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A POSTERIORI ERROR AND OPTIMAL REDUCED BASIS FOR

STOCHASTIC PROCESSES DEFINED BY A FINITE SET OF

REALIZATIONS.

G. PERRIN∗†‡ , C. SOIZE∗, D. DUHAMEL†, AND C. FUNFSCHILLING‡

Abstract.

The use of reduced basis has spread to many scientific fields for the last fifty years to condense
the statistical properties of stochastic processes. Among these basis, the classical Karhunen-Loève
basis corresponds to the Hilbertian basis that is constructed as the eigenfunctions of the covariance
operator of the stochastic process of interest. The importance of this basis stems from its optimality
in the sense that it minimizes the total mean square error. When the available information about
this stochastic process is characterized by a limited set of independent realizations, the covariance
operator is not perfectly known. In this case, there is no reason for the Karhunen-Loève basis
associated with any estimator of the covariance that are not converged to be still optimal. This
paper presents therefore an adaptation of the Karhunen-Loève expansion in order to characterize
optimal basis for projection of stochastic processes that are only characterized by a relatively small
set of independent realizations.
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1. Introduction. For the fifty years, stochastic process analysis has been used
in an increasing number of scientific fields, such as uncertainty quantification, ma-
terial science, seismology, geophysics, quantitative finance, signal processing, control
engineering etc. It is indeed an interesting tool for stochastic modeling, forecast-
ing, classification, signal detection and estimation. In most of these applications, the
knowledge of these stochastic processes, that we write X = {X(s), s ∈ Ω ⊂ R}, is
however limited. Indeed, their statistical properties are generally known through a set
of independent realizations that stem from experimental measurements. From these
available measurements, several statistical techniques have therefore been developed
to identify the distribution PX of stochastic process X . These methods then allow
the generation of additional realizations of X that are realistic and representative of
the measurements.

When Ω = R, AutoRegressive-Moving-Average (ARMA) models, that were first
introduced by Whittle for time series [38, 39] and popularized by Box and Jenkins [7],
allow the description of Gaussian stationary stochastic processes as a parameterized
integral of a Gaussian white noise stochastic process. Based on limited knowledge
of stochastic process X , these models can therefore be used to emphasize particular
properties of X and to extrapolate its value. More recently, in the case Ω = [0, S],
with S < +∞, methods based on a two-step approach have given promising results
to identify the distribution of a priori non-Gaussian and non-stationary stochastic
processes. The first step of these methods is generally the approximation of the

stochastic process, X , by its projection, X̂B(M)

, on a set B(M) of M deterministic
functions, which are supposed to be square integrable on Ω and orthonormal. The
vector gathering the projection coefficients of X on each element of B(M), denoted by
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C, is thus a M -dimension random vector whose components are a priori dependent.
Then, the second step is the identification of the multidimensional distribution of
C. There are several techniques to perform such an identification, such as the Priori
Algebraic Stochastic Modeling (PASM) methods, methods based on the Information
Theory and the Maximum Entropy Principle (MEP) [15, 31], and methods based on
a direct projection of random vector C on a polynomial basis of its probability space,
such as Polynomial Chaos Expansion (PCE) methods (see [2, 10, 11, 12, 13, 20, 24,
32, 33]). In such two-step approaches, the more relevant regarding X the projection
basis B(M) is, the lower the dimension M has to be, to guarantee an amplitude of

the residue X − X̂B(M)

lower than a given threshold, and so the easier and the more
precise the identification of the distribution of C will be.

As an example of such a projection basis, the Karhunen-Loève (KL) basis has
played for the last decades a major role and has been applied in many works [1,
3, 5, 8, 9, 14, 26, 17, 16, 18, 19, 21, 23, 24, 25, 27, 28, 30, 33, 35, 34, 37, 40, 41].
Indeed, for any integer M , it can be extracted from the KL basis associated with
X the M -dimensional family that is optimal in the sense that it minimizes among
all the M -dimensional families the L2-error associated with X . Mathematically, the
KL expansion corresponds to the orthogonal projection theorem in separable Hilbert
spaces, for which the Hilbertian basis, {km, m ≥ 1}, is constructed as the eigen-
functions of the covariance operator of X , defined by the covariance function, RXX ,
which is assumed to be square integrable on Ω× Ω. When the available information
about this stochastic process is characterized by a limited set of ν independent real-
izations, this covariance function is not perfectly known but can only be estimated.
If we define R̂(ν) as the empirical estimator of RXX , there is however no reason for

the eigenfunctions of R̂ to be still optimal.

