
HAL Id: hal-01098272
https://hal.science/hal-01098272

Submitted on 23 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Irrigated grassland monitoring using a time series of
terraSAR-X and COSMO-skyMed X-Band SAR Data

Mohammad El Hajj, N. Baghdadi, Gilles Belaud, Mehrez Zribi, B. Cheviron,
Dominique Courault, Olivier Hagolle, F. Charron

To cite this version:
Mohammad El Hajj, N. Baghdadi, Gilles Belaud, Mehrez Zribi, B. Cheviron, et al.. Irrigated grassland
monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR Data. Remote
Sensing, 2014, 6 (6), pp.10002-10032. �10.3390/rs61010002�. �hal-01098272�

https://hal.science/hal-01098272
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Remote Sens. 2014, 6, 1-x manuscripts; doi:10.3390/rs60x000x 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Irrigated Grassland Monitoring using a Time Series of 

TerraSAR-X and COSMO-SkyMed X-Band SAR Data 

Mohammad El Hajj 
1,

*, Nicolas Baghdadi 
1
, Gilles Belaud 

2
, Mehrez Zribi 

3
, Bruno Cheviron 

4
, 

Dominique Courault 
5
, Olivier Hagolle 

3
 and François Charron 

2 

1
 IRSTEA, UMR TETIS, 500 rue François Breton, 34093 Montpellier cedex 5, France;  

E-Mail: nicolas.baghdadi@teledetection.fr  
2
 SupAgro, UMR G-EAU, 2 place Pierre Viala, 34060 Montpellier, France;  

E-Mails: belaud@supagro.inra.fr; Francois.Charron@supagro.inra.fr  
3 CESBIO, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse cedex 9, France;  

E-Mails: mehrez.zribi@ird.fr; olivier.hagolle@cnes.fr 
4 IRSTEA, UMR G-EAU, 361 rue François Breton, 34196 Montpellier cedex 5, France;  

E-Mail: bruno.cheviron@irstea.fr  
5 INRA, UMR 1114 EMMAH, Domaine St. Paul, 84914, Avignon, France;  

E-Mail: dominique.courault@avignon.inra.fr 

* Author to whom correspondence should be addressed; E-Mail: mohammad.el-hajj@teledetection.fr; 

Tel.: +33-467-548-724; Fax: +33-467-548-700. 

External Editors: Salvatore Stramondo; Prasad S. Thenkabail 

Received: 16 June 2014; in revised form: 25 September 2014 / Accepted: 13 October 2014 /  

Published: xx xxxx 2014 

 

Abstract: The objective of this study was to analyze the sensitivity of radar signals in the 

X-band in irrigated grassland conditions. The backscattered radar signals were analyzed 

according to soil moisture and vegetation parameters using linear regression models. A 

time series of radar (TerraSAR-X and COSMO-SkyMed) and optical (SPOT and 

LANDSAT) images was acquired at a high temporal frequency in 2013 over a small 

agricultural region in southeastern France. Ground measurements were conducted 

simultaneously with the satellite data acquisitions during several grassland growing cycles 

to monitor the evolution of the soil and vegetation characteristics. The comparison between 

the Normalized Difference Vegetation Index (NDVI) computed from optical images and 

the in situ Leaf Area Index (LAI) showed a logarithmic relationship with a greater 

scattering for the dates corresponding to vegetation well developed before the harvest. The 
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correlation between the NDVI and the vegetation parameters (LAI, vegetation height, 

biomass, and vegetation water content) was high at the beginning of the growth cycle. This 

correlation became insensitive at a certain threshold corresponding to high vegetation (LAI 

~2.5 m
2
/m

2
). Results showed that the radar signal depends on variations in soil moisture, 

with a higher sensitivity to soil moisture for biomass lower than 1 kg/m². HH and HV 

polarizations had approximately similar sensitivities to soil moisture. The penetration depth 

of the radar wave in the X-band was high, even for dense and high vegetation; flooded 

areas were visible in the images with higher detection potential in HH polarization than in 

HV polarization, even for vegetation heights reaching 1 m. Lower sensitivity was observed 

at the X-band between the radar signal and the vegetation parameters with very limited 

potential of the X-band to monitor grassland growth. These results showed that it is 

possible to track gravity irrigation and soil moisture variations from SAR X-band images 

acquired at high spatial resolution (an incidence angle near 30°). 

Keywords: grassland; irrigation; TerraSAR-X; COSMO-SkyMed; SPOT-4; LANDSAT; 

soil moisture; vegetation parameters 

 

1. Introduction  

In agriculture areas, information on soil and vegetation conditions is key for water and crop 

management. The use of in situ sensors to measure soil and vegetation parameters is not effective, 

especially over large areas, due to the punctual information provided by these measurements.  

Space-borne remote sensing is a useful tool for mapping vegetation and soil parameters due to its 

capacity to provide continuous coverage over large areas at various spatial and temporal resolutions. 

The information extracted from optical data is sometimes incomplete due to clouds. Sensors with 

spectral bands in the microwave range allow for the acquisition of images in all types of weather. 

Thus, SAR (Synthetic Aperture Radar) sensors are useful additional remote sensing data sources for 

applications such as crop and water management. 

Over the last decade, SAR sensors have been launched to meet the increasing spatial data needs of 

the scientific and user communities. These SAR sensors have very high spatial resolution (1 m) and 

short revisit intervals (daily). Given their high spatial and temporal resolutions, TerraSAR-X (TSX) 

and COSMO-SkyMed (CSK) provided new opportunities for the operational monitoring of 

biophysical soil and vegetation parameters. The German radar satellite TerraSAR-X (TSX) was 

launched in June 2007 for commercial and scientific applications. It carries a high frequency X-band 

SAR sensor (9.65 GHz) that can be operated in different imaging modes [1]. In Spotlight imaging 

mode, a spatial resolution of up to 1 m can be achieved. The Stripmap mode (SM) allows for 

acquisitions with up to 3 m resolution. In the ScanSAR mode, a spatial resolution of up to 18 m is 

achieved. Imaging is possible in single polarization, dual-polarization (HH, VV, HH/VV, HH/HV, or 

VV/VH), or quad-polarization (HH, VV, HV, VH), and the nominal revisit period is 11 days. The 

absolute and relative radiometric accuracies, determined during the commissioning phase of 

TerraSAR-X and confirmed by the recalibration campaigns, are 0.6 dB and 0.3 dB, respectively [1,2]. 
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The second X-band SAR system is the COSMO-SkyMed (CSK) constellation (9.6 GHz), developed in 

cooperation between the Italian Space Agency (ASI) and the Italian Defense Ministry. It is composed 

of four radar satellites (CSK1, CSK2, CSK3, CSK4). The first satellite in the constellation was 

launched in June 2007; the fourth satellite was launched in November 2010. The CSK SAR has the 

following three imaging modes [3]: Spotlight, Stripmap, and Scansar. Spotlight mode allows for 

images with spatial resolutions equal to 1 m (HH or VV). The Stripmap Himage (HI) and Pingpong 

(PP) modes provide spatial resolutions between 3 m (HH, HV, VH or VV) and 15 m (HH/VV, 

HH/HV, or VV/VH). Finally, the Scansar modes achieve medium (30 m) to coarse (100 m) spatial 

resolution (one polarization is selectable among HH, HV, VH and VV). The CSK can operate with 

right- and left-looking imaging capabilities and a revisit time of few hours (less than 12 h). For CSK, a 

radiometric accuracy better than 1 dB and a radiometric stability better than 0.5 dB are expected [4]. 

