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CONVERGENCE OF A FINITE-VOLUME SCHEME FOR THE CAHN-HILLIARD
EQUATION WITH DYNAMIC BOUNDARY CONDITIONS

F. NABET*

Abstract. This work is devoted to the numerical study of the Cahn-Hilliard equation with dynamic boundary
conditions. A spatial finite-volume discretization is proposed which couples a 2d-method in a smooth connected
domain and a 1d-method on its boundary. The convergence of the sequence of approximate solutions is proved and
various numerical simulations are given.

Key words. Cahn-Hilliard equation, Dynamic boundary conditions, Finite-volume method, Convergence anal-
ysis.
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1. Introduction.

1.1. The Cahn-Hilliard equation. The Cahn-Hilliard equation describes the process of
phase separation when, for example, a binary allow is cooled down sufficiently. This model is
a diffuse interface model because the interface thickness between the two phases is small but
non-zero. The system is described by a smooth function ¢ called the order parameter, which
is equal to 1 in one of the two phases, 0 in the other and which varies continuously between
0 and 1 in the interfaces.

We consider a connected and bounded domain Q C R? with a C!-continuous boundary T
and we choose an orientation of I' such that i is the unit normal vector outward to 2.

For a given final time 7" > 0, the problem is written as follows: To find the concentration

of one of the two phases ¢ : [0,7] x  — R such that,

(1.1a) Oic =I',Ap,

3 12
(1.1b) N:_§50bAC+ ?Ubfl:(c);

where € > 0 accounts for the interface thickness (see Fig. [1.1b), f, is the bulk Cahn-Hilliard
potential, I', > 0 is a bulk mobility coefficient and o, > 0 is a fluid-fluid surface tension
coefficient. This is supplemented by an initial condition in £2,

(1.2) ¢(0,.) = co.

In order to solve this equation, we have to add two boundary conditions on I' = 9€). With
respect to the chemical potential 1, we assure that there cannot be any mass exchange through
the boundary, thus we consider the homogeneous Neumann boundary condition on (0,7") x T,

(1.3) Ot = 0.

Usually, the boundary condition associated with the order parameter c is the Neumann bound-
ary condition. However, for some physical systems this condition is too restrictive. Indeed,
the homogeneous Neumann boundary condition on ¢ implies that the contact angle between
the interface and the wall is equal to 5. But in some physical systems, for example for bi-
nary mixture, the dynamic contact angle deviate from the static contact angle 5. In order to
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describe this phenomenon, physicists [[12} [13] |16] have introduced the following boundary
condition on (0,7") x I, called the dynamic boundary condition,

1 &3

3 3
@ﬁ@t&l‘ = 7520505AFC\F - 60'bf:_(0,r) — 55%5710-

(1.4) g

The trace of c on I is noted ¢, Ay is the Laplace-Beltrami operator on I, d,, is the normal
derivative at the boundary, I', > 0 is a surface kinetic coefficient and o, > 0 is a surface
capillarity coefficient. The bulk potential f, and the surface potential f, satisfy the following
assumptions.

e Dissipativity

(1.5) liminf f/(c) >0 and liminf f”(c) > 0.

le|]— oo le|]— o0
These conditions imply that there exist &y > 0 and s > 0 such that for all x € R,
fule) > aic® —ay  and  f.(c) > a1 — as.

e Polynomial growth for f,: there exist C}, > 0 and a real p > 2 such that,

(1.6)

fbm)(c)‘ <Cy(L+[cP™™), m=A{0,1,2}.

A typical choice for the bulk potential is the polynomial double-well function (see Fig. [I.Ta).

1.0

0 1 ‘ Interface: €
(a) Bulk potential (b) Interface thickness

Fig. 1.1: Double-well structure of f, and definition of the interface thickness

For the sake of simplicity, we note

3 12 1 & 3
As = 5e00 Ap =00 Ao =g A = gc oo, and Ay, = 6oy,

and we write the Cahn-Hilliard equation with dynamic boundary conditions as follows

o =T, Ap; in (0,7) x £;

1= —AsBe+ Ay, f1(0): in (0,7) x 0

(1.7) AoiOrer = Ax Aver — Ay, fl(cr) — AsOpe; on (0,T) x Ty
Onp = 05 on (0,7) x I';

c(0,.) = % in Q.



The free energy functional associated with this equation is decomposed into a bulk and
a surface contribution

(1.8) F(c) = Fy(c) + F.(c)

where the bulk contribution is the usual energy functional associated with the Cahn-Hilliard
equation with Neumann boundary conditions

Fie = [ (G219 + Anhie)

As regards the surface contribution, we have

P = [ (5 el + Ar.f(en)

2

and we can note that the dynamic boundary condition (T.4) is obtained by requiring that the
system tends to minimize its total free energy . Indeed, with this definition, the free energy
functional is dissipated as follows,

d
1.9 d—]—"(c(t, ) = th/ |V u(t, )|2 — Aat/ |8tc,p(t,.)|27 te 0,17

t ) r
We can see that the natural energy space for this problem is the following function space,
(1.10) HYQ)={uec H(Q): Tru=u, € HYT)}.

