A Forward-Backward View of Some Primal-Dual Optimization Methods in Image Recovery

Abstract : A wide array of image recovery problems can be abstracted into theproblem of minimizing a sum of composite convex functions in aHilbert space. To solve such problems, primal-dual proximalapproaches have been developed which provide efficient solutions tolarge-scale optimization problems. Theobjective of this paper is to show that a number of existingalgorithms can be derived from a general form of theforward-backward algorithm applied in a suitable product space.Our approach also allows us to develop useful extensions ofexisting algorithms by introducing a variable metric. Anillustration to image restoration is provided.
Type de document :
Communication dans un congrès
21st IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. Proceedings of the IEEE International Conference on Image Processing, Paris, France, October 27-30, 2014
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01098038
Contributeur : Patrick Louis Combettes <>
Soumis le : lundi 22 décembre 2014 - 16:21:52
Dernière modification le : lundi 5 décembre 2016 - 20:54:11
Document(s) archivé(s) le : lundi 23 mars 2015 - 19:40:23

Fichier

icip2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Patrick Louis Combettes, Laurent Condat, Jean-Christophe Pesquet, Bang Cong Vu. A Forward-Backward View of Some Primal-Dual Optimization Methods in Image Recovery. 21st IEEE International Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. Proceedings of the IEEE International Conference on Image Processing, Paris, France, October 27-30, 2014. <hal-01098038>

Partager

Métriques

Consultations de
la notice

524

Téléchargements du document

110