Monitoring the spatio-temporal variations in vegetation biophysical parameters and soil moisture is 

key information for irrigation and crop management at both the farm level and the irrigation network 

level. Optical data in the visible and infrared spectral range have shown great potential for the mapping 

and characterization of vegetation biophysical parameters such as the Leaf Area Index (LAI) [5–11], 

biomass, height, and the Vegetation Water Content (VWC) [12]. Several studies used the Normalized 

Difference Vegetation Index (NDVI) to estimate the LAI of different crop types (such as wheat, 

grassland, rice, orchard, corn, and maize) or more complex models based on radiative transfer models 

combined with neural networks [13–15]. In addition, several studies have used the NDVI to estimate 

grassland biomass and height [16–19]. Schino et al. [18] and Payero et al. [20] compared different 

vegetation indices over two different sites in central Italy and northwestern USA and found that NDVI 

provides the most accurate estimation of grass biomass and height. Some studies have used another 

index known as the Normalized Difference Water Index (NDWI), which is computed using the NIR 

(near infra-red) and the SWIR (short wave infrared), to estimate vegetation water content [21–25].  

Chen et al. [21] showed that the NDVI and the NDWI allow for similar precision in soybean and corn 

VWC estimates. Gu et al. [24] found that the NDWI is more sensitive to grassland drought conditions 

than the NDVI. The use of the NDVI and the NDWI for estimating vegetation biophysical parameters 

is limited due to the saturation of values when vegetation is high or very dense with high values of 

LAI. Payero et al. [20] reported that the NDVI saturated when the height of alfalfa exceeded 40 cm.  

Anderson et al. [26] showed that the NDVI and the NDWI saturate when the LAI of corn and soybean 

surpassed 3.5 m
2
/m

2
 and 4.5 m

2
/m

2
, respectively.  

Synthetic aperture radars (SAR) have shown potential in the estimation of soil surface 

characteristics, especially surface roughness and soil moisture [27–33]. Moreover, many studies also 

assessed the sensitivity of SAR signals at different radar wavelengths (mainly the L-, C- and X-bands) 

to vegetation conditions [34–39]. SAR data at L, C and X bands are the configurations most widely 

used for estimating soil moisture [27,30,32,33,40–51]. Over bare soil and surfaces with little 

vegetation, the reflected radar signal depends on soil moisture, roughness, and radar configuration 

(incidence angle, polarization, and wavelength). The radar signal at C-band is more sensitive to soil 

moisture at low incidences than at higher incidences (approximately 20 dB/[cm
3
/cm

3
] for incidences 

between 20° and 35°: radar signal increases of 2 dB when the soil moisture increases of 0.1 cm
3
/cm

3 

and 10 dB/[cm
3
/cm

3
] for incidences higher than 35°) [45,52–54]. The X-band signal at low and high 

incidences is more sensitive to soil moisture than C-band signals at low incidence angles 
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(approximately 41 dB/[cm
3
/cm

3
] for HH polarization and an incidence of 25°, and approximately  

32 dB/[cm3/cm3] for HH polarization and an incidence of 50°) [27]. In general, a mean accuracy 

between 0.03 and 0.06 cm
3
/cm

3
 on soil moisture estimates over bare soils can be achieved from the C 

and X band signals from SAR data [27,29,30,32,45,52].  

Over vegetated surfaces, radar signals depend on the soil surface characteristics, vegetation, and 

radar configuration. The penetration depth of the radar wave depends on whether the biophysical 

parameters of the scatterers within a vegetation layer (e.g., the water content, size and geometry of the 

scatterers) can enhance or attenuate the interaction between the radar wave and the scatterers. Different 

theoretical or semi-empirical approaches have been developed to account for the effects of vegetation 

cover [55–58]. The most commonly used technique is referred to as the “water cloud model” [55]. This 

model describes the dependence between the radar signal and the vegetated surface parameters. In 

water-cloud models, the total backscattering signal (σtotal) from the surface is the sum of the following 

signals: (a) the backscattered signal from the soil (σsoil) multiplied by the two-way attenuation (T²); 

and (b) the direct reflected signal from the vegetation (σveg). In most studies, the contribution from 

vegetation has been expressed in terms of one of the physical parameters attached to it (biomass, leaf 

area index, vegetation water content, vegetation height). The contribution of the soil is generally 

modeled as a function of soil moisture and surface roughness (defined by the root mean square surface 

height and the correlation length).  

The possibility of retrieving soil parameters in vegetated surfaces was widely investigated using  

C-band Synthetic Aperture Radar [59–66]. Many studies showed that it is possible with SAR imagery 

to estimate the soil moisture with accuracy from 0.02 to 0.10 cm
3
/cm

3
 (RMSE). Prévot et al. [59] 

showed the potential of data in the C and X bands to estimate both soil moisture and the LAI on winter 

wheat plots using the water cloud model. Accuracies of 0.065 cm
3
/cm

3
 and 0.64 m²/m² for soil 

moisture and the LAI, respectively, were obtained. De Roo et al. [60] coupled a canopy scattering 

model (the Michigan Microwave Canopy Scattering model) with a soil scattering model (the Oh 

model) to estimate soil moisture and vegetation water content for a soybean canopy (VWC between 

0.02 and 0.97 kg/m
2
) from fully polarimetric data at both L and C bands. The root mean square error of 

the soil moisture estimate was approximately 0.02 cm
3
/cm

3
. Zribi et al. [65] estimated soil moisture 

using ASAR images (C-band) of wheat plots (LAI between 0.01 and 3.7 m²/m² and VWC between 

0.15 and 0.93 kg/m²) using the water cloud model with an accuracy of approximately 0.06 cm
3
/cm

3
. 

