On the estimation of Pareto fronts from the point of view of copula theory

Abstract : Given a first set of observations from a design of experiments sampled randomly in the design space, the corresponding set of non-dominated points usually does not give a good approximation of the Pareto front. We propose here to study this problem from the point of view of multivariate analysis, introducing a probabilistic framework with the use of copulas. This approach enables the expression of level lines in the objective space, giving an estimation of the position of the Pareto front when the level tends to zero. In particular, when it is possible to use Archimedean copulas, analytical expressions for Pareto front estimators are available. Several case studies illustrate the interest of the approach, which can be used at the beginning of the optimization when sampling randomly in the design space.
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

Contributeur : Mickaël Binois <>
Soumis le : mardi 23 juin 2015 - 10:04:38
Dernière modification le : mercredi 5 décembre 2018 - 11:34:02
Document(s) archivé(s) le : mardi 15 septembre 2015 - 21:31:17


Fichiers produits par l'(les) auteur(s)



Mickaël Binois, Didier Rullière, Olivier Roustant. On the estimation of Pareto fronts from the point of view of copula theory. Information Sciences, Elsevier, 2015, 324, pp.270 - 285. 〈http://www.sciencedirect.com/science/article/pii/S0020025515004697〉. 〈10.1016/j.ins.2015.06.037〉. 〈hal-01097403v2〉



Consultations de la notice


Téléchargements de fichiers