From a mathematical point of view, the Cahn-Hilliard equation with dynamic boundary con-
ditions is now well understood. We refer the reader to 7, [17, 18, 19} 20]] and the references
therein for details on the existence, uniqueness and regularity of solutions, existence of attrac-
tors and convergence to stationary states. Moreover, in [15]] the authors prove (in a more gen-
eral framework) the existence of solutions to continuous Problem in the energy spaces.
From a numerical point of view, there are less results. In [12} [13| [16] the authors consider
finite-difference methods and give numerical results without proof of convergence. A spa-
tial finite-element semi-discretization is proposed in [[6] where the authors prove convergence
results and optimal error estimates for the space semi-discrete scheme. All these results are
obtained in a slab by imposing periodic conditions in lateral directions. Thus, more complex
geometries of the domain are not considered.

In this article, we investigate a finite-volume scheme for solving Problem (I.7) with a
smooth domain €). This spatial discretization allows to easily couple the dynamics in the
domain and those on the boundary by the flux term 0,,¢c. Furthermore, finite-volume schemes
account naturally for the non-flat geometry of the boundary and for the associated Laplace-
Beltrami operator. Moreover, this kind of scheme preserves the mass.

1.2. Outline. The article is organized as follows. In Section |2} we first give the finite-
volume notation associated with the particular geometry of the domain and the discrete un-
knowns and inner products. Section [3|is dedicated to introducing the finite-volume scheme
and the associated energy estimates. In Section[d] we first prove the existence of a solution
to the discrete scheme and then, we state a convergence theorem. The key-point is to obtain
strong compactness for the approximate solutions and their traces. To this end, we introduce
a new space translation operator and we prove a suitable space translation estimate which
gives a limit in L°°(0,7T, H*(£2)) whose trace is in L>°(0, T, H'(T')). Finally, in Section
[l we give numerical error estimates for the Cahn-Hilliard equation with dynamic boundary
conditions. We also present qualitative results which are in agreement with the numerical
simulations observed in the literature.



2. The Finite-Volume framework.

2.1. Main notation. We recall that the domain €2 is not polygonal and that we have to
solve an equation on the boundary I'. Thus, the notation (see Fig. [2.I)) are slightly different
from the usual finite-volume notation (introduced for example in [10]).

Admissible mesh. We say that 7 is an admissible mesh of € if 7 is constituted of an
interior mesh 9t and a boundary mesh 991 satisfying the following properties.

e The interior mesh 91 is given by a family of disjoint open subsets of €2 called control
volumes and denoted by x such that,

- Q= UkemK;

- ifK,LEM Kk #c,thenkNi=0;

- if K, L € M, K # £ such that the dimension of i N Z is equal to 1, then K N £
is the edge of the mesh separating the control volumes k and c;

— for any K € 9, we associate a point z, such that if x, £ are two neighboring
interior control volumes, the edge which separates x and £ is orthogonal to the
straight line going through x, and x ..

e The boundary mesh 9901 is the set of edges of the control volumes in 9t included in
I". We remark that these edges are not segments but curved sections. We note that
the elements of 99 are both edges of control volumes in 9t and boundary control
volumes. Thus, when we consider them as control volumes belonging to 09t we
note £ € 091 and when we consider them as edges of an interior control volume we
note o. This mesh must also satisfies an orthogonality condition: for any £ € 99t
which is an edge of the interior control volume k., we define x, as the intersection
between £ and the straight line passing through x, and orthogonal to the chord e,
associated with £. Then, y. is the intersection between the chord e, and the line
(Tiemy).

The set of edges. Let £ be the set of edges of the mesh T, &;,,+ is the set of interior (flat)
edges and &, is the set of exterior (curved) edges (we note that E.,; = IIM). Let E be the
set of edges of a given control volume K € 9.

For any o € &£, we note

e m, its length;

e 0 =k|cif o € & is the edge which separates the control volumes k and c;

e » = p, the quadrangle whose diagonals are the edge o and the line segment [z, x|
if o € Einys

ep=p,={tx+ (1 -z, t€[0,1,z €o}ifo € Eezt N E;

e m the Lebesgue measure of D.

The interior mesh. We note that if k is a control volume with one edge, at least, on the
boundary, then x is not polygonal and may be not convex.

For any K € 91, we note:

e K the polygon shaped by the vertices of k; we remark that £ = K if Ec N Eepy = 0
and that £ can be not included in Q if £ N Epr # 0;

e m, (respectively m, ) the Lebesgue measure of k (respectively k).

The boundary mesh. Let e, be the chord associated with £. We note m . (respectively
me, ) the length of £ (respectively e,).

Let V be the set of vertices included in the boundary I" and V. is the set of vertices of the
boundary control volume c.

Distances and normals. For an edge o € £, we note:

e ii, . the unit normal vector to o going from x to £ and dy . the distance between
re and x, if 0 € E;py;



e ii,. the unit normal vector to e, outward to x and dy . the distance between x,
and y, if 0 € Eeys.

e 1, (z) the unit normal vector to ¢ at the point z € ¢ outward to x (we remark that
ifo € Eipt, o (x) = Uy forall z € o).