Gherboudj et al. [62] combined the Oh model and the water cloud model to estimate the soil moisture 

over an agriculture vegetation area (wheat, peas, lentil, fallow, pasture and canola) using Radarsat-2 

images in polarimetric mode (C-band). The soil moisture was estimated with an accuracy of  

0.06 cm
3
/cm

3
 for plots with a canopy height between 11 and 97 cm and a water content range between 

0.54 kg/m
2
 and 5.10 kg/m

2
. Kweon et al. [67] estimated the soil moisture over soybean plots using 

SAR X-band data with an accuracy of 0.03 cm
3
/cm

3 
(VWC and LAI reach 1.8 kg/m

2
 and 4.5 m

2
/m

2
, 

respectively). Fieuzal et al. [68] estimated from ASAR images the soil moisture of irrigated wheat 

plots with an accuracy of approximately 0.09 cm
3
/cm

3
 (VWC between 0.45 and 3.41 kg/m

2
).  

To monitor water stress in irrigated systems and support irrigation scheduling decisions, the limited 

accuracy of individual soil moisture estimates may be compensated for by the amount of available 

SAR images. For example, Merot [69] demonstrated the benefit of soil moisture monitoring by 

improving irrigation schedules in gravity-irrigated plots of hay. While the benefit of having highly 
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resolved information is obvious in water balance monitoring, the relevance of SAR products for this 

purpose needs to be better characterized.  

The main objective of this paper is to analyze whether the X-band SAR data currently accessible 

by the four CSK and two TSX satellites is sensitive enough to provide useful information for the 

monitoring of irrigated grasslands in southeastern France. This study will focus on the following 

questions: (i) Is the X-band radar signal sensitive to soil moisture in dense grassland? (ii) Can the  

X-band detect the beginning of irrigation and monitor the duration of irrigation for each plot, even 

when the vegetation is well developed? (iii) Is it possible to derive useful parameters related to 

vegetation characteristics (vegetation height, biomass, vegetation water content, and leaf area index) 

from the X-band radar signal for this type of irrigated grassland?  

These questions are investigated using a time series of TSX and CSK images acquired in HH and 

HV polarizations and a radar incidence angle near 30° over an agricultural region in southeastern 

France between April and October 2013. The study site and the database of satellite images and 

experimental measurements are described in Section 2. The results concerning the correlation between 

the X-band SAR signals and the soil and vegetation characteristics are presented and discussed in 

Section 3. In Section 3, the discussion will focus on analyzing (a) the correlation between the X-band 

radar signal and soil moisture; (b) the potential of the radar data to track irrigation; and (c) the 

correlation between the X-band radar signal and the biophysical parameters of the vegetation. Finally, 

conclusions and perspectives are presented in Section 4. 

2. Dataset Description 

2.1. Study Site 

Our study site is the “Domaine du Merle”, an experimental farm of 450 hectares located in 

southeastern France (center: 43.64°N, 5.01°E, Figure 1). Within this farm, 150 hectares (52 parcels) 

are irrigated grasslands for hay production. The produced hay is certified (with the French label 

“AOP”) due to specific environmental factors and irrigation practices that ensure a high-quality floristic 

composition [69].  

The study site is characterized by a Mediterranean climate, with a rainy season between September 

and November and an average cumulative rainfall between 350 mm and 800 mm [15]. The evaporation 

rate can reach 10 mm/day during the summer season due to high temperatures associated with dry and 

windy conditions. Hourly temperature and precipitation data acquired by a meteorological station 

installed at the study area were available. Figure 2 shows the mean daily air temperature recorded in 

2013 during the remote sensing acquisitions (Tmean = 14.4 °C, and Tmax = 35.4 °C). 

The soil has a mean retention capacity with concentrated vegetation roots in the upper 30 cm [70]. 

Moreover, the top soil is characterized by an absence or low presence of pebble (15%–20% of pebble 

stone at most) [69]. The top soil texture of the irrigated plots is a loam with a depth varying between 

30 cm and 80 cm, depending on the plot age (between 10 years and three centuries) [69,71].  
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Figure 1. Location of the study site in France (Domaine du Merle). Black polygons 

delineate the sampled plots. (a) TerraSAR-X image was acquired on April 24, 2013 in 

RGB colors (R: HH, G: HV, B, HH-HV). (b) SPOT-4 image acquired on April 22, 2013 in 

RGB colors (R: NIR, G: R, B: G). 

(a) 

(b) 
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Figure 2. Daily air temperature recorded over the study area. 

 

The plots were leveled with a very gentle slope that allows for surface irrigation by gravity (border 

irrigation). The total flow rate available for the farm (between 150 and 300 L/s) allows for the 

irrigation of one or two parcels simultaneously, the largest parcels being split into two or more 

subplots. Water is applied between March and September via canals, which bring water at the highest 

extremity of the subplots over a few hours. Water flows by gravity down to the lowest extremity of the 

plots. When the waterfront reaches 90% of the plot length, the water supply is stopped. The waterfront 

continues to flow and infiltrate until the tail end of the plot is reached. At the lowest side, excess water 

is evacuated through a drainage channel.  

A rotation is applied so that all the parcels can be irrigated when necessary, approximately every  

10 days on average. The plots are harvested three times a year, in May, June and September. 

2.2. Satellite Data and In Situ Measurements 

2.2.1. SAR Images 

Twenty-five X-band SAR images were acquired by COSMO-SkyMed (CSK) and TerraSAR-X 

(TSX) sensors between April and October 2013, with incidence angles between 28.3° and 32.5°; both 

the HH and HV polarizations were analyzed (Tables 1 and 2). The nine TSX images were acquired in 

“Stripmap mode”, with a ground pixel spacing of 3 m. Sixteen CSK images were obtained from the 

four satellites in the CSK constellation (six images from CSK1, four images from CSK2, one image 

from CSK3, and five images from CSK4) in “Stripmap Pingpong mode”, with a pixel size of 15 m. 

Radiometric calibration of the SAR images was carried out using algorithms developed by the 

German Aerospace Center (DLR) and the Italian Space Agency (ASI). For TSX MGD (Multi Look 

Ground Range Detected) products, radiometric calibration was carried out using the following  

Equation [1]: 
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σ° = Ks . DN². sin(θ) – NESZ (1) 

This equation transforms the digital number of each pixel DN (the amplitude of the backscattered 

signal) into a backscattering coefficient (σ°) corrected for background sensor noise known as NESZ 

(Noise Equivalent Sigma Zero) on a linear scale. This calibration takes into account the radar 

incidence angle (θ) and the calibration constant (Ks) provided in the image data. The NESZ must be 

lower than the term Ks.DN².sin() to ensure a high signal-to-noise ratio. For our TSX images, the 

NESZ varies from −25.2 dB to −22.6 dB for both HH and HV polarizations [1]. 