In reply to this concern, this paper presents a method to identify projection fam-
ilies that are as relevant as possible for X , even if the number of available realizations
is relatively small. This method is based on the coupling of an alternative approxi-
mation of the covariance operator and an original use of the "leave-one-out" method
to a posteriori evaluate the projection errors for X . Section 2 introduces therefore
the method we propose to identify optimal projection basis from a set of independent
realizations, and Section 3 then illustrates the possibilities of such a method on two
examples.

2. Identification of optimal basis from a finite set of independent real-

izations.

2.1. Theoretical frame. Let (Θ, C, P ) be a probability space. For all M ≥ 1,
let L2(Θ,RM ) be the space of all the second-order random vectors defined on (Θ, C, P )
with values in R

M , equipped with the inner product 〈·, ·〉, such that for all U and V

in L2(Θ,RM ),

〈U ,V 〉 =
∫

Θ

UT (θ)V (θ)dP (θ) = E
[
UTV

]
, (2.1)

where E [·] is the mathematical expectation. Let P(Ω) be the space of all the second-
order R-valued stochastic processes, indexed by the compact interval Ω = [0, S], where
S < +∞. Let H = L2(Ω,R) be the space of square integrable functions on Ω, with
values in R, equipped with the inner product (·, ·), such that for all u and v in H,
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(u, v) =

∫

Ω

u(s)v(s)ds. (2.2)

In addition, the notation ‖·‖ will be used to denote the L2 norm in P(Ω), such
that for all Z in P(Ω),

‖Z‖2 = E [(Z,Z)] . (2.3)

Let X = {X(s), s ∈ Ω} be an element of P(Ω), for which ν independent realiza-
tions, {X(θ1), . . . , X(θν)}, are supposed to be known. For the sake of simplicity, and
without any loss of generality, only centered stochastic processes X are considered in
this work, which reads:

E [X(s)] = 0, s ∈ Ω. (2.4)

It is moreover assumed that the covariance function, RXX , of X is square inte-
grable on Ω× Ω, such that:

RXX(s, s′)
def
= E [X(s)X(s′)] ,

∫

Ω

∫

Ω

RXX(s, s′)2dsds′ < +∞. (2.5)

Let B = {bm(s), s ∈ Ω}m≥1, be a Hilbertian basis of H, such that:

X =
∑

m≥1

Cmbm, (bm, bp) = δmp, Cm = (X, bm) , (2.6)

where the projection coefficients, {Cm, m ≥ 1}, are centered random variables that
are a priori correlated and δmp is the kronecker symbol that is equal to 1 if m = p and
0 otherwise. For practical purposes, this basis has to be truncated. For all M ≥ 1,

X̂B(M)

is thus introduced as the projection of X on any M -dimension subset B(M) of
B. Finally, the relevance of B(M) to characterize X is analyzed with respect to the
L2-error, that is denoted by ε2, such that:

ε2(B(M))
def
=

∥∥∥X − X̂B(M)
∥∥∥
2

. (2.7)

2.2. Difficulties concerning the identification of the Karhunen-Loève

expansion from independent realizations. If S(R) is the set of all square inte-
grable kernel functions defined on Ω× Ω, such that

S(R) =
{
A ∈ L2(Ω× Ω,R), | A(s, s′) = A(s′, s) ∈ R, (s, s′) ∈ Ω× Ω

}
, (2.8)

the solving of the eigenvalue problem associated with any function A in S(R) can be
seen as a generator of a particular Hilbertian basis of P(Ω),

{
bAm, m ≥ 1

}
, such that:

∫

Ω

A(s, s′)bAm(s′)ds′ = λA
mbAm(s), λA

1 ≥ λA
2 ≥ . . . → 0,

(
bAm, bAp

)
= δmp. (2.9)
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Due to the orthogonal projection theorem in Hilbert spaces, the KL expansion as-
sociated with X , which is denoted by K = {km, m ≥ 1} and which can be directly
computed by solving the eigenvalue problem defined by Eq. (2.8) with A = RXX , is
optimal in the sense that, for all M ≥ 1, K(M) = {km, 1 ≤ m ≤ M} minimizes error
ε2 among all the M -dimensional families of H:

K(M) = arg min
B(M)∈HM

{
ε2(B(M))

}
. (2.10)