For a vertex v = £|£’ which separates the boundary control volumes £, L € 990, we note

e d. . the distance between the vertex v and the center y;

® d. . thesumof d. v and d, y: it is the approximation of the length m., ., of the
arc v, C I passing through the vertex v = 2|2’ and whose ends are x, and z .;

e n, . gives an orientation of the curve ../ in function of the orientation of the curve
I': ny, = 1 if the orientation of I" going from £ to £’. Thus n,, = =+1 and

Nyve = —Nygr
o e
e g
2 o
[ ] Interior vertex ° Interior center —— Interior mesh 901
m  Boundary vertex @ Boundary center  sssssnes Boundary mesh 990t
A\ Kk il L € OO #-- B e, chord associated with ¢

Fig. 2.1: Mesh 7 associated with €2

As regards the boundary mesh, we can remark that in the proposed scheme (Section
[3.1) we only use the coordinates of the vertices of the mesh. All the other quantities are
approximations and we do not use the equation of I". However, to pass to the limit in the
convergence theorem we reason with the exact quantities. In the sequel (in particular in the
proof of the convergence theorem) the following relations will be very useful and frequently
use even if it is not expressly mentioned. For any £ € 09,

Me, — My :O(mi) s My, —de e :O(m%ﬁ,(chrmy))
and for any IC € M such that o = £ € Ec N Eeyts
me —me = O (diam(k)?),  |d(zx,2.) — die o] = d(z2,y.) = O (m2).

We can also note that for all z € £ C T, fi(x) — . = O (m,). The proof of these results
can be obtained by using the Taylor formulas and a parametrization of I".



The mesh size is defined by size(7) = sup{diam(x), K € 9t}. We introduce a positive
number reg(7 ) which measures the regularity of a given mesh,

o diam(x) diam(p) diam(x)
(2.1) reg(T) := max | N, max diam(D(,)’mgx "  max T

oc€EK

where N is the maximum of edges incident to any vertex.

All the constants in the results below depends on this quantity which is very useful to perform
the convergence analysis of finite-volume schemes. The number reg(7") must be uniformly
bounded when the mesh size tends to 0 for the convergence results hold.

2.2. Discrete unknowns. Regarding the space discretization, we define the piecewise
constant functions 1y, € R™ and uy., € R?™ as follows

Uy = > Ul € L(Q)  and  wpm = >, u.l. € L7(T),
KeEM LEIM

where 1, (respectively 1) is the indicator function of the control volume x (respectively ).
We also define the discrete function v € R7 which we associate with the couple u, =
(usm y Uazm)~
As regards the time discretization, we set N € N* and then At = % Foralln € {1,...,N},
we define " = nAt. Then, we define u3); (respectively usy,) as the piecewise constant
function in (0,7") x €2 (respectively (0, T") x I') such that for any ¢ € [t", " 1],

udt(t,z) =ulttifz € © and Wil (t,x) =ultlifz € ..

For a given time step ¢", the finite-volume scheme associates with each interior control
volume K € 91 an unknown value ¢} and with each boundary control volume £ € 991 an
unknown value ¢ for the concentration. Regarding the chemical potential, the same notation
are used with an interior unknown gt for all £ € 9t and a boundary unknown g7 for all
L € 0. However the homogeneous Neumann boundary condition is associated with i, so
we impose the value of the boundary unknowns p2, . € R?™ as follows

ur=puy, VLeOMsuchthat £ =0 € Ec N Eeut-

2.3. Inner products and norms. Here, we define the inner products and the norms used
in the paper. We define the discrete L2-inner products and the discrete H *-semi-definite inner
products on R” and R?™.

DEFINITION 2.1 (Discrete L2-inner products).

For any ugy, voy € R™ and for any uyon, Voor € R?™, we define

(Uima Uwz),m = Z MU Uk and (Uamhvam)agﬁ = Z Me, UV,
KeM L£LEOM
The associated L*-norms are noted ||. lo.on and |-l oon-

For any u,, € R™ and for any w,,, € R?™, we define the discrete LP-norms on R™ and
R2™ as follows

[umllg o = D Miclucl” and  JJuml[g, om = D e |ucl.
reM £LEOM

We can remark that the norm ||.[|, , ,, (respectively [.[|5 , ,.,) is equivalent to the usual L?
norm ||.|[7, = 3", con M |uxc|? in Q (respectively .||

LP () . LP(T)
constants independent of the mesh size.

= > ccom Meluc [P inT) with



DEFINITION 2.2 (Discrete H'-semi-definite inner products).
e Foranyu,,v,; € R7, we define the H'-semi-definite inner product in R” as follows

m

o

[ur,vr]1,r = > (e —ue) (vx —ve) + 0 e

o=K|LEEint dfc,z azcesmdfc,z

(ue —ug) (e —vg).

o For any Upen, Voar € R?™, we define the H'-semi-definite inner product in R?™

Upg — Up’ Ve — Vg
[[Uasmavazmﬂl,asm = Z dc,z:/ ( d ) ( d .
c,c’ c,c’

v=C|L'ev

The associated H*-seminorms are noted |.|, _and |.|, ...
From this, for any u, € R7, 1,0, € R?™ we can define the H'-norms as follows

2 2 2 2 2 2
HUT‘ 1,7 = ||u9ﬂHO,9JT + |uT|1,T and ”u@mel,agm = Hu@m”&am + ‘u89ﬂ|1,afm :

Moreover, we have to define norms in time and space.
DEFINITION 2.3 (Discrete norms in time and space).