The calibration of the CSK images is given by the following formula: 

 
(2) 

where θ is the reference incidence angle, Rref is the reference slant range, Rexp is the reference slant 

range exponent, K is the calibration constant and F is the rescaling factor. For CSK satellites in 

Pingpong mode with an incidence angle of approximately 30°, Torre et al. [72] reported a noise 

equivalent sigma zero between −22 dB and −29 dB (depending on the antenna pattern).  

The backscattering coefficients are then calculated in decibels using the following formula: 

σ°dB = 10 . log10 (σ°) (3) 

Table 1. Acquisition dates of the SAR and optical images (all within 2013). 

  April May Jun July 

 14 17 19 22 24 25 30 03 04 11 14 22 27 03 04 06 10 11 12 13 14 18 26 28 30 05 08 12 14 16 19 22 29 30 

TSX   X X   X    X X               X       X 

CSK                X X X   X  X    X X  X     

SPOT-4 & 5 X    X    X  X      X   X  X   X X         

LANDSAT-7 & 8  X `   X  X  X   X  X    X     X     X   X  X 

In situ measurements   X    X X   X X  X  X X X   X  X    X X  X X  X X 

 

  
August September October 

01 09 13 15 18 20 21 22 23 26 29 31 02 03 04 10 16 22 24 01 04 06 11 16 

TSX     X               X     

CSK X X        X X  X   X     X   X 

SPOT-4 & 5 X     X            X    X X  

LANDSAT-7 & 8    X     X   X     X  X      

In situ measurements X X X X   X X  X X  X X X X    X X X  X 

  

exp2
)(sin

²

1
²

R

refR
FK

DN
 


 
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Table 2. Main characteristics of the SAR images (TSX and CSK, all in HH and HV 

polarizations), and a summary of the ground-truth measurements performed on our 

sampled plots used in this study. : radar incidence angle (°), Mv: volumetric soil moisture 

(cm
3
/cm

3
), VWC: vegetation water content (kg/m

2
), BIO: vegetation biomass (kg/m

2
), 

HVE vegetation height (m), LAI: Leaf Area Index (m
2
/m

2
). 

Date 

dd/mm/yyyy 
Sensor 

Time 

(UTC) 
 (°) 

Range of  

Mv 

Range of 

VWC 

Range of 

BIO 

Range of 

HVE 

Range of 

LAI 

19/04/2013 TSX 19:24 29.1 [0.13–0.23] [1.54–2.35] [1.9–3.00] [1.9–1.20] [3.98–5.88] 

22/04/2013 TSX 07:53 32.5 - - - - - 

30/04/2013 TSX 19:24 29.1 [0.34–0.39] [1.67–3.35] [1.99–4.14] [0.69–1.03] [3.14–3.87] 

14/05/2013 TSX 07:53 32.5 [0.17–0.34] [0.15–2.65] [0.30–3.56] [0.08–1.13] [0.41–4.71] 

22/05/2013 TSX 19:24 29.1 [0.18–0.33] [0.29–3.11] [0.46–3.74] [0.19–1.15] [1.96–4.90] 

06/06/2013 CSK2 07:16 28.3 [0.15–0.31] [0.33–1.12] [0.54–1.43] [0.16–0.41] [0.26–3.64] 

10/06/2013 CSK4 07:16 28.4 [0.23–0.44] [0.42–1.12] [0.60–1.43] [0.20–0.54] [0.31–3.74] 

11/06/2013 CSK1 19:44 30.6 [0.19–0.30] [0.40–1.12] [0.60–1.43] [0.20–0.59] [0.31–3.77] 

14/06/2013 CSK1 07:16 28.3 [0.16–0.34] [0.56–0.92] [0.73–1.43] [0.26–0.74] [1.30–4.00] 

26/06/2013 CSK4 07:16 28.3 [0.15–0.36] [0.83–1.65] [1.02–2.06] [0.37–0.82] [2.33–4.26] 

08/07/2013 TSX 07:53 32.5 [0.15–0.47] [0.53–2.17] [0.71–2.74] [0.15–0.94] [0.52–3.83] 

08/07/2013 CSK2 07:16 28.3 [0.15–0.47] [0.53–2.17] [0.71–2.74] [0.15–0.94] [0.52–3.83] 

12/07/2013 CSK4 07:16 28.3 [0.22–0.32] [0.34–1.68] [0.32–2.05] [0.11–0.80] [0.10–3.57] 

16/07/2013 CSK1 07:16 28.3 [0.16–0.35] [0.34–1.78] [0.32–2.09] [0.10–0.88] [0.10–3.60] 

30/07/2013 TSX 07:53 32.5 [0.26–0.37] [0.37–1.34] [0.51–1.62] [0.20–0.69] [1.17–3.83] 

01/08/2013 CSK1 07:16 28.4 [0.18–0.38] [0.37–1.34] [0.51–1.62] [0.20–0.69] [1.17–3.83] 

09/08/2013 CSK2 07:16 28.3 [0.17–0.35] [0.51–1.58] [0.79–1.85] [0.28–0.70] [2.05–3.88] 

18/08/2013 TSX 19:25 29.1 - - - - - 

26/08/2013 CSK3 07:16 28.4 [0.17–0.26] [0.44–1.32] [0.40–1.62] [0.19–0.82] [1.44–3.23] 

29/08/2013 CSK4 07:16 28.3 [0.11–0.35] [0.15–2.12] [0.32–2.70] [0.19–0.90] [0.54–3.23] 

02/09/2013 CSK1 07:16 28.3 [0.16–0.36] [0.19–1.8] [0.28–2.13] [0.08–0.90] [0.54–3.25] 

10/09/2013 CSK2 07:16 28.3 [0.21–0.39] [0.03–1.45] [0.37–1.72] [0.11–0.50] [0.30–2.97] 

01/10/2013 TSX 19:25 29.1 [0.30–0.39] [0.97–2.06] [1.03–2.46] [0.22–0.85] [2.10–3.80] 

04/10/2013 CSK1 07:16 28.3 [0.23–0.33] [0.85–2.06] [1.03–2.46] [0.22–0.85] [2.10–3.89] 

16/10/2013 CSK4 07:16 28.3 [0.17–0.31] [1.03–2.23] [1.22–2.81] [0.28–0.96] [2.60–3.90] 

2.2.2. Optical Images 

Thirty cloud-free optical images were also acquired by SPOT-4, SPOT-5, LANDSAT-7 and 

LANDSAT-8 sensors over the study area (Table 1). SPOT-4 images were acquired within the 

framework of the Take 5 experiment (http://www.cesbio.ups-tlse.fr/). In most cases, the optical and 

radar images were not separated by more than four days. 

