Skip to Main content Skip to Navigation
Journal articles

A holographic principle for the existence of parallel spinor fields and an inequality of Shi-Tam type

Abstract : Suppose that Σ = ∂M is the n-dimensional boundary of a con-nected compact Riemannian spin manifold (M, ,) with non-negative scalar curvature, and that the (inward) mean curvature H of Σ is positive. We show that the first eigenvalue of the Dirac operator of the boundary corresponding to the conformal metric , H = H 2 , is at least n/2 and equality holds if and only if there exists a non-trivial parallel spinor field on M . As a con-sequence, if Σ admits an isometric and isospin immersion F with mean curvature H 0 as a hypersurface into another spin Riemann-ian manifold M 0 admitting a parallel spinor field, then (1) Σ H dΣ ≤ Σ H 2 0 H dΣ and equality holds if and only if both immersions have the same shape operator. In this case, Σ has to be also connected. In the special case where M 0 = R n+1 , equality in (1) implies that M is a Euclidean domain and F is congruent to the embedding of Σ in M as its boundary. We also prove that Inequality (1) implies the Positive Mass Theorem (PMT).
Document type :
Journal articles
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01097003
Contributor : Oussama HIJAZI Connect in order to contact the contributor
Submitted on : Thursday, December 18, 2014 - 4:04:17 PM
Last modification on : Saturday, October 16, 2021 - 11:18:03 AM
Long-term archiving on: : Monday, March 23, 2015 - 5:00:55 PM

File

Hijazi-Montiel-2012-06-14.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Oussama Hijazi, Sebastián Montiel. A holographic principle for the existence of parallel spinor fields and an inequality of Shi-Tam type. Asian Journal of Mathematics, International Press, 2014, 18, pp.489 - 506. ⟨10.4310/AJM.2014.v18.n3.a6⟩. ⟨hal-01097003⟩

Share

Metrics

Record views

90

Files downloads

70