Let N be a discrete norm on a space B, then we define
o The discrete LP(0,T; N'(B)) norm by

N—-1 P
1w oo, min(s)) = (Z AN (””H))p) :
n=0

o The discrete L>(0,T; N'(B)) norm by
[ || Lo (0,707 (8)) = sup N (u™).
n<N

3. The Finite-Volume scheme and the discrete energy.

3.1. The numerical scheme.
DEFINITION 3.1 (Discrete mean projection).

Let u be an integrable function on ) which admits a trace . integrable on ', we set P7'u =
(PTow, PTY ) with

1
Plu = (—/ u(x)dx)
™ My Ji £eom

With this definition, choosing ¢ € H}(Q) (where H(Q) is defined by (T:1I0)), we can
define the discrete initial concentration as follows,

and P ur = <1/£u,r(:v)da(x))

Kem me

3.1 A& =Prd.

In order to obtain the finite-volume scheme associated with the Cahn-Hilliard model (L.7),
we have to integrate the continuous equations. We integrate equations (1)) for ¢t € [t", "]
and for L € 9 . For Laplace operators, we use a consistent two-point flux approximation
together with the homogeneous Neumann boundary condition (T.3) for the equation (I.Ta).
The dynamic boundary condition (T:4) is integrated for ¢ € [t",¢"*1] and for £ € 990. We
use a consistent two-point flux approximation for the Laplace-Beltrami operator on I'.

With respect to the non-linear terms, in the paper we use a semi-implicit discretization de-
scribed in Subsection We denote by d/> (respectively d7+) the discretization of the po-
tential f, (respectively f,).



The scheme we propose reads: For any n > 0, find (¢”*!, u"*1) € R” x R” such that for
any ur, vy € R7,

n—i—l ch 1
(3.2a) (”Tt”” Uwz) = =T [u" " vrlh s
n
(’ugj-l?um) =A, Z me (CQ'H _ CZ—H) (up — ug)
n o=K|LEEint d’cvﬁ
(3.2b) ALY T ()

o=LEEcqrt dK:aﬁ

A dfe (e entl

+ I Z M (CIC7C)C )'U/Im
reM

Com — Cgm 1
g (B ) = = A [ vl om
am

(3.2¢) —Ap > me d (el d u,
LEOM

Me, +1 +1
AL D y (2 =) u.
o=LEEczt UK,L

We notice that we write the scheme in a "variational" formulation which is equivalent to the
classical finite-volume formulation and which will be more useful in the analysis.

Let us remark that in equation the finite-volume approximation of the term Ay
only uses the interior edges of the mesh 9t while in equation (3.2b) the approximation of the
term Ac uses all the edges of the mesh (interior and exterior). The reason for this is that
satisfies the homogeneous Neumann boundary condition (so the exterior edges do not step
in) while ¢ satisfies the dynamic boundary condition (I.4) where the exterior edges intervene
(this term is essential to allow the coupling with equation on the boundary mesh 990t).
Setting v = 1 in equation (3.2a), we note that we have the conservation of the volume at the
discrete level,

(3.3) S omecg = > mﬁcg7 vne{l,...,N}
KeEM reM

3.2. Energy estimates. We define the discrete free energy associated with the continu-
ous free energy (I.8). As in the continuous case, the discrete free energy is decomposed into
a bulk contribution F, - and a surface contribution F ,.,: For any ¢, € R7, we set

A A
Fr(er) = = |CT|? st AR D my fo(ex) + =r |Cafmﬁ om TAf Y mepfi(cs).
2 ’ Kem 2 ’ cEom

=Fp,7(cT) =Fs,0om(com)
Regardless of the choice of the discretization of non-linear terms, we have a general energy
estimate.
PROPOSITION 3.2 (General energy equality).
Let ¢ € R7. We assume that there exists a solution ("1, ;") to discrete Problem (3.2).
Then, the following equality holds
Aa
Frley™) = Frleq) + AT, [+ 5 [l -

om ||0,89R

4+ 222 AA n—i—l n |2 + 'AAF n+1l |
2 Cr TI1,7 2 om 89}1 1,0m

=Ag, > me (fb( n+1) foled) = dfh(CZ,CZ“)(CZ“ - CZ))
KeM

FAp 3 e, (F(EETY) = f(}) = P (e (T = ).
LEOM

34
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Proof.  We consider the scheme (32) with ur = ¢! — ¢ and vy = —Atp?"! as test
functions and we add the three equat10ns. O

The definition of the discrete energy cannot give a discrete counterpart to the equality
(T9) which gives the dissipation of the continuous energy. However, with a good choice for
the discretization of non-linear terms, we can obtain the dissipation of the discrete energy.

3.3. Discretization of non-linear terms. In order to obtain an energy estimate without
any condition on the time step At, we choose a time discretization for the non-linear terms
such that the right hand side of (3.4) is equal to 0. Namely, we set

foly) = fi(2) and dfs(xy)zw Va,y,  #y.

d (,y) =
y—w y—=

In practice, we mostly used polynomial functions for the potentials f, and f.. Then, the terms
d’(z,y) and d’s (, y) can be written as polynomial functions in the variables z,y. Thus, we
do not have numerical instability when z is too close from y.

In effect, we have

r+y

' (z,y) = ﬁ( ) + (@ = 9)*Pla,y);

where P is a polynomial function in the variables z, y.

Thus, we remark that d/*(z, ) = f/(z) and d’+ satisfies the same properties.
PROPOSITION 3.3 (Discrete free energy equality).

Let ¢ € R7. We assume that there exists a solution (¢, u"*1) to discrete Problem (3.2).

Then, the following equality holds

Frlet) = Frlet) + AT |2+ 22 e

AA 1 AA
Tl *Cf|w+ 2

— Com ||0A,asm
(3.5)
Z;thl - C(’?DJI‘L@QR

|c =0.

Remark: We can also use a fully implicit discretization for non-linear terms, namely
afv(cp, ety = fl(cth), VK e M and  d’*(c, ity = fl(cPT), VL € OM.