Optical data processing includes orthorectification and correction for atmospheric effects. The 

atmospheric correction of SPOT-4 images was performed by CESBIO (Centre d'Etudes Spatiales de la 

BIOsphère) according to the method described by Hagolle et al. [73]. The atmospheric correction of 

SPOT-5 and LANDSAT-8 images was carried out using the simplified method of atmospheric 

correction (SMAC) [74]. Aerosol optical thickness at 550 nm and the water vapor content (g/m
2
), input 
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variables in the SMAC model, were obtained from the AERONET (AErosol Robotic NETwork) 

website (http://aeronet.gsfc.nasa.gov/). Finally, LANDSAT-7 surface reflectance images were 

downloaded directly from the USGS website (http://earthexplorer.usgs.gov/). Atmospheric correction of 

LANDSAT-7 images was directly performed by the NASA (National Aeronautics and Space 

Administration) using specialized software called Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS). This software applies the 6S (Second Simulation of a Satellite Signal 

in the Solar Spectrum) radiative transfer model to produce surface reflectance data as described  

in [75]. The NDVI was computed from the optical images. Then, NDVI pixel values were averaged for 

each plot and compared to vegetation in situ measurements. 

2.2.3. Experimental Measurements 

In general, the in situ measurements were collected simultaneously with the SAR acquisitions to 

characterize the soil and vegetation variability (Table 1). Seven to ten training plots were sampled (see 

the locations in Figure 1). The dimension of sampled plot ranges between 2.13 ha and 7.23 ha. 

2.2.3.1. Soil Measurements 

Volumetric soil moisture measurements were conducted only in the first top 5 cm using calibrated 

TDR (Time Domain Reflectometry) probes; this was because the radar signal penetration depth in the 

soil surface is only a few centimetres at X-band [76]. Due to high evaporation rates, the soil moisture 

measurements were collected within a time window of 2 h around the satellite overpass time. Between 

25 and 30 soil moisture measurements were performed for each training plot along regular transects. 

The volumetric soil moisture was then calculated for each training plot using the mean of all soil 

moisture measurements collected on the training plot, except for training plots where high spatial 

heterogeneity of the soil moisture was observed. This heterogeneity is frequent when the plot is under 

irrigation or when irrigation was finished a few hours before measurements were taken. In this case, 

several homogenous areas within the training plot were defined. The soil moisture content of each plot 

(or part of a plot) ranged from 0.10 cm
3
/cm

3
 to 0.47 cm

3
/cm

3
 (Table 2), with standard deviations 

between 0.01 and 0.05 cm
3
/cm

3
.  

Measurements of soil roughness were carried out only once for each training plot using a needle 

profilometer 1 m in length with 2 cm sampling intervals. Ten roughness profiles were established in 

each training plot during the period where the vegetation was the lowest (in April). The following two 

surface roughness parameters were then calculated from these measurements: the average root mean 

square surface height (Hrms), which specifies the vertical scale of the roughness, and the correlation 

length (L), representing the horizontal scale [76]. The Hrms values varied between 0.35 and 0.55 cm. 

The correlation length (L) ranged from 2.00 to 4.60 cm. In general, the precision on the roughness 

measurements is influenced mainly by the length of the roughness profiles, the number of profiles, and 

the sampling interval of the profiles. It was demonstrated that significant errors are observed when 

short profiles with a low sampling interval are used [77,78]. For our smooth soils and X-band SAR 

data, roughness measurements with a sampling interval better than 1 cm would have been more 

precise. Given the homogeneous surface roughness in our study site, roughness parameters will not be 

considered in the sensitivity analysis of the X-band radar signal to soil moisture and vegetation 
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parameters. However, these will be used in an upcoming work dedicated to model the radar signal 

according to soil and vegetation parameters. 

2.2.3.2. Vegetation Measurements 

Additional in situ measurements of vegetation were performed to estimate the following: the Leaf 

Area Index (LAI), the vegetation water content (VWC), biomass (BIO) and vegetation height (HVE). 

For each plot, 20–25 hemispherical digital photos were acquired at nadir using a fisheye lens. These 

photos were then processed using CAN-EYE imaging software to obtain the LAI 

(http://www6.paca.inra.fr/can-eye). Moreover, two grass samples over a 50 cm × 50 cm square were 

collected to determine the fresh grassland biomass (wet weight per unit area). The fresh biomass was 

then driest to determine the vegetation water content (wet weight–dry weight). Finally, 20 vegetation 

height measurements were carried out for each training plot. All vegetation measurements within each 

plot were averaged to provide a mean value for each plot. 

LAI measurements show a high variability due to very quick growth in the irrigated grasslands. For 

example, the LAI rises rapidly from 0.1 to 2 m
2
/m

2
 while the vegetation height increases from 10 to  

50 cm (the biomass ranges between 0.3 and 1 kg/m²) (Figure 3a). A poor correlation (R
2
 = 0.49) is 

observed between the LAI and the grassland height when it is less than 50 cm. When the grassland 

height is greater than 50 cm, the LAI derived from optical photography tends to give saturated values 

(Figure 3a). The grassland biomass increases linearly with the vegetation height (Figure 3b). 

Figure 3. LAI measurements according to vegetation height (a), Biomass measurements 

according to vegetation height (b). 

 
(a) 

 

(b) 

Figure 4 shows the temporal variations in the main vegetation parameters measured at the plot 

level. The three cuts of grassland are clearly identified on the graph in May (on approximately DOY 

120) in June–July (on DOY 185) and in July–August (on DOY 230). Before the first cut, the 

vegetation parameters VWC, BIO and HVE are greater values in comparison to values measured 

during the other growth periods [69]. In general, the first yield always has greater hay production and 

is devoted to horses; the second and the third harvests are lower. The LAI usually reaches similar 

maximum values (approximately 3–4 m²/m²) during the first three growth periods (Figure 4). In the 
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fourth period, the LAI values are lower (approximately 2–3 m²/m²). A strong correlation between the 

different vegetation parameters was observed (Figures 3 and 4). All vegetation parameters increase 

with time after harvesting, and this increase is very high during the first month of growth. 

Figure 4. Temporal evolution of vegetation parameters for the sampled plot 1a. Vertical 

lines indicate cut dates. 

 

3. Results and Discussion 

3.1. Relationships between NDVI and Vegetation Parameters  

Figure 5a shows the relationship between the LAI estimated from ground measurements and the 

NDVI computed from different optical images. A classical logarithmic relationship is clearly observed, 

in accordance with similar results observed by Asrar et al. [5] and Bsaibes et al. [13], and is described 

by the following equation: 

 
(4) 

where NDVImax is the NDVI value for a maximum value of LAI (=0.89), NDVImin is the bare soil 

NDVI value (=0.22), and kLAI is the extinction coefficient (=0.69). The coefficient of determination R² 

that was obtained is 0.63, with a RMSE (relative mean square error) of 0.72 m²/m². 