When dealing with correlated stochastic processes that are only known through
a set of ν independent realizations, {X(θ1), . . . , X(θν)}, covariance function RXX

is however unknown. The eigenvalue problem defined by Eq. (2.8) cannot thus be
directly solved. Indirect methods can however be proposed to identify approximations
of K from this maximal available information for X . Indeed, noticing that operator
RXX is also optimal for the minimization of ε2 on S(R),

RXX = arg min
A∈S(R)

{
ε2(B(M)

A )
}
, (2.11)

the best approximation for RXX from these realizations, the most relevant for X the
corresponding M -dimensional family. In this prospect, the a priori best evaluation
of the covariance function of X is given by the following empirical estimator, R̂(ν),
such that:

RXX(s, s′) ≈ R̂(ν, s, s′)
def
=

1

ν

ν∑

n=1

X(s, θn)X(s′, θn). (2.12)

The solving of the eigenvalue problem defined by Eq. (2.8) with A = R̂(ν) allows

therefore the definition of a basis of P(Ω), B
R̂(ν) = {k̂m,m ≤ 1}, whose elements are

likely to be well-adapted to X . However, as the rank of R̂(ν) is by construction lower
than or equal to ν, only ν functions are needed to characterize this kernel:

R̂(ν, s, s′) =

ν∑

m=1

λ̂mk̂m(s)k̂m(s′), (s, s′) ∈ Ω× Ω, (2.13)

such that, from Eqs. (2.12) and (2.13), we get:

(
X(θn), k̂m

)
= 0, 1 ≤ n ≤ ν, m > ν. (2.14)

Hence, set {X(θ1), . . . , X(θν)} of available realizations of X is orthogonal to the subset

{k̂m, m > ν}, and the relevance of B(M)

R̂(ν)
to characterize X will be limited to values

of M lower than ν.

When covariance function RXX is not perfectly known, the idea of the following
section is therefore to propose an original method to identify M -dimensional projec-
tion families that will be adapted to X in the particular case M > ν.
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2.3. Proposition of an original subset of S(R). From Eq. (2.11), optimal
family K(M) can be seen as the solution of an optimization problem in S(R). This
set being vast, this section aims at presenting a particular parametrized subspace of
S(R) to identify accurate approximations of K(M) when stochastic process X is only
characterized by a finite set of ν independent realizations. In this prospect, another
estimator for RXX , that is denoted by R̃(ν), is introduced, such that for all (s, s′) in
Ω× Ω:

R̃(ν, s, s′) =





1
S−(s′−s)

∫ S−(s′−s)

0
R̂(ν, x, x+ (s′ − s))dx if S > s′ − s ≥ 0,

1
S−(s−s′)

∫ S−(s−s′)

0 R̂(ν, x+ (s− s′), x)dx if S > s− s′ > 0,

R̂(ν, s, s′) otherwise.

(2.15)

Hence, if stochastic process X is the restriction to Ω of a mean-square stationary
stochastic process indexed by s in R, that is to say if RXX(s, s′) only depends on the

difference |s − s′|, function R̃(ν) is by construction the best stationary estimator of
RXX . The interest of such an estimator is that, although it is computed from only ν
realizations of X , its rank is by construction much higher than ν. As a consequence,
the number of eigenfunctions associated with R̃(ν), which will be adapted to X , will

be much higher than ν. For any error threshold T , we then define by M̂(T ) and M̃(T )

the minimal number of eigenfunctions associated with R̂(ν) and R̃(ν) respectively to
guarantee a projection error lower than T :

max
{
ε2(B(M̂)

R̂(ν)
), ε2(B(M̃)

R̃(ν)
)
}
≤ T ≤ min

{
ε2(B(M̂+1)

R̂(ν)
), ε2(B(M̃+1)

R̃(ν)
)
}
. (2.16)

From the point of view of the minimization of Eq. (2.11), even if X is actually not

mean-square stationary, R̃(ν) can thus be considered as a better function than R̂(ν)

to characterize X if and only if M̃ ≤ M̂ . From a more general point of view, for α in
[0, 1], if we denote by A(α) the function of S(R), such that:

A(α) = αR̂(ν) + (1− α)R̃(ν) ∈ S(R), (2.17)

interesting projection basis for X can be searched as the solution, B(M)
A(α∗), of the

following optimization problem:





K(M) ≈ B(M)
A(α∗),

α∗ = arg min
α∈[0,1]

{
ε2(B(M)

A(α))
}
.