In this case, we obtain the dissipation of the discrete energy for any At < Aty where Atg
only depends on the parameters of the equation. All the results given in the paper are true for
this discretization if we assume that the time step satisfies At < Aty.

4. Existence and convergence theorems. The existence and convergence results proved
below are true for other choices of discretization for the non-linear terms. Thus, we give here
general assumptions (which are satisfied by the semi-implicit discretization) of the discretiza-
tion of the non-linear potential d/* to obtain these results: d/* is of C! class and there exist
Cp > 0 and areal p such that 2 < p < +o0,

]dﬁxa,bﬂ < Cy (1+alP™ + 1),
“4.1)
|D (@ (a,)) ()] < Cy (14 |l =2 + |pl"~2) .

4.1. Preliminary results. In this subsection, we consider a bounded connected Lips-
chitz domain Q C R? and we denote by I' = 9 its boundary. Let 7 be an admissible mesh
associated with € as described in the subsection 2.1}
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First, we recall the discrete Poincaré inequality and the discrete Poincaré-Sobolev in-
equality which will be very useful in the sequel. The proofs can be found in [2] in the case
where (2 is polygonal and with Neumann boundary conditions but these results can be easily
adapted to our case.

LEMMA 4.1 (Poincaré inequality,[2, Theorem 5]).

There exists C1 > 0 depending only on Q2 and reg(T) such that

“4.2) ”ufm — Moy (Ufm)Hopﬁ < qnluTlLT, Yu, € RT;

1
where Moy (Uey) = S S e Mctx and Mg = 3" cop M.
This Lemma gives for any u, € R7,

(4.3) lurlls , < (G + 1) [urlf - + 2Mg (g (us))” -

LEMMA 4.2 (Poincaré-Sobolev inequality,[2, Theorem 3]).
Let 1 < q < +o00, then there exists Co > 0 depending only on q, 2 and reg(T) such that

4.4) Hum?||07q75m < q2]||UTH1,T , Vur €R7.

Now, we give a Sobolev inequality for the one dimension manifold T".
LEMMA 4.3. There exists C3 > 0 depending only on T and reg(T) such that

Hu8931||L°°(1") < QB]”Umn”mmz :

Proof. Let £1 € 99M, then

1 1 .
Uey = (ugl - 3 meﬁuﬁ) + > me u, with Mp= > me,.
My EFm My EFm céIm

The Cauchy-Schwarz inequality implies

2 2 2
|Uz:1|2 < M < e%:immeﬁ ue, —ue|” + ||u89ﬁ||0,asm) :
T L

If us,,up, € OM, the triangle inequality and the Cauchy-Schwarz inequality give

1
2
ey = Ugy| < ( > dt:,a’) ‘uafv?h,am'

v=CL|L eV
Thus, there exists C. > 0 depending only on I" such that

1

2 2
|U£1 ‘2 <2 <Or |u8‘m|17a:m + M H’U’a‘.mHO)agn) )

and the proof is complete. O

4.2. Existence theorem. This subsection is devoted to state general existence theorem.
THEOREM 4.4 (Existence of a discrete solution).
Let ¢} € R7. We assume that:
e the potentials f, and f, satisfy dissipativity assumption (L.3) and the bulk potential
satisfies the growth condition (L.6);
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e the discretization of non-linear terms satisfies growth condition @1) for f,.
Then, there exists at least one solution (¢, 1) € R™ x R to Problem (3.2).
Proof.
The proof is very similar to the one given in [4, Theorem 2.9], thus we do not give the
details here. The key-point is the use of the topological degree theory [8].
As regards the a priori estimates, we have three key-points.

e We consider the Problem (3.2) with 6d’» (respectively dd/+) instead of d’* (respec-
tively d/+) with 6 € [0, 1].

e Using the energy estimate (3.3), the quantities |||,
are bounded independently of . ,

e Choosing u, = 1 as test function in the equations (3:2b) and (3:2¢), we obtain a
bound (independent of §) on the mean-value of ™! and thanks to the Poincaré
estimate (#.3), we have the expected bound on |||, .

The proof of the well-posedness of the scheme when 6 = 0 is classical.

n+1

Com Hl,asn

and |zt

O

4.3. The convergence theorem. In order to give the convergence theorem, we have to
recall the definition of a solution to the continuous equation (I.7) in a weak sense.
DEFINITION 4.5 (Weak formulation).
We say that a couple (c, i) € L°°(0,T; H*(Q))x L?(0, T; HY(Q)) such that ¢, € L>(0,T; H(T"))
is solution to continuous Problem (I.7) in the weak sense if for all ¢ € C2 (R X RQ) such
that ¢(T,.) = 0, the following identities hold

T
4.5 -0 I,V -Ve)dzdt = [ ¢(0,.)dz,
@ [ [ over TV Todadt = [ P00, s

T

/ /(*,U(ZS‘F.AAVC'v¢+¢4fbf,:(0)¢)dxdt

0 Q .

(4.6) +/ /(_A8t8t¢C\F+AAFVFC\F'Vl"d)—’_Afsfs/(C‘F)d)) da(m)dt
0 r

:Aat/FTr (¢(0,.)do(x).

