
HAL Id: hal-01098240
https://hal.science/hal-01098240

Submitted on 23 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture/algorithm joint exploration of Hough
transform on FPGA

Houda Omari, Dominique Houzet, Virginie Fresse, Abdellatif Mtibaa

To cite this version:
Houda Omari, Dominique Houzet, Virginie Fresse, Abdellatif Mtibaa. Architecture/algorithm joint
exploration of Hough transform on FPGA. ICECS 2014 - IEEE International Conference on Electronics
Circuits and Systems, Dec 2014, Marseille, France. �hal-01098240�

https://hal.science/hal-01098240
https://hal.archives-ouvertes.fr

Architecture/algorithm joint exploration of Hough
transform on FPGA

Houda OMARI

Images and signal
GIPSA Lab

Grenoble, France
houda.omari@gipsa-
lab.grenoble-inp.fr

Dominique HOUZET
Images and signal

GIPSA Lab
Grenoble, France

dominique.houzet@gipsa
-lab.grenoble-inp.fr

Virginie FRESSE
Electronics

LaHC
Saint-Etienne, France

virginie.fresse@univ-st-
etienne.fr

Abdellatif MTIBAA
Electronics

Monastir, Tunisia
abdellatif.mtibaa@enim.r

nu.tn

Abstract—The Hough transform is a robust algorithm used in

shapes and objects recognition and it proves a high quality of
results. This algorithm is also known for its use of large
computing power. This paper presents a dedicated accumulator
cache to optimize Hough space access. We explored the design
space by evaluating the locality of accesses and found up to a
speedup of 30 with a 2-line cache.

Keywords—Hough transform; exploration of parameters;
FPGA; cache memory

I. INTRODUCTION

Energy is now the key limiter of performance, forcing
digital circuit designs to use large-scale parallelism with
heterogeneous cores operating at low frequency and low
voltage. Aggressive use of customized accelerators yields the
highest performance and greatest energy efficiency on many
applications. This customization is both algorithm and
hardware dependent, and also depends on the other
applications implemented in the same circuit. There is a global
system exploration to conduct in order to optimize a full
system. This can be only done with parameterization of both
the hardware and the algorithm to implement.

Linear Hough transform is highly used to detect lines in a
M x N image, but is compute intensive as it writes for each
edge point a sinusoid in the input Hough space of size
180xsqrt(M2xN2) for 180 angles. All the publications on
Hough transform optimization either study it without real
hardware consideration [1] or with fixed criteria like no
multiplication operators [2] or minimum memory footprint
[2,3] or no limit on number of operators to achieve highest
performance [3].

Our original key idea is to explore different hardware
parameters and algorithm parameters together to find an
optimal solution according to a compromise between
resources and performance, in the case of FPGA. On contrary
to [2], we consider that multipliers are available in almost all
FPGA, thus we can benefit from them by optimizing their use.
The aim is to well use all the limited resources of FPGA (DSP,
block RAM, LUT, latch) in a balanced way.

We propose also a hardware mechanism based on a
register file to accumulate neighboring votes before storing
them in the vote memory. This is already done by [2] and [3]

but in a fixed way, with a single register. We propose to
explore a larger register file used like a cache memory with
some writing policy. We tested here only the Least Recently
Used polity. We also explore a cache-line based file allowing
aligned memory accesses to the vote memory.

This paper is organized as follows. Section II presents our
proposed architecture for Hough transform. Results are given
in Section III. Finally, Section IV concludes the paper.

II. PROPOSED ARCHITECTURE FOR HOUGH TRANSFORM

The hardware mechanism proposed in this paper is based
on a register file or cache structure to accumulate neighboring
votes of Hough space before storing them in the memory. The
register file varies from 4 to 32 registers and the cache-line
structure varies from 1 line of 4 registers to 8 lines. The
performance of the implementation is directly proportional to
the number of writes to the vote memory implemented in a
block RAM. This is true if we can extract some parallelism of
writes in the intermediate registers. This can be done by
reading several input edge points together. This is possible
with compression of input data with zero run-length encoding
like in [2]. This is another parameter to explore. Fig. 1
presents the architecture explored.

Figure 1. Proposed architecture for Hough transform.

We consider here blocks of 2 x 4 and 1 x 8 edge points
from the input binary edges image. The aim of the zero run-
length encoding proposed here is to simplify the processing as
the memory constraint is mainly on the vote memory that has
to be duplicated for each angle processed in parallel.

The first hardware parameters considered are: size of register
file/ cache-line structure, number of vote memories, size of
vote memory bus, size of zero run-length encoded blocks
memory, and the first algorithm parameters are: threshold of
binarization that is the number of edge points in the input
image and size of zero run-length encoding blocks.

We explore those parameters with different images
exhibiting different quantities of lines to be detected. We
evaluate both resources and performances.

III. RESULTS

The proposed architecture has been explored on three
images of size 512 x 512. Two edge detection algorithms have
been used: a Prewitt 2 x 2 filter and a Deriche filter.

The input data from the binary image are grouped in
blocks of 1x8 or 2x4 edge points by the zero run-length
encoding. The following table shows the non-zero blocks for
the House image showing the compression ratio. We note that
the number of non-zero blocks for edge detection based on
Deriche filter is more important than for 2x2 filter. This is
explained by the fact that the contours of Deriche are thinner
and thus spatial locality of data is smaller.

Figure 2. Exploration of cache-line structure with 1x8 block size

Table 1. Number of non zero blocks in House image.

Type of
filter

Block of
edge

points

Number of edge points
10000 20000 30000 40000

Filter 2x2 1x8 6202 7176 8773 12389
2x4 4137 5457 7167 10502

Deriche
filter

1x8 5233 10981 15641 19256
2x4 4275 8868 13115 16734

The number of memory access is a very important
parameter to consider because it influents the execution time.
Deriche contours are thinner than the contours of the filter
2x2, so there is less temporal locality which produces more
memory accesses. The speedup presented in Fig. 2
corresponds to the number of vote memory accesses compared
to the number of edge points processed. With multi-bank
memory for edge points we can read and process in parallel
many edge points at each clock cycle to achieve the highest
performance given by this speedup. The best execution time is
thus: (clock period * number of edge points)/speedup.

IV. CONCLUSION

We can conclude here that a low-cost register file of 8
registers can reduce the number of accesses to the vote

memory by a ratio of 3 to 14 (speedup), and by a ratio of 6 to
30 with a cache-line structure. With a pipelined design, we can
reduce the execution time by this ratio to obtain a better
execution time than any published solution with the same
resources. For instance an optimal compromise with reduced
resources can be obtained to achieve the same performances as
[3] but with no resources limitation. By exploring other
parameters and implementing our solutions in a real FPGA we
can measure the different resource/performance results
validating the approach.

References

[1] S. S. Sathyanarayana, R. K. Satzoda, T. Srikanthan, "Exploiting inherent

parallelisms for acclerating linear Hough transform", IEEE Transactions
On Image Processing, Vol. 18, No. 10, October 2009.

[2] Z. H. Chen, A. W. Y. Su, M. T. Sun, "Resource-Efficient FPGA
architecture and implementation of Hough transform", IEEE
Transactions On Very scale Integration Systems, Vol. 20, No. 8, August
2012.

[3] X. Zhou, Y. Ito, K. Nakano, "An FPGA implementation of Hough
transform using DSP blocks and block RAMs", Bulletin of Networking,
Computing, Systems and Software, Vol. 2, No. 1, pp 18-24, January
2013.