(2.18)

Such an approach appears indeed to be efficient when the number of available realiza-
tions, ν, is small. First, by construction of any function A(α), the relevance of optimal

family B(M)
A(α∗) is at least equal to the relevance of classical families B(M)

R̂(ν)
or B(M)

R̃(ν)
. Sec-

ondly, for α 6= 1, the rank of A(α) is by construction higher than ν, such that the
number of eigenfunctions associated with A(α), which won’t be orthogonal to each
available realization of X , will be greater than ν. Finally, the optimization problem
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defined by Eq. (2.18) being parametrized by a single scalar α, whose definition do-
main is a bounded interval, the computational costs associated with its minimization
can be easily controlled.

Although the convexity of such a problem has not been proved in the general case,
we propose in this work to use a dichotomy-based algorithm (for which formulation is
presented in detail in Appendix A) for the iterative identification of such an optimal
value for α, with T a given error threshold and M ≥ 1. Under this hypothesis and
using the proposed algorithm, approximations of α∗ with a precision of T can be
computed from the solving of at most Ncost = 2 + p eigenvalue problems defined
by Eq. (2.9), where p is the exponent for the smallest power of two that satisfies
(1/2)p ≤ T .

2.4. A posteriori evaluation of the representativeness error. In order to

solve the problem defined by Eq. (2.18), a method to a posteriori evaluate ε2(B(M)
A(α))

from only ν available independent realizations, {X(θn), 1 ≤ n ≤ ν}, for all α in [0, 1],
then is required. Indeed, from the limited set {X(θn), 1 ≤ n ≤ ν}, the L2-error,
ε2(B(M)), corresponding to any M -dimensional family B(M) of H

M , cannot be ex-
actly calculated, but has to be evaluated as precisely as possible. Two cases can be
distinguished:

• case 1: B(M) is defined without any reference to {X(θ1), . . . , X(θν)}.
• case 2: the knowledge of {X(θ1), . . . , X(θν)} is used to optimize the represen-

tativeness of B(M). In this case, B(M) depends on the available realizations
of X .

2.4.1. Case 1: realizations and projection basis are independent. If
B(M) has been computed without any reference to the set {X(θ1), . . . , X(θν)}, error
ε2(B(M)) can be evaluated from its empirical estimation, ε̂2ν(B(M)), such that for
sufficiently high values of ν:

ε2(B(M)) = E
{(

X − X̂B(M)

, X − X̂B(M)
)}

≈ ε̂2ν(B(M))
def
=

1

ν

ν∑

n=1

(
X(θn)− X̂B(M)

(θn), X(θn)− X̂B(M)

(θn)
)
.

(2.19)

2.4.2. Case 2: the projection basis depends on the available realiza-

tions. In order to make projection family B(M) be particularly adapted to stochas-
tic process X , it can be interesting to exploit as much as possible the information
about X that is gathered in independent realizations {X(θ1), . . . , X(θν)}. In this
case, B(M) is dependent on {X(θ1), . . . , X(θν)}, and error ε̂2ν can strongly underesti-
mate ε2. This phenomenon is generally called over-fitting. For instance, if we define
B(M) = {bm, 1 ≤ m ≤ M} as the Gram-Schmidt orthogonalization of the determinis-
tic family of available independent realizations {X(θ1), . . . , X(θν)} (see Appendix B

for further details about the computation of B(M)), the projection, X̂B(M)

, of X on
B(M) then verifies, for 1 ≤ n ≤ ν:

X̂B(M)

(θn) =

M∑

m=1

(X(θn), bm) bm = X(θn). (2.20)
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By construction, error ε̂2ν(B(M)) thus is always equal to zero, whereas ε2(B(M)) should
be in general strictly greater than 0, as the number of available realization, ν, and
the dimension of the projection basis, M, are limited. Hence, in order to correctly
evaluate error ε2, a separation in two sets of the available realizations is generally
performed:

• the first set, {X(θ1), . . . , X(θν∗)}, is a learning set, on which the definition of
B(M) is based,

• the second set, {X(θν∗+1), . . . , X(θν)}, is a validation set, on which the com-
putation of ε̂2ν−ν∗ is achieved to evaluate ε2.

With such a method, it can be noticed that the higher ν∗, the less precise the eval-
uation of ε2. This limits strongly the scope of such approaches when the number of
available realizations ν is small, compared to the number of functions that are needed
to characterize X .