THEOREM 4.6 (Convergence theorem).
Let ° € HL(Q) (see definition (I.I0)) and (((cﬁt)(m)) ; ((ﬂ?t)(m)))meN a sequence of
solutions to Problem (3.2) associated with a sequence of discretizations such that the space
and time steps, size(T ™)) and At™) respectively, tend to 0. Then, assuming that reg(T ("))
is bounded when m — oo, there exists a weak solution (c, ) to Problem (I.7) (in the
sense of Definition for the initial data c® such that, up to a subsequence, the following
convergence properties hold, for all ¢ > 1

("™ S cin L2(0,T; L)), (35)"™ = ¢ in L2(0,T; LY(T)),
and  (p2)"™ = 1 in L2(0, T; L9(Q)) weakly.

Because of non-linearities in the equation both in €2 and on I, to prove this theorem we
need strong compactness both in L2((0, T)x ) and in L2((0, T)xT'). Thus, we have to apply
the Kolmogorov theorem to obtain the existence of the limit and the strong convergences.
Then, we can pass to the limit in the scheme and, especially in the non-linear terms. To apply
the Kolmogorov theorem we have to apply three key elements: the bounds on the discrete
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solutions (see Proposition 4.11)), an estimate of space translates (see Theorem [4.20)) and an
estimate of time translates (see Theorem [4.26).

4.3.1. Properties of the mean-value projection. Definition (3.1) of the discrete initial
concentration induce us to give the following properties on the discrete mean-value projection
which will be useful in the sequel.

PROPOSITION 4.7 ([} Proposition 3.5]).

For any p > 1, there exists Cy > 0 independent of size(T ) such that
0pm < Gallull oy Vu € LP(Q).

[Pl

Assumption A: Let P C R? be a pseudo-triangle with one curved side o C R2. There
exist v1,v9 > 0 such that for any sub-arc & C o, the corresponding sub-triangle P (see

Fig. @) satisfies,

mp,

v < < vs.

o

Fig. 4.1: The pseudo-triangle P and one of its sub-triangles

LEMMA 4.8 ([10, Lemma 3.4] and [3]]).
For any p > 1, there exists C5 > 0 depending only on reg(T ), v1,vo and p such that,
o for any segment o C R? and for any bounded set P C R? with positive measure,
e for any pseudo-triangle P C R? with one curved side o C R? which satisfies the
Assumption A,
and for any u € H'(R?), then

(m, + diam(Q))” ,
Ea /Q V() dz,

where up denotes the mean-value of uw on P, u, the mean-value of u on o and

‘UP _ua|p < QE

o O =P, is the convex hull of P U o if o is a segment;
e Q=P ifo C IP is the curved edge of the pseudo-triangle P.

In this study, we want to apply this lemma (specifically the second point) to the control
volumes IC € 9 with one edge belongs to I" (namely it is a curved edge). Let us remark that
we can prove that for a small enough mesh size the assumption A is satisfied for these control
volumes (see [3]).

Remark: This lemma is crucial to prove the proposition below which will be used in the
proof of Proposition which yields the bounds on the discrete solutions. These bounds
are one of the key point of the proof of the convergence Theorem .6
Indeed, to obtain the bounds on the discrete solutions we have to project the initial data such
that the discrete H'-norms on €2 and T are both controlled by the H}(£2)-norm of the initial
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data. If o is a segment (the first point of the lemma) the proof of this result is classical and
can be found, for instance in [[10, Lemma 3.4]. Thus, we can think that we can avoid to use
the case where o is a curved edge, whose proof is more complicated, by choosing the mean
on the chords for the initial data. However, with this choice, we lose the H!-estimate on the
boundary. In fact, in this case we are not able to prove the Proposition .10 which allows
to obtain the H'-estimate on the boundary. For this reason, we choose the discrete initial
concentration equals to the mean projection on the curved edges (see definition (3:I)) of %
Thus, in this case we need to use the second point on the Lemma @] which is a technical
result whose proof is given in [3].

PROPOSITION 4.9. There exists Cg > 0 independent of size(T ) such that for any func-
tionu € HY(Q),

[P7ul, - < Cgl[Vull

L2(Q) *
Proof. Lemma.§|gives,
m

4diam(K)? 4diam(z)?
- ( lam(k) /A (Vu(z)? ds + 2ABmE) /A |Vu(z)|2dz)
o=K|LEEint dfC,E My me L

|Pmu|17'<2q5] Z
S Me, (M, + diam(x /|Vu )2 dz.

o=LEEcqt d}gg

Then, thanks to definition (2.T)) of reg(T ) we conclude the proof. O
PROPOSITION 4.10. Let u € H!(T'), there exists C7; > 0 independent of size(T) such
that,

|P7ar:mu|1,5m < QEHVFUHLZ(F) .

Proof. We consider two neighboring boundary control volumes £, £’ € 99, then

Plu—Plu // /Vpu do
| <o LLLE F(2)do (2

where 7 is the unit tangent vector to the curve I'.
Thanks to the Cauchy-Schwarz inequality, we have

P — Pl < (me + me) / Vru(2)|2do(2),
LuL’

and the mesh regularity completes the proof. U

2
do(x)do(y),

4.3.2. Bounds of the solutions. The following proposition is one of the key points of
the proof of convergence.

PROPOSITION 4.11 (Bounds of the discrete solutions).
Assuming that the assumptions of Theorem[{.0| are satisfied. Then, there exist positive con-
stants My, Ms, M3, My and My independent of At and size(T ) such that,

SuP [feain 7 <My, Sup oo lly o < M,
N—1 o , y
+1(12 4
.7 > Atfun, < Ms, Z Al <M
n=0 1,7
g;:'rll aim ? 2 P Cg;rl — Cgmz ?
and Z At +AR Y [ < M.
0,0m 0 At 1,00
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Proof.

e The discrete energy estimate (3.3) gives a uniform bound on the discrete free energy,

(4.8) Vn € [0,N], Fr(c?) < Fr(2).

