_{T,k} \) of the \(k \)th UE is thus given by \(p_{T,k} = p_t + p_r \), where \(p_t \) represents the current power consumed by the device electronics, which is assumed to be independent of the transmission state and equal for all UEs. Following [13], the energy efficiency of the link can be measured by the utility function

\[
u_k(p) = \frac{r_k(p)}{p_{T,k}} = \frac{B \log_2 \left(1 + \gamma_k(p) \right)}{p_t + p_r}.
\]

Observe that, in cellular networks, UEs are usually required to satisfy \(r_k(p) \geq B \varphi_k \), where \(\varphi_k \geq 0 \) are the minimum normalized data rates (measured in b/s/Hz).

To sum up, the design of an energy-efficient power allocation scheme requires to solve the optimization problem:

\[
\mathbf{p}^* = \arg\max_{\mathbf{p}} \sum_{k=1}^{K} u_k(p)
\]

subject to \(p_k \geq 0 \) and \(r_k(p)/B \geq \varphi_k \) whose solution is hard to compute, given the non-convex form of (3) caused by the QoS constraints.

1. For analytical convenience, no upper bound on \(p_t \) is considered, as (2) inherently prevents the UEs from using unnecessarily high power levels.
To tackle with this, we investigate a distributed scenario in which every UE is a rational entity that chooses its transmit power to optimize its own link energy efficiency, measured by $u_k(p)$ in (2). The natural framework to model this kind of interactions is offered by non-cooperative game theory [12]. In particular, the underlying game \mathcal{G} is defined as the tuple $\mathcal{G} = \{\mathcal{K}, \{\mathcal{A}_k\}, \{u_k\}\}$, in which: $\mathcal{K} = \{1, 2, \ldots, K\}$ is the player set; \mathcal{A}_k denotes the strategy set for which the constraints in (3) are satisfied; and u_k is player k's payoff function defined in (2). Note that user k's action set depends on the actions of the other players, i.e., $\mathcal{A}_k = \mathcal{A}_k(p_{\setminus k})$, because of the rate constraint $r_k([p_k, p_{\setminus k}])/B \geq \gamma_k$. In this case, the solution concept is the generalized Nash equilibrium (GNE) [14], that collects all system states that are stable to unilateral deviations [12].

3.1. Feasibility of the GNE problem
The feasibility of the GNE problem amounts to providing conditions ensuring that the overall action set $\mathcal{A} = \times_{k \in \mathcal{K}} \mathcal{A}_k$ is not empty. For later convenience, let us define a matrix $F \in \mathbb{C}^{K \times K}$ whose (k, i)-th element is

$$[F]_{k,i} = \begin{cases} 0 & \text{if } i = k \\ \frac{\gamma_{\text{req}}^k |g_k|^2 \|h_{ki}\|^2}{|g_k|^2 \|h_{ki}\|^2} & \text{if } i \neq k \\ \end{cases}$$

with $\gamma_{\text{req}}^k = 2^{2\gamma_k} - 1$ being the SINR such that $r_k = B_{\gamma_k}$. Let $\rho_\mathcal{A}$ also denote the spectral radius of a generic matrix \mathcal{A} [15].

Lemma 1 The problem (3) is feasible if and only if $\rho_\mathcal{A} < 1$.

Proof: The proof is articulated in two steps. First, we provide a necessary and sufficient condition under which the minimal power to optimize its own link energy efficiency, measured by $u_k(p)$ in (2). Note that user k's action set depends on the actions of the other players, i.e., $\mathcal{A}_k = \mathcal{A}_k(p_{\setminus k})$, because of the rate constraint $r_k([p_k, p_{\setminus k}])/B \geq \gamma_k$. In this case, the solution concept is the generalized Nash equilibrium (GNE) [14], that collects all system states that are stable to unilateral deviations [12].

3.2. Analysis of the GNE
In this subsection, we focus on the analysis of the outcome of the game \mathcal{G}. Let us denote by $W(\cdot)$ the Lambert function [17] defined such that $z = W(z) \cdot \exp(W(z))$ for any $z \in \mathbb{C}$. As stated in the following theorem, it turns out that, whenever Lemma 1 holds, \mathcal{G} has a unique solution.

Theorem 1 If the GNE problem is feasible, then \mathcal{G} has a unique GNE, achieved by the unique solution $p^* = [p_1^*, \ldots, p_K^*]$ to the fixed-point system of equations

$$p_k^* = \frac{\gamma_k^*(p_{\setminus k}^*)}{\mu_k(p_{\setminus k}^*)}$$

where $\mu_k(p_{\setminus k}^*)$ is defined as in (1) and the optimal SINR $\gamma_k^*(p_{\setminus k}^*)$ is given by $\gamma_k^*(p_{\setminus k}^*) = \max \{\gamma_{\text{req}}^k, \tilde{\gamma}_k(p_{\setminus k}^*)\}$ with

$$\tilde{\gamma}_k(p_{\setminus k}^*) = \exp \left[\frac{W \left(\frac{\mu_k(p_{\setminus k}^*)p_c - 1}{e} \right) + 1}{\frac{\gamma_k^*}{\mu_k(p_{\setminus k}^*)}} \right] - 1.$$