In this context, the application of the jackknife theory [22, 29, 6] to the evaluation
of projection errors appears to be a good method to evaluate precise approximations
for ε2(B(M)) when all realizations of X have been used to compute ε2(B(M)). To
this end, for all 1 ≤ i ≤ ν, we denote by X

(−i) = {X(θn), 1 ≤ n ≤ ν, n 6= i} the
set gathering all the available realizations of X but the ith one, by B(M)(X(−i)) the
M -dimensional family that has been computed from this set X

(−i) (the family that
stems from the Gram-Schmidt orthogonalization defined by Eq. (B.1) is an example

of such a family), and by X̂(−i) the projection of X on B(M)(X(−i)). Then, the two
following hypotheses are assumed:

1. First, it is supposed that error ε2
(
B(M)(X(−i))

)
decreases when ν increases.

2. Then, given two sets X
(−i) and X

(−j) with 1 ≤ i 6= j ≤ ν, it is assumed that:

P
X̂(−i) ≈ P

X̂(−j) , (2.21)

where P
X̂(−i) and P

X̂(−j) are the distributions of X̂(−i) and X̂(−j) respectively.

In other words, the first hypothesis means that the modeling errors are expected to
decrease when the information is increasing, whereas the second hypothesis asks for
the application that compute the projection basis from a limited set of realizations to
give robust results. It can therefore be deduced from these two hypotheses that, for
ν sufficiently high:

ε2(B(M)) ≈ ε2LOO(B(M)), (2.22)

ε2LOO(B(M))
def
=

1

ν

ν∑

n=1

(
X(θn)− X̂(−n)(θn), X(θn)− X̂(−n)(θn)

)
. (2.23)

According to the central limit theorem, estimator ε2LOO, which is called Leave-
one-out (LOO) error, converges to ε2 at the convergence rate of 1/

√
ν. Finally, the

L2-error, ε2, in the optimization problem defined by Eq. (2.18), can be replaced by its
LOO estimator, such that the M -dimensional optimal projection family, K(M), can
be approximated by the following optimization problem:
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



K(M) ≈ B(M)
A(α∗),

α∗ = arg min
α∈[0,1]

{
ε2LOO(B

(M)
A(α))

}
.

(2.24)

As in Section 2.3, under the hypothesis that the optimization problem defined
by Eq. (2.18) is convex, such that the dichotomy-based algorithm defined by Eq.
(A.1) can be used, the solving of Ncost(= 2 + p) × ν eigenvalue problems defined by
Eq. (2.9), is required to solve the optimization problem defined by Eq. (2.24) with
a precision of T for α∗. However, keeping in mind that computing the LOO error
associated with any projection family amounts to solving a series of slightly modified
eigenvalue problems, it was noticed that iterative methods, such as the subspace
iteration methods (see [4] for further details about these methods), can be used to
reduce drastically the computational time.

3. Applications. In order to illustrate the benefits that stem from the opti-
mization problem defined by Eq. (2.24), two applications based on simulated data
are introduced in this section. The first application deals with a non-Gaussian stochas-
tic process characterized by a rather smooth correlation function. This application
aims thus at justifying the relevance of the Leave-one-out error and at emphasizing
the difficulties of the classical KL expansion to identify optimal basis when the num-
ber of available realizations is low, while the generalized KL expansion, characterized
by Eq. (2.24), gives promising results. The second application then shows to what
extent such an approach can also be applied to processes characterized by non-smooth
correlation functions.

3.1. Relevance of the generalized KL expansion to approximate stochas-

tic processes characterized by smooth covariance functions. The objective of
this section is to illustrate the results shown in Section 3. To this end, we introduce
the following quantities:

• Ω = [0, 1].
• RXX is a particular element of S(R), such that for all κ in [0, 1] and all (s, s′)

in Ω× Ω:

{
RXX(s, s′) = P (κ, s, s′) exp (−5|s− s′|) cos (10π|s− s′|) ,
P (κ, s, s′) = cos (2πκs) cos (2πκs′) ,

(3.1)

• {km, m ≥ 1} and {λm, m ≥ 1} are the respective sets of eigenfunctions and
eigenvalues associated with RXX . In this work, the eigenvalue problem de-
fined by Eq. (2.9) with A = RXX is solved using a Galerkin-type approxi-
mation at the spatial step h = 2.5 × 10−3 ≪ 1. For the sake of simplicity,
no distinction will be made between RXX and its Galerkin approximation at
the spatial step h, which amounts to assuming that for (s, s′) in Ω× Ω:

RXX(s, s′) =

N∑

m=1

λmkm(s)km(s′), N = 1/h+ 1 = 401. (3.2)

• C = (C1, . . . , CN ) is a N -dimension non-Gaussian random vector, whose
components are uncorrelated but highly dependent, such that:
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Figure 3.1: Representation of the covariance function (s, s′) 7→ RXX(s, s′) for three
particular values of κ in [0, 1].