Then, thanks to the polynomial growth assumption (T.6), we have

A
Fr(e) <221+ Ay (Mo + 55, )
A
+ QAF asm|1a<m+'AfSCF max £l

B0l r))

Thus, definition (3-1) of . and Propositions[4.7} [4.9]and[4.10]imply that there exists
Ky > 0 such that,

(4.9) Fr(e3) < Ko.

Thanks to dissipativity assumption (T.3)),

.A 2 2
Fr(e) 252 60 Agon [ oy — Agyad
4.10)
A
+ 2F |Cafm|1 oM + 'Afsal ”camHo om AfSQZMF'

Using @-8), @.9) and @.10) and setting K1 := K¢ + oo (Ap, Mo + Ay, M) > 0,
there exist positive constants K, K3, K4 and K3 such that for all n € [0, N],

||C = ./4 a - @7 ‘CT|17T — AA Kmv
K 2K
2 _Am 2
||cgmtl|0,f)9n > .A o1 = K, ‘Cill,am < I = K
r
These estimates are established for all n € [0, N], thus
sup ||C?H1,T S V K+Kﬂ = M17
n<N
4.11)
sup 1€l om < VEm+ Kg := M.
Adding energy estimates (3.3)) for n from 0 to N — 1, then
N-1 A
n+1 ot n+1
‘7: + Z <Atrb |MT {1 7'+ At Com — 597I||0,89ﬁ
4.12) n=0
A n n |2 AA n n |2
+ TA CT+1 B CT|1,7’ + 2F |089J3r?1 o Cam|1,agm) = ‘FT(CQ’)'

Thanks to estimates (£.9) and {.10), we have

K
@ S Al <8 e X4 e -l < 42



15

Setting u, = 1 in scheme (3.2)) and subtracting equations (3.2b) and (3.2¢)), then for
alln € [0,N —1],

> meptt =Ap, 3 med (e, ) + Ay, 2 Meed’* (it
reM reM LEOM

+ == > me, (CZH—C’Z).

Using polynomial growth assumption (&), Lemma [#.2] and bound @.IT), there
exists Kg > 0 such that

>, Mg

reM

dfe(cn, cg+1)] < Cy (Mo +20M)P Gy = K.
As regards the surface potential f,, there exists K7 > 0 such that,

a7 (e, et < Jmax |f!]i= K, VL€ O
2

Then, applylng Poincaré 1nequa11ty @3) to T, there exists a positive constant
Ks = 37- (A, Km+ Ay, Kp)® such that by using @13), we finally obtain

n+1 2 Km | 4AsM: Ky —
(4.14) Z At[|us [ < 2GR+ OV + =3 +Thg= M.
e Using @.9), @.I10) and @#I2), we deduce
N-1 . _ 2k
nZ;) |C - CT|1 = TA

The discrete form of the volume conservation (3:3) gives may (¢! — cit) = 0, s0
thanks to Poincaré inequality (#.2)),

2

ctl —en 1 2Km M,
1 : .
Z_: S ap It = Rp
2K
e In the same way, setting M5 = E + 0 we obtain
-A ot AAF
N=1| n o 2 N-1, , no 12
Z 0;;1 + At Z 60;;1 — Com < %
_ 0,00m n=0 At 1,0 - At

and the claim is proved.
O

4.3.3. Weak convergence of the discrete gradient. In this subsection, we give the def-
inition of the discrete gradient and a result of weak convergence used in the proof of Theorem
4.6l

DEFINITION 4.12 (Discrete gradient).

We define the discrete gradient operator V7 : R™ — (R?)¢ as follows: For any u, € R,
£ — Uk

VTu, = Y 1,V5u, € (L2(Q)°,  with Viu, = QUTﬁ,“, Vo €€,
=t K,L



16

where 1, is the indicator function of the diamond cell D.

PROPOSITION 4.13 (Weak convergence of the discrete gradient, see [11, Lemma 2]).
Let (ur(m)),,cn be a sequence of discrete functions in R™™ associated with a sequence of
discretizations such that the mesh size size(T (™)) tends to 0 (with reg(T ™) bounded). We
assume that there exists M > 0 independent of size(T ™) such that

(4.15) [

L < M, VYm > 0.

Then, up to a subsequence, (U, m)),,cn weakly converges in L(S2) (¢ > 1) towards a certain
uwe H'(Q) and (V7 rm)),, e weakly converges towards Vu in L.

DEFINITION 4.14 (Discrete tangential gradient).
For any uyg, € R?™, we define the discrete tangential gradient V2™ : R?”" — RY by

Upr — Up

dc,c/

oM om . oM !
VP Ugon = (anuagﬂ)v with Vi Uoem = Nye, Vv =c|c € V.

