Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes

Abstract : We study low-order reconstruction operators on polyhedral meshes, providing a unified framework for degrees of freedom attached to vertices, edges, faces, and cells. We present two equivalent sets of design properties and draw links with the literature. In particular, the two-level construction based on a P0-consistent and a stabilization part provides a systematic way of designing these operators. We present a simple example of piecewise constant reconstruction in each mesh cell, relying on geometric identities to fulfill the design properties on polyhedral meshes. Finally, we use these reconstruction operators to define a Hodge inner product and build Compatible Discrete Operator schemes, and we test the influence of the reconstruction operators in terms of accuracy and computational efficiency on an anisotropic diffusion problem.
Type de document :
Article dans une revue
Computer Aided Geometric Design, Elsevier, 2015, 35-36, pp.27-41. 〈10.1016/j.cagd.2015.03.015〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01097311
Contributeur : Jérôme Bonelle <>
Soumis le : mardi 6 janvier 2015 - 12:08:09
Dernière modification le : jeudi 21 juin 2018 - 14:12:02
Document(s) archivé(s) le : mercredi 3 juin 2015 - 12:00:45

Fichier

BoPiE14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jerome Bonelle, Daniele Di Pietro, Alexandre Ern. Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Computer Aided Geometric Design, Elsevier, 2015, 35-36, pp.27-41. 〈10.1016/j.cagd.2015.03.015〉. 〈hal-01097311〉

Partager

Métriques

Consultations de la notice

594

Téléchargements de fichiers

276