C =
∑

0≤α1+···+α10≤4

cα1,··· ,α10ξ
α1
1 × · · · × ξα10

10 , (3.3)

where ξ = (ξ1, . . . , ξ10) is a 10-dimensional random vector, whose components
are independent and uniformly distributed on [−1, 1], and cα1,··· ,α10 are de-
terministic coefficients, whose components are uniformly and independently
chosen between -1 and 1 before being normalized in order to guarantee that
E [CiCj ] = δij .

Finally, under such a formalism, we define X as the stochastic process defined by:

X(s) =

N∑

m=1

Cmkm, s ∈ Ω. (3.4)

By construction, X ∈ P(Ω) is a centered, non-Gaussian stochastic process, whose
covariance function is equal to RXX . From each independent realization, ξ(θ), of
ξ, we have therefore access to an independent realization, X(θ), of X . As an illus-
tration, for κ = 1, four independent realizations of X are represented in Figure 3.2.
Function P has moreover been introduced as a non-stationary perturbation such that
the higher κ, the less mean-square stationary X . The influence of P can indeed be
seen in Figure 3.1, where function RXX is represented for three values of κ. Two sets,
X exp = {X(θ1), . . . , X(θν)} and X valid = {XΘ1), . . . , X(Θνvalid)}, of independent re-
alizations of X then are generated. Set X exp represents the available information for
X , whereas X valid is the validation set. According to Section 2.4.1, this set will only
be used to evaluate the projection error corresponding to any projection family B(M)

in H
M . In order to lighten the notations, no distinction will be made in the following

between error ε2(B(M)) and its empirical estimator, ε̂2
νvalid(B(M)), calculated from the

realizations gathered in X valid.

3.1.1. Improvement of the projection basis with respect to the available

information. The number of available realizations, ν, is now supposed to be in the
set {0, 20, 50, 100, 400}. The case ν = 0 corresponds to a limit case when no realization
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Figure 3.2: Representation of four independent realizations of X , for κ = 1.

of X is available. For the other cases, the empirical estimator of covariance function
RXX , which is denoted by R̂(ν), such that:

R̂(ν, s, s′) =
1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (s, s′) ∈ Ω× Ω, (3.5)

is compared in Figure 3.3, in the case κ = 1. In these figures, it can be verified that the

higher ν, the more relevant R̂(ν). For all ν > 0, R̂(ν) is in S(R) and we denote by B(M)

R̂(ν)

the set gathering the M eigenfunctions of R̂(ν) of highest eigenvalues. In particular,

in the case ν = 0, B(M)

R̂(ν=0)
corresponds to any M -dimensional set of orthonormal

functions of H. In Figure 3.4 are thus compared the evolutions of the error functions,

ε2(B(M)

R̂(ν)
), with respect to M , for different values of ν and κ. First, it can be noticed

in these figures that ε2(B(M)

R̂(ν=0)
) decreases linearly with respect to M , which means

that the relevance of each element of B(M)

R̂(ν=0)
to describe X is approximatively the

same. This is a direct and natural consequence of the fact that all these elements have
been defined without information on X . Then, two phases can clearly be identified

in the evolution of ε2(B(M)

R̂(ν)
) with respect to M , for ν = 10, 20, 50, 200: the decrease

of ε2(B(M)

R̂(ν)
) is indeed much faster for M ≤ ν than for M > ν, where a quasi-linear

decrease is found again. As explained in Section 2.2, this behavior can be justified by

the fact that the ν first elements of B(M)

R̂(ν)
are based on the available realizations of

X , whereas the M − ν last elements are not.

3.1.2. Relevance of the Leave-one-out error. As presented in Section 2.4,
when the assessment set, X valid, is not available, which is the general case, the Leave-
one-out error allows us to evaluate the projection error from the only set X exp. For
ν = 10, 20, 50, 200 and κ = 0, 0.4, 1, the relevance of the Leave-one-out error can
also be noticed in Figure 3.4, where, even for low values of ν, Leave-one-out error
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Figure 3.3: Empirical estimators R̂(ν) for four values of ν.