Courault et al. [15] found a kLAI of 0.71 from Formosat-2 images acquired on a larger area in the 

same region, including wheat, rice and irrigated grassland. For wheat plots on the Kairouan plain 

(Tunisia), Zribi et al. [46] found a kLAI of 1.24. 
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The correlations between the NDVI and the vegetation parameters HVE, BIO and VWC are 

displayed in Figure 5b–d. For these graphs, a linear relationship is observed between NDVI and the 

vegetation variables when the NDVI is less than 0.8. Above this, the NDVI saturates and does not vary 

with increases in the different vegetation parameters (the threshold value for the estimation of HVE 

from the NDVI is 30 cm, and the threshold is approximately 1 kg/m² for BIO and VWC). 

Figure 5. The relationship between the NDVI derived from the optical images and the 

vegetation measurements ((a) LAI, (b) HVE, (c) BIO and (d) VWC). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

3.2. The Radar Response According to Soil Moisture Variations 

Figure 6 shows the temporal variations in the radar signal for HH and HV polarizations according 

to the soil moisture measurements (plot 2e). It shows that the behavior of the radar signal follows the 

evolution of soil moisture throughout the entire vegetation stage. Similar results were observed for all 

sampled plots. 
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Figure 6. An example of the temporal variation in SAR X-band signals in a given training 

plot (plot 2e) according to soil moisture (a), and vegetation biomass and height (b). In (c) 

photos with associated fraction vegetation cover (Fr) for plot 2e. 

 
(a)  

 

(b) 
 

 

DOY 161 (Fr = 0.22) 

 

 

DOY 197 (Fr = 0.67) 

(c) 
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The first cut occurred in early June (on DOY 150), and the first irrigation that followed was on 

DOY 158. Before the first irrigation, the soil moisture was approximately 0.18 cm
3
/cm

3
 (on  

DOY 157). After the first irrigation (on DOY 158) two rainfall events occurred (on DOY 159 and 

DOY 160, with 3.2 and 9.2 mm precipitation, respectively). Following these events, the soil moisture 

considerably increased (to approximately 0.40 cm
3
/cm

3
 on DOY 161). As a result, the radar signal 

increased between DOY 157 and DOY 161 in both the HH and HV polarizations of approximately  

2.6 dB and 1.9 dB, respectively (the Mv increased to approximately 0.22 cm
3
/cm

3
; the HVE was 

approximately 25 cm). On the SAR image acquired on DOY 162 (4 days after irrigation), HH and HV 

decreased approximately 2.1 dB due to a decrease in moisture from 0.40 to 0.26 cm
3
/cm

3
. On the SAR 

image acquired on DOY 165, the radar signal continued to decrease due to a decrease in soil moisture 

(approximately 0.22 cm
3
/cm

3
). 

Following irrigation on DOY 189, the in situ soil moisture was approximately 0.47 cm
3
/cm

3 
on  

DOY 189; the radar signal was high (σ°HH = −8.0 dB and σ°HV = −16.5 dB) and the HVE was 

approximately 47 cm. Following a large rainfall on DOY 210 (33 mm) and irrigation on DOY 211, the 

radar signal on DOY 211 showed high HH and HV values (σ°HH = −9.7 dB and σ°HV = −17.7 dB). 

After two days (on DOY 213), the soil moisture decreased from 0.37 to 0.27 cm
3
/cm

3
; the associated 

radar signal also decreased.  

On DOY 241, one day after irrigation on DOY 240, the soil contribution was high on the total 

backscattered signal despite a HVE high value (HVE approximately 90 cm). Indeed, the radar signal 

increased approximately 1.4 dB in both HH and HV between DOY 238 and DOY 241 (the Mv 

increased from 0.20 to 0.35 cm
3
/cm

3
). 

In conclusion, the results show that the radar signal could be used to identify three-day-old  

irrigated plots. 

3.3. Sensitivity of Radar Signal to Soil Moisture 

The sensitivity of X-band SAR signal to soil moisture was studied for two biomass classes:  

BIO < 1 kg/m² and BIO > 1 kg/m². The BIO = 1 kg/m² limit corresponds to a vegetation height of 

approximately 30 cm, a vegetation water content of 0.8 kg/m², and a LAI of approximately 2 m²/m². 

First, the mean backscattering coefficients were calculated from calibrated TSX and CSK images over 

all sampled plots by averaging the linear σ° values of all pixels within the non-flooded training plots or 

within the non-flooded portions of irrigated plots. 

Figure 7 shows that the radar signal for HH and HV polarizations is clearly dependent on soil 

moisture, with sensitivity to soil moisture for BIO lower than 1 kg/m² of approximately 12.64 and  

13.40 dB/[cm
3
/cm

3
] at HH and HV, respectively. Baghdadi et al. [79] showed that when TerraSAR-X 

data are used after strong rains, the soil contribution (influenced by soil moisture) to the backscattering 

of sugarcane plots is important when the cane height is less than 30 cm. For BIO higher than 1 kg/m², 

the sensitivity of the radar signal to soil moisture decreases to 8.83 and 6.39 dB/[cm
3
/cm

3
] at HH and 

HV, respectively. These results demonstrated that the soil contribution to the X-band SAR signal could 

be high for grassland biomass lower than 1 kg/m² in both the HH and HV polarizations; the soil 

contribution also decreases more quickly in HV than in HH for BIO higher than 1 kg/m². These results 

show that the SAR X-band signal, mainly in HH polarization, can penetrate the canopy and interact 
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with the soil even for vegetation with biomass (when BIO>1 kg/m²). When biomass is both lower and 

higher than 1 kg/m², the radar response showed more variability for the same soil moisture range in 

HV than in HH; this is due to the sensitivity of HV polarization to vegetation cover, which has already 

been observed by Balenzano et al. [80], Brown et al. [81], and Picard et al. [82]. 

Figure 7. Sensitivity of X-band to soil moisture for biomass lower than 1 kg/m² ((a) HH, 

(b) HV) and for biomass higher than 1 kg/m² ((c) HH, (d) HV). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

In conclusion, these results show that the X-band radar signal at a medium incidence angle (30°) 

depends on the soil moisture, regardless of the vegetation conditions. This dependence could be 

improved with SAR data at lower incidence angles. Indeed, the penetration depth of the radar signal 

into the vegetation cover is higher at low incidence angles. 

