L. Agélas, D. Pietro, D. A. Eymard, R. Masson, and R. , An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes, IJFV International Journal on Finite Volumes, vol.7, pp.1-29, 2010.

B. Auchmann and S. Kurz, A geometrically defined discrete hodge operator on simplicial cells, IEEE Transactions on Magnetics, vol.42, issue.4, p.643, 2006.
DOI : 10.1109/TMAG.2006.870932

P. Bochev, J. M. Hyman, P. Arnold, R. Bochev, R. A. Lehoucq et al., Principles of mimetic discretizations of differential operators Compatible Spatial Discretization, The IMA Volumes in mathematics and its applications, pp.89-120, 2005.

J. Bonelle, Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01116527

J. Bonelle and A. Ern, Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.2, pp.553-581, 2014.
DOI : 10.1051/m2an/2013104

URL : https://hal.archives-ouvertes.fr/hal-00751284

J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes, IMA Journal of Numerical Analysis, vol.35, issue.4, 2014.
DOI : 10.1093/imanum/dru051

URL : https://hal.archives-ouvertes.fr/hal-00939164

A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, vol.135, issue.8, pp.493-500, 1988.
DOI : 10.1049/ip-a-1.1988.0077

A. Bossavit, ) Computational electromagnetism and geometry, J. Japan Soc. Appl. Electromagn, 1999.

F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.1872-1896, 2005.
DOI : 10.1137/040613950

F. Brezzi, K. Lipnikov, M. Shashkov, and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.37-40, pp.3682-3692, 2007.
DOI : 10.1016/j.cma.2006.10.028

F. Brezzi, A. Buffa, and K. Lipnikov, Mimetic finite differences for elliptic problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.277-295, 2009.
DOI : 10.1051/m2an:2008046

F. Brezzi, A. Buffa, and G. Manzini, Mimetic scalar products of discrete differential forms, Journal of Computational Physics, vol.257, pp.1228-1259, 2014.
DOI : 10.1016/j.jcp.2013.08.017

S. H. Christiansen, A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES, Mathematical Models and Methods in Applied Sciences, vol.18, issue.05, pp.739-757, 2008.
DOI : 10.1142/S021820250800284X

L. Codecasa, R. Specogna, and F. Trevisan, A new set of basis functions for the discrete geometric approach, Journal of Computational Physics, vol.229, issue.19, pp.7401-7410, 2010.
DOI : 10.1016/j.jcp.2010.06.023

L. Codecasa and F. Trevisan, Constitutive equations for discrete electromagnetic problems over polyhedral grids, Journal of Computational Physics, vol.225, issue.2, pp.1894-1918, 2007.
DOI : 10.1016/j.jcp.2007.02.032

M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, Discrete Exterior Calculus, p.508341, 2005.

M. Desbrun, E. Kanso, and Y. Tong, Discrete Differential Forms for Computational Modeling. Discrete Differential Forms for Computational Modeling, pp.287-324, 2006.

D. Pietro, D. A. Ern, A. Lemaire, and S. , Abstract, Computational Methods in Applied Mathematics, vol.14, issue.4, pp.461-472, 2014.
DOI : 10.1515/cmam-2014-0018

URL : https://hal.archives-ouvertes.fr/hal-00318390

D. Pietro, D. A. Ern, and A. , A Family of Arbitrary-order Mixed Methods for Heterogeneous Anisotropic Diffusion on General Meshes, 2013.

D. Pietro, D. A. Ern, and A. , A hybrid high-order locking-free method for linear elasticity on general meshes, Computer Methods in Applied Mechanics and Engineering, vol.283, pp.1-21, 2015.
DOI : 10.1016/j.cma.2014.09.009

URL : https://hal.archives-ouvertes.fr/hal-00979435

D. Pietro, D. A. Lemaire, and S. , An extension of the Crouzeix???Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Mathematics of Computation, vol.84, issue.291, pp.1-31, 2015.
DOI : 10.1090/S0025-5718-2014-02861-5

URL : https://hal.archives-ouvertes.fr/hal-00753660

R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, vol.30, issue.4, pp.1009-1043, 2010.
DOI : 10.1093/imanum/drn084

R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn et al., 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. Finite Volumes for Complex Applications VI -Problems & Perspectives, pp.95-130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00580549

M. Floater, G. Kós, and M. Reimers, Mean value coordinates in 3D, Computer Aided Geometric Design, vol.22, issue.7, pp.623-631, 2005.
DOI : 10.1016/j.cagd.2005.06.004

T. Frankel, The Geometry of Physics: an Introduction, first edition edn, 1997.

M. Gerritsma, An Introduction to a Compatible Spectral Discretization Method, Mechanics of Advanced Materials and Structures, vol.35, issue.3, pp.48-67, 2012.
DOI : 10.1006/jcph.2001.6973

A. Gillette, A. Rand, and C. Bajaj, Abstract, Computational Methods in Applied Mathematics, vol.16, issue.4, 2014.
DOI : 10.1515/cmam-2016-0019

A. Gillette and C. Bajaj, Dual formulations of mixed finite element methods with applications, Computer-Aided Design, vol.43, issue.10, pp.1213-1221, 2011.
DOI : 10.1016/j.cad.2011.06.017

R. Hiptmair, Discrete Hodge-Operators: An Algebraic Perspective, Progress In Electromagnetics Research, vol.32, pp.247-269, 2001.
DOI : 10.2528/PIER00080110

A. Hirani, Discrete Exterior Calculus, 2003.

K. Hormann and N. Sukumar, Maximum Entropy Coordinates for Arbitrary Polytopes, Proceedings of the Symposium on Geometry Processing. Eurographics Association, pp.1513-1520, 2008.
DOI : 10.1111/j.1467-8659.2008.01292.x

R. A. Nicolaides, Direct Discretization of Planar Div-Curl Problems, SIAM Journal on Numerical Analysis, vol.29, issue.1, pp.32-56, 1992.
DOI : 10.1137/0729003

T. Tarhasaari, L. Kettunen, and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis], IEEE Transactions on Magnetics, vol.35, issue.3, pp.1494-1497, 1999.
DOI : 10.1109/20.767250

F. Teixeira, Geometric aspects of the simplicial discretization of Maxwell's equations, Progress In Electromagnetics Research (PIER), pp.171-188, 2001.

E. Tonti, The reason for analogies between physical theories, Applied Mathematical Modelling, vol.1, issue.1, pp.37-50, 1975.
DOI : 10.1016/0307-904X(76)90023-8

E. Wachspress, A Rational Finite Element Basis, Journal of Lubrication Technology, vol.98, issue.4, 1975.
DOI : 10.1115/1.3452953

J. Warren, S. Schaefer, A. Hirani, and M. Desbrun, Barycentric coordinates for convex sets, Advances in Computational Mathematics, vol.6, issue.1, pp.319-338, 2007.
DOI : 10.1007/s10444-005-9008-6

H. Whitney and N. J. Princeton, Geometric integration theory, p.387, 1957.
DOI : 10.1515/9781400877577