ε2LOO(B
(M)

R̂(ν)
), which is only based on the ν available realizations of X , is very close

to the validation error ε̂2
νvalid(B(M)

R̂(ν)
), defined by Eq. (2.19), which is based on the

νvalid ≫ ν realizations gathered in X valid.

3.1.3. Optimal basis when few realizations are available. In the former

section, it has been shown that family B(M)

R̂(ν)
is particularly relevant to characterize

X when the number of available realizations, ν, is higher than M . This section aims
at illustrating the benefits of the approach introduced in Section 2.3, in cases when
M ≫ ν elements are needed for the projection error to be sufficiently small. To

this end, the evolution of error ε2(B(M)
A(α)) with respect to α is therefore represented in

Figure 3.5, for several values of κ and M , when only ν = 50 independent realizations of
X are supposed to be available. On these figures, the optimal value of α to characterize
X , α∗, which is solution of the optimization problem defined by Eq. (2.18), has been
added. On the first hand, if X is mean-square stationary, that is to say if κ = 0,
we can thus verify in this figure that the choice α = 0 leads us particularly adapted
projection basis for X . On the other hand, if X is not mean-square stationary,

significant reductions for ε2(B(M)
A(α)) can also be obtained by searching the optimal

value of α in [0, 1], especially when M = 100 > ν = 50.

More precisely, the relevance of B(M)

R̂(ν)
and B(M)

A(α∗) is compared in Figure 3.6, for

representative values of κ and ν (improvements of the same order of magnitude were
obtained for the other values of (κ, ν) in {0, 0.4, 1}× {20, 50, 100, 400}). The optimal
value of the projection error, ε2(K(M)), has been added in these figures as a limit

state. In each case, it can thus be seen that ε2(B(M)
A(α∗)) ≤ ε2(B(M)

R̂(ν)
), especially when
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Figure 3.4: Improvement of the projection basis with respect to the number of avail-
able realizations, ν.

ν ≪ M . Hence, for these four choices for (κ, ν), this figure underlines the great
benefits brought by the formulation defined by Eq. (2.18). For instance, for ν = 20,
κ = 0.4 and M = 50, we get:

ε2(B(50)

R̂(ν)
) = 1.3% ≫ ε2(B(50)

A(α∗)) = 0.16% > ε2(K(50)) = 0.12%. (3.6)

Indeed, whereas the rank of R̂(ν = 20) is 20 < M = 50, the rank of A(α∗) is by

construction much higher than ν. Therefore, more elements of B(50)
A(α∗) are based on

the knowledge of X than the elements of B(50)

R̂(ν)
, which explains such an improvement

of the projection basis, even if X is not mean-square stationary.
For all 1 ≤ M ≤ 200, and all (κ, ν) in {0, 0.4, 1} × {20, 50, 100, 400}, the compu-

tation of optimal value α∗ was based on the dichotomy-based algorithm presented in

Section 2.3, with a chosen precision T = 5%. Hence, whereas B(50)

R̂(ν)
is computed from
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Figure 3.5: Evolution of the projection errors, ε2(B(M)
A(α)), with respect to α, for M in

{10, 15, 30, 50, 100} and κ in {0, 0.4, 1}, when the available information is characterized
by a set of ν = 50 independent realizations of X .

the direct solving of the eigenvalue problem defined by Eq. (2.9), with A = R̂(ν),

the computation of B(50)
A(α∗) requires the solving of the same eigenvalue problem, with

A = A(α), for Ncost = 7 different values of α.

3.2. Relevance of the generalized KL expansion to characterize stochas-

tic processes characterized by non-smooth correlation functions. In order
to underline that the proposed approach can be applied to any type of correlation
function, the Ornstein-Uhlenbeck case [36], which is characterized by a non-smooth
correlation function, is tested in this section. To this end, let X = {X(s), s ∈ [0, 1]}
be the Gaussian stochastic process, whose mean function µ and covariance function
RXX are given by, for (s, s′) in Ω× Ω:
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Figure 3.6: Improvement of the projection basis.





µ(s) = E [X(s)] = a
(
1− e−bs

)
,

RXX(s, s′) = E [X(s)X(s′)] =
c2 e−b(s+s′)

2b

(
e2bmin(s,s′) − 1

)
.

(3.7)

where a = 1, b = 10−2, and c = 0.4 are deterministic parameters.