3.4. Detection of Flooded Plots 

Thanks to the high spatial resolution of the selected radar images (3 m × 3 m for TSX, and  

8 m × 8 m for CSK), photo interpretation makes it possible to detect which parts of the plots are 

flooded by gravity irrigation. The “Domaine du Merle” grassland plots are irrigated every 10 days on 

average, for between 10 and 30 h. The interpretation of SAR X-band images shows that the X-band 

allows for the tracking of irrigation practices. An analysis of the radar signal was conducted on plots 

under irrigation at the time of the SAR acquisitions (Figure 8b–d) and on plots where irrigation was 
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completed a few hours earlier (Figure 8a)  In situ observations showed that water bodies present on 

irrigated plots in some locations varied from a few centimeters to thirty centimeters. In plot 6i, in situ 

observations showed that the plot was entirely irrigated during the SAR overpass (the SAR image was 

acquired 5 h after irrigation) with the presence of two water bodies (Figure 8a). The presence of water 

could be explained by a leveling defect in some areas and low hydraulic conductivity preventing the quick 

infiltration of water. 

Figure 8. Detection of flooded parts of irrigated plots (in red) (a–d). tb (in hours) = SAR 

acquisition time–start irrigation time; te (in hours) = SAR acquisition time–end irrigation 

time; Wd = Water body depth. Black arrows indicate open canal locations used for border 

irrigation. Images are in RGB colors (R: HH, G: HV, B: HH-HV). 

 

TSX, May 22, 2013 

HVE = 19 cm; BIO = 0.74 kg/m² 

tb = 18 h; te = 5 h; Wd = 4 cm 

(a) 

 

CSK, August 29, 2013 

HVE = 56 cm;  

BIO = 1.34 kg/m² 

tb = 12 h; te = −10 h;  

Wd = 8 cm 

(c) 

 

CSK, July 08, 2013 

HVE = 71 cm;  

BIO = 1.92 kg/m² 

tb = 9 h; te = −1 h;  

Wd = 30 cm 

(d) 

 

CSK, Jun 10, 2013 

HVE=102 cm; BIO=3.9 kg/m² 

tb = 6 h; te = −10 h; Wd=30 cm 

(b) 

The analysis showed a higher radar signal at locations with water bodies than at locations without 

water bodies. The brightest radar returns were caused by double-bounce scattering between the water 

surface and the vertical stems and leaves of the vegetation. The difference in the radar signal level () 

between the flooded areas and the unflooded areas is generally two times greater in HH compared to 

HV (HH~5.5 dB and HV~3.5 dB). This is due to the attenuation of the backscattered radar signal by 

the vegetation, which is more significant at HV polarization than at HH polarization. Baghdadi et al. [83] 

found also that the potential of HH polarization is higher than HV and VV polarizations in a study 

mapping wetlands from C-band SAR data. Our results also showed that the penetration depth of the 

radar wave in the X-band is high, even for dense and tall vegetation. For HVE between 20 and 55 cm 

and water bodies with depths between 4 and 10 cm, flooded areas are clearly visible on the images 

(Figure 8a,c). A strong penetration was also observed in other training grassland plots with HVE 

between 71 and 102 cm and water bodies with depths of approximately 30 cm (Figure 8b,d). These 

plots corresponded to wet biomass (BIO) values up to 3.9 kg/m². 

6i

1m
B1

6k
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3.5. Relationships between Radar Signals and Vegetation Parameters 

In this section, the backscattered signal was analyzed as a function of vegetation parameters (LAI, 

HVE, BIO, and VWC). Grassland plots contain approximately 20 different species of vegetation. The 

main vegetation species are grasses (Dactylis glomerata L., Lolium perenne L., Poa pratensis L., 

Holcus lanatus L., Arrhenatherum elatius L., Festuca pratensis L., Setaria glaucus L., and Paspalum 

dilatatum Poir), legumes (Medicago lupulina L., Trifolium repens L., Trifolium pretense L., Lotus 

corniculatus L., and Viccia cracca L.), and diverse dicotyledons (Plantago lanceolata L., Taraxacum 

officinaleWeber., Tragopogon pratensis L., Galium mollugo L., Galium verum L., Daucus carota L., 

Achellea millefolium L., Pastanica silvestris L., and Rumex acetosa L.) [84]. At plot scale, the 

vegetation structure geometry is homogeneous. The biomass levels of these species vary during the 

growth season. In the first growth period, grass species are dominant (60%–65%). Grass biomass 

levels decrease in the second and third growth periods. However, legume and diverse dicotyledon 

biomass levels increase from 35%–40% in the first period to 55% in the third period [69]. An 

important change in morphology is observed, especially in grass species, when vegetation exceeds 

approximately 50 cm (LAI about 2 m
2
/m

2
, BIO about 1.5 kg/m² and VWC about 1.2 kg/m²); inclined 

elements (panicle, small leave, etc.) randomly oriented at the top of the plant begin to appear. The 

VWC and plant morphology are the main vegetation variables that affect the radar response [85]. It 

was therefore essential to study the relationship between the radar signal and vegetation parameters 

(LAI, HVE, BIO and VWC) separately according to two vegetation classes (LAI, HVE, BIO and 

VWC lower and higher than 2 m
2
/m

2
, 50 cm, 1.5 kg/m

2
, and 1.2 kg/m

2
, respectively). To reduce the 

effect of soil moisture on the analysis of the backscattered radar signal, relationships between radar 

signals and vegetation parameters were traced according to three classes of soil moisture (Mv < 0.2, 

0.2 < Mv < 0.3 and Mv > 0.3 cm
3
/cm

3
). 

Figure 9 shows the behavior of the SAR X-band signal according to LAI. The results showed that 

for soil moisture between 0.10 and 0.20 cm
3
/cm

3
, the radar signal in HH and HV decreases with LAI 

for LAI lower than 2 m
2
/m

2
, and increases as the LAI increases from 2 m

2
/m

2
 to 5 m

2
/m

2
. These 

variations in the radar signal (decrease and increase) are higher in HV polarization than in HH 

polarization (Figure 9a,b). The decrease in radar signal for LAI lower than 2 m
2
/m

2 
is related to an 

increase in the attenuation of the soil contribution; this is more important than the enhanced 

contribution from the vegetation canopy [80,81,86]. In addition, the increase in the vegetation 

contribution as a function of the LAI, combined with the decrease in the soil moisture contribution 

(Mv between 0.10 and 0.20 cm
3
/cm

3
), results in a slight increase in the radar backscatter with LAI for 

values greater than 2 m
2
/m². For Mv between 0.20 and 0.50 cm

3
/cm

3
, the radar signal slightly 

decreases in HH and HV polarization for LAI between about 0.1 and 5.0 m
2
/m

2
 (Figure 9c-f). Indeed, 

for Mv between 0.20 and 0.50 cm
3
/cm

3
, the decrease of the soil contribution when LAI increases 

between 0.1 and 5.0 m
2
/m

2
 is of the same order than the increase of the vegetation contribution. Many 

studies have analyzed the behavior of radar signals (Ku, X, C and L bands) as a function of LAI [87–