Due to space limitations, we can only give the main guidelines of the proof (see [18] for more details). The existence follows from the topology of the overall action set \mathcal{A}_k [14], interpreted as a point-to-set mapping [19], jointly with the continuity and quasi-concavity properties of the payoff function $u_k(\cdot)$ as a function of p_k for all $k \in \mathcal{K}$ [12]. To prove the uniqueness, we use the best-response correspondence [12], described by (7), which ensures that its fixed point is the unique GNE of the underlying game. Since (7) turns out to be a standard function [20] (i.e., component-wise positive, monotonic, and scalable), it has a unique fixed-point [21]. This amounts to saying that the GNE is unique. Note that, unlike other game-theoretic power control schemes (e.g., [22–24]), here not only the optimal power p_k^*, but also the optimal SINR γ_k^* depends on the others’ actions $p_{\setminus k}^*$ through $\tilde{\gamma}_k$. This feature makes proving that (7) is a standard function rather challenging.

4. PERFORMANCE ASSESSMENT
Using the theoretical results derived in Section 3, we are interested in comparing the performance of the two relay configurations illustrated in Section 2.1, by means of an extensive simulation campaign. Throughout the simulations, we assume $K = 3$. To include the impact of spatial correlation among the MD colocated antennas, the channel power gains are computed as $h_{ki} = \Theta^{1/2} \zeta_{ki}$, where Θ is a square matrix of size DM and elements $[\Theta]_{k,i} = \theta^{[k-1]}$, with θ denoting the correlation index between adjacent antennas [25]. To simulate the effects of fading and shadowing, the coefficients $[\zeta_{kj}]_m$ are modeled as zero-mean statistically independent and circularly symmetric Gaussian random variables with variance $(R/d_{sk})^2$, where R is the cell radius, d_{sk} is the distance between the kth UE and the UE i’s receiving relay, and $\zeta = 4$ is the path-loss exponent.
To average over all possible positions of the UEs within each sector, we use 10,000 independent realizations of a feasible scenario, where the reference user is placed randomly in the observed vector at a normalized distance $\xi \in [d/R, 1]$, where $d = R/2$ is the radius of the single-hop region, whereas the other two interfering users are placed randomly within their reference sectors. To account for all positions ξ, we use a discretized version of the range $[d/R, 1]$, using a quantization step $\Delta \xi = 0.02$, and we average using the theoretical probability density function $f_\xi(\xi)$, derived in [18] for a uniform distribution of UEs across the two-dimensional plane covered by the multicellular system under investigation. The shared relay is placed at the intersection of the three cells, as represented in Fig. 1(b), whereas the distributed relays are placed so as to minimize the average UE transmit power [18]. To include the impact of variable QoS constraints, the reference user adopts $\varphi_k = 1.5$ b/s/Hz, whereas the other two UEs select a random φ_i uniformly distributed in $[0, 3]$ b/s/Hz.

In Figs. 2-3, we evaluate the performance in terms of energy efficiency of the two architectures as a function of the antenna correlation index θ. Dashed and solid lines depict the case when $D = 1$ and $D = 3$, respectively, whereas square and circular markers report the results obtained with the shared relay using ZF, and the multiple relays using MRC, respectively. Both transmit powers and circuit powers are normalized with respect to the noise power σ^2. In particular, red lines correspond to the case $p_c/\sigma^2 = -10$ dB, in which the circuit power is negligible with respect to the noise, whereas blue lines report the case $p_c/\sigma^2 = +10$ dB, in which the circuit power is significantly higher than the noise.

Fig. 2 reports the average normalized utility for the cases introduced above. As can be seen, the MRC-based distributed-relay configuration outperforms the ZF-based shared-relay solution only when the system is noise-limited. This is due to the fact that, when $p_c \ll \sigma^2$, also $p_k \ll \sigma^2$, due to the increasing behavior of p_k^\star with respect to p_c [18], and thus the system is noise-limited. In addition to this, when the number of antennas is limited (notably, $D = 1$ and thus $MD = 3$), the improvement brought by the multiple antennas at the shared relay is not sufficiently effective. In all other cases, the shared relay is shown to outperform the distributed relay configuration for reasonable values of θ.

For the sake of completeness, Fig. 3 reports the average normalized rate at the GNE as a function of θ, yielding similar conclusions. It is worth mentioning that the minimum rate $\varphi_k = 1.5$ b/s/Hz is met not only on average, but also at every realization of the simulation.

5. CONCLUSIONS

We have studied the performance of a relay-based cellular network using an energy-efficient uplink power control, formulated in terms of achieved rate per unit of energy consumed, also considering the impact of the circuit power. To this aim, we have considered two different relay architectures: a multiple-antenna shared relay that serves multiple macrocells, and a set of distributed relays, each serving a sector within one macrocell. Numerical results have revealed that the distributed-relay solution outperforms the shared relay only when the system is noise-limited. In all other cases, the benefits given by multiuser cancellation increase as the impact of multiple access interference increases. Interestingly, this conclusion is in line with other recent studies (e.g., [3–6]) focusing instead on spectral efficiency. Moreover, although here we focused on a relay-based network, the analysis can be applied to many other scenarios, such as small cells [26]. Future work is needed to assess the performance when considering a multicarrier system, thus also introducing subcarrier allocation, and also measuring the receiver computational costs, and the installation and maintenance costs.
6. REFERENCES