In the same manner as in Section 3.1, it is now supposed that the maximal
information about X is characterized by a set of only ν = 50 independent realizations,
which are once again denoted by {X(θ1), . . . , X(θν)}. As an illustration of such a
stochastic process, Figure 3.7 compares the evolutions of the covariance function of X ,
RXX , and of its empirical estimator, R̂(ν), whereas Figure 3.8 shows four particular
realizations of X . Using the same notation as in Section 3.1, we define:

• K(M) and B(M)

R̂(ν)
as the sets gathering the M eigenfunctions of highest eigen-

values associated with RXX and R̂(ν) respectively;
• α∗ and A(α∗) as the solution of the optimization problem defined by Eq.

(2.18) and the corresponding function in S(R) respectively.
In this section, it is supposed that no validation set is available to evaluate the

relevance of any projection family to characterize X . The Leave-one-out procedure,
described in Section 2.4 has thus been applied. For all 1 ≤ M ≤ 100, the evaluation of
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Figure 3.7: Representation of the chosen Ornstein-Uhlenbeck covariance function,
RXX , and of its empirical approximation, R̂(ν), for ν = 50.
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Figure 3.8: Representation of four independent realizations of Ornstein-Uhlenbeck
process X .

the projection error associated with a particular projection family is therefore based
on the computation of ν = 50 slightly modified eigenvalue problems. Moreover, as in
Section 3.1.3, the dichotomy-based algorithm presented in Section 2.3, with a precision
T = 5%, was once again used to identify accurate approximations of optimal value
α∗. Hence, for all 1 ≤ M ≤ 100, ν + 1 = 51 and Ncost = 7(ν + 1) = 357 solvings

of the eigenvalue problem defined by Eq. (2.9) were needed to evaluate ε2LOO(B
(M)

R̂(ν)
)

and ε2LOO(B
(M)
A(α∗)) respectively.

Finally, when the available information about X is characterized by a finite set
of independent realizations, the relevance of the proposed method is illustrated in

Figure 3.9. Indeed, by comparing the evolutions of errors ε2LOO(B
(M)

R̂(ν)
), ε2LOO(B

(M)
A(α∗))

and ε2(K(M)) with respect to M , it appears that interesting improvements can be
brought by the coupling of a Leave-one-out procedure and the solving of an original
approximation of the covariance operator to identify accurate reduced basis for X .
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Figure 3.9: Improvement of the projection basis for the characterization of Ornstein-
Uhlenbeck process X .

4. Conclusions. For the last fifty years, the increasing computational power
has encouraged many scientific fields to take into account stochastic processes in
their modeling. The development of reduced basis that could condense at best the
statistical properties of these stochastic processes is therefore of great interest. In most
of these applications, the knowledge of these stochastic processes is however limited
to a finite set of independent realizations. In this context, using two examples, this
paper emphasized the efficiency of a method based on an adaptation of the Karhunen-
Loève expansion, in order to construct optimal basis from a relatively small set of
independent realizations. This method defined first an original optimization problem,
and secondly, required a way to a posteriori evaluate projection errors. Finally, when
interested in studying complex systems that are excited by stochastic processes that
are only known through a set of limited independent realizations, the proposed method
opens new opportunities to optimize the projection basis with respect to the available
information.

Acknowledgments. This work was supported by SNCF (Innovation and Re-
search Department).

Appendix A. Dichotomy-based identification algorithm.
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


Initialize: α1 = 0, α2 = 1.

while |α1 − α2| > T :

Compute:

α = (α1 + α2)/2,

α∗
1 = arg min

β∈{α1,α,α2}

{
ε2(B(M)

A(β))
}
,

α∗
2 = arg min

β∈{α1,α,α2}, β 6=α∗

1

{
ε2(B(M)

A(β))
}
.

Update:

if (α1 = α∗
1, α2 = α∗

2) :

exit while.

else:

α1 = α∗
1, α2 = α∗

2.

end if

end while

α∗ = α.

(A.1)

Appendix B. Gram-Schmidt orthogonalization algorithm.

If the set {X(θ1), . . . , X(θν)} gathers ν independent realizations of X , the fol-
lowing algorithm allows the identification of a projection family for X , B(M) =
{bm, 1 ≤ m ≤ M}, which corresponds to the Gram-Schmidt orthogonalization of {X(θ1), . . . , X(θν)}.




b1 = X(θ1)/ (X(θ1), X(θ1)) , K = 1.
for 2 ≤ m ≤ M :

b∗m = X(θi)−
∑m−1

k=1 (X(θm), bk) bk
if (b∗m, b∗m) > 0 :

K = K + 1, bK = b∗m/
√
(b∗m, b∗m).

end if

end for

M = K.

(B.1)
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