93]. Previous results have shown that the radar signal decreases with an increase in the LAI for narrow 

leaf crops (wheat, alfalfa, and barley), and increases for board leaf crops (sunflower, corn, sorghum, 

and sugarcane) [91,93]. For example, Champion [87] studied the sensitivity of radar signals in C and X 

bands to the LAI of wheat crops (soil moisture values between 0.05 and 0.20 cm
3
/cm

3
) in using HH 



Remote Sens. 2014, 6 19 

 

 

and VV polarizations (20° for the C band and 40° for the X band). In this study, the signal decreased 

approximately 8 dB in the X-band for LAI values between 0.1 and 3 m²/m², and the signal decreased 

approximately 12 dB in the C-band for LAI between 0.1 and 4 m²/m². The signals at C and X bands 

increase approximately 7 dB with LAI for LAI values up to 8 m²/m². Similar results on the behavior of 

X-VV radar signal according to LAI of wheat were found by Prevot et al. [59] for soil moisture values 

between 0.05 cm
3
/cm

3
 and 0.20 cm

3
/cm

3
. Fieuzal et al. [88] analyzed wheat crops with LAI values 

between 1 and 4 m²/m² in wet soil conditions (soil moistures between 0.20 and 0.40 cm
3
/cm

3
); the radar 

signals in the X and C bands decreased with the LAI by approximately −2.6 dB by 1 m²/m² for X-HH 

and −2.4 dB by 1 m²/m² for C-VV. The C-HH and C-HV signals have lower sensitivity, with about −1 

dB by 1 m²/m². Ulaby et al. [92] demonstrated that the radar signal at Ku-VV (50°) increases with the 

LAI of corn and sorghum, up to LAI of approximately 2 m²/m²; beyond this, the radar signal saturates. 

Lin et al. [89] observed increasing radar responses in sugarcane plots when the sugarcane LAI 

increased (with the C-band and incidence between 31° and 39°). This increase is greater in HV than in 

HH due to higher volume scattering in HV compared to HH. In a study by Liu et al. [90], the radar 

signal in the C band (24° and 47°) increased with the LAI in soybean and corn crops. 

Figure 10 shows the behavior of the SAR X-band signal according to HVE using different soil 

moisture classes. The results showed that for vegetation heights lower than 50 cm, the radar signal 

decreases with HVE. This decrease in the radar signal for vegetation heights lower than 50 cm is 

higher in HV polarization than in HH polarization (approximately −0.5 dB and −1.1 dB by 10 cm in 

HH and HV, respectively). The attenuation is stronger for HV than for HH due to the vertical plant 

stems, and the attenuation increases with stem height [81,82,86,94]. Consequently, the soil 

contribution to the total backscatter is lower at HV than at HH polarization. Fieuzal et al. [88] showed 

that for wheat height is between approximately 3 cm and 65 cm, the radar signal at X-HH decreases by 

1.3 dB as the HVE of wheat increases by 10 cm. Beyond 50 cm, the radar signal slightly increases at 

both HH and HV when head element flowers begin to appear at the top layer of grassland vegetation 

(Figure 9). When plants are higher than 50 cm, the backscattered signal is mainly due to the leaves, 

stems and the head element flowers [94]. According to Figures 6 and 7, the soil also contributes 

slightly to HVE higher than 50 cm. The increase in the radar signal from HVE above 50 cm is greater 

in HV than in HH due to the greater contribution of vegetation in HV than in HH. 

Figures 11 and 12 show the behavior of the SAR X-band signal according to BIO and VWC  

using different soil moisture classes. Result shows that the HH polarization appears to be insensitive to 

fresh biomass and vegetation water content. The results also showed that HV slightly decreases  

with BIO and VWC (BIO and VWC are well correlated) to a threshold about 1.5 kg/m², then  

increases slightly. 

  



Remote Sens. 2014, 6 20 

 

 

Figure 9. Sensitivity of X-band ((a,c,e) HH, and (b,d,f) HV) to LAI in three soil moisture 

(Mv) classes. 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

(f) 

Overall, the use of X-band radar signal with medium incidence angle (~30°) for the retrieval of 

LAI, HVE, BIO, and VWC of our grassland is very limited. Only the canopy height could be retrieved 

for heights lower than 50 cm and in using HV polarization. Results show that the opportunity to 

estimate the soil moisture even with dense vegetation covers (vegetation height up to 1 m). Indeed, the 

X-band radar signal penetrates vegetation cover and always follows the evolution of soil moisture. In 

the future, the opportunity to estimate soil water content using semi-empirical backscattering models 

(such as water cloud model) will be investigated. 
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Figure 10. Sensitivity of X-band ((left) HH, and (right) HV) to vegetation height in three 

soil moisture (Mv) classes. 
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Figure 11. Sensitivity of X-band ((left) HH, and (right) HV) to BIO in three soil moisture 

(Mv) classes. 
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Figure 12. Sensitivity of X-band ((left) HH, and (right) HV) to VWC in three soil moisture (Mv) classes. 

  

  

  

4. Conclusions and Perspectives 

This study analyzed the temporal signature of SAR X-band signals acquired over irrigated grassland 

plots over several growing cycles. The objective of this work was to investigate the sensitivity of radar 

signals to soil moisture and vegetation parameters (LAI, vegetation height, biomass, and vegetation 

water content). 

Our results show that the radar signal in the X-band at both HH and HV polarizations is always 

sensitive to soil moisture variations, even with dense vegetation cover (HVE up to 1 m). This 

sensitivity decreases as vegetation density increases (higher sensitivity for biomass lower than 1 
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kg/m2). This result proves that the X-band radar signal penetrates the grassland cover (with vegetation 

height up to 1 m) and allows for the tracking of irrigation practices. In addition, the X-band at HV 

polarization is more sensitive to grassland parameters than at HH polarization; however, the potential 

use of the X-band for the monitoring of vegetation parameters is very limited. The X-band radar signal 

at HV polarization is useful for the monitoring of HVE up to 50 cm. 

The X-band radar signal is sensitive enough to variations in soil moisture to monitor soil moisture 

over grasslands. An inversion method based on backscattering models should be developed to analyze 

the precision of soil moisture estimates using X-band radar images over grassland. The objective of 

our future work is to develop methodologies based on the coupling of X-band SAR and optical data to 

estimate soil moisture. The arrival of Sentinel-1 and Sentinel-2 constellations, which have the ability to 

provide images with high repetition, will allow scientists to combine optical and radar images to 

estimate soil moisture in agricultural environments. 
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