€ev

4.3.4. Time and space translates of approximate solutions. In order to pass to the
limit in the scheme, because of the non-linearities, we have to use strong compactness in
the domain 2 but also on its boundary I". Thus, we have to establish estimations of time
and space translates that will enable us to obtain the convergence of a sequence of solution

((cﬁ")(m)> o O discrete Problem towards a certain ¢ in L?((0,7) x Q) and those of
((e2e)™) _y, towards Tre in L2((0,7) x T).

om
To this end, we build a particular discrete extension operator on a neighborhood of ).
DEFINITION 4.15 (Projection on the boundary).
We consider the locally Lipschitz continuous map

(4.16) P (xr,s) € T X RY — xp + s7i(wr) € R?,

where 7i(xy) is the outward unit normal vector to Q) at the point x € T

There exists o > 0 such that v is a Lipschitz diffeomorphism from T x]0, o[ onto Q, = {z €

Q° d(z,T) < a} = ¢ (I'x]0, af) with a < W (where & is the curvature of T'). Then, for
LOO

any x € €, the projection on the boundary Prx € T is well defined: Pz is the unique point
on T such that |Prz — x| = d(x,T) and for any x € Qq, Y(Prz,d(z,T)) = a.

To build the extension operator associated with a mesh 7 of 2, we consider the open set
. Noting that in the continuous case, we can define the extension operator P : H!(Q) —
H'(R?) as follows,

u(x) ifz e,
Pu(z) = ¢ Tru(Prz)f(d(z,T)) if x € Qq,
0 otherwise,

where 6 € C°(R) satisfies §(0) = 1 and f(a) = 0.
We follow the idea of the continuous case to build the discrete extension operator.
We first define a mesh 91, of the open set 2, (see Fig.[4.2):

e Setting n, = ﬁ then if we note E' the floor function we can introduce,

Moy ifn, € N
N = il ) T} and h, = ol < size(T).
E(ng) +1lifn, ¢ N Ng



17

e For any £ € 9, we define n,, control volumes as follows,

RL = (cx](i — Dhayihal), Vi€ {l,--- ,ng}.

c

At each control volume, we associate the point zi = 1 ({z} x {(i — Hha})

called the center of the control volume R%.
o Let &

o+ be the set of interior edges of the mesh 9, and £, is the set of exterior
edges which do not belong to &.,+. The set £, is then split into two subsets:
= &, is the set of edges which separate two control volumes R’ and R
(fori € {1,--- ,nq — 1}) associated with the same boundary control volume
L € OM. For any edge 0 € &, , we note 0 = o' the edge which separates
the control volumes R, and R and Mg its length. Noting that these
edges are curved sections, we denote by €% the chord associated with o™
and Mgiyi+1 its length.

(e

— &,, is the set of edges which separate a control volume R’ (associated with
L € M) and a control volume R, (associated with £’ € 99M) where £, L'
are two neighboring cells. For an edge o € &,, which separates the control

volumes R% and R%,, we note 7%, ., the arc passing through the centers Tri,
L _ . 1 . .
and Tri s namely 7%, = ¥ (yzer X {(i — §)ha}) and we note Myi L its

length.

Fig. 4.2: Definition of the mesh 91,

We can note that this mesh is only defined for the needs of the proof and, from a numer-
ical point of view, we never build it.

We can link the length of the edges of the mesh 9, and those of the mesh 991 by the
following identity.

PROPOSITION 4.16. Let vy be an arc included in T and ¢ the arc defined by ¢ = (v %
{6}) with & € [0, a]. Thus, by denoting k the curvature of T the following identity holds,

[mg = my| <G|k oo My

The proof of this result is obtained by considering the function ¥5(t) = @(¢) + o0 (p(t))
where ¢ is an arc-length parametrization of the curve I'.
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We define the mesh 7, = 7 U 2N, and we note K € 7T, its control volumes.
DEFINITION 4.17 (Space extension operator).
Let U9> : R™ — R? be the extension operator defined as follows

Ur ifx €,

Qa —
V7 (ur) (@) = {UR =u.0 (d(xw: ,I‘)) ifr€R. €My,
L L
where 0 € C°([0, ) and satisfies 0(x) = 1 for all v € [0, §].

In the mesh 9, there are curved edges which complicates the understanding of the
results. Thus, we would like to use a polygonal mesh whose edges are segments. To this end,
we use the mesh 7, to construct a polygonal mesh 7.”. As for the mesh 7, for any K € 7,
we note [C the polygon shaped by the vertices of /C. Then, we can define the mesh 7. as the
union, on all the control volumes of 7, of the control volumes /. The center of the control
volume K is the same of the one associated with the control volume kC, thus we note it x.
We define (27 = U K and Q2F = U JC the polygonal approximations of {2 and 2.

Kem KeMa
Noting that there exists C,, » > 0 independent of size(7) such that size(7;") < C,, rsize(T).
DEFINITION 4.18.
We define the operator (™ : R — R7& such that, for any ur, € R7, we have

(7 (ur,) = (G& (ury))gerr with (I (ur,) = t.
Noting ¢ the edges of the mesh 7., m, their length and dy . the distance between the

centers x, and . of two neighboring control volumes x and £. Then, the discrete H I norm
associated with the mesh 7 is defined by,

2 me
I ) = 3l — el
ceEUEX K,L

int

PROPOSITION 4.19. There exists Cs > 0 independent of size(T) such that for any
ur € R7 the following inequality holds,

2 2 2
™ (W5 (w3 e < G (lurl? ;- + ltomll? oo ) -

Proof. Using Definitions and of operators WS~ and (7, we have

2 m, 2 mec 2
CT"‘ \IJQ”U = U — U —+ 7(71 —Uu 1)
€7 (U5 (ur)Il 7p U:KMZE&M d)w:( k= Ug) gzﬁggm T, wag) U
mei,¢+1 2
+ _— (u i —U i+1)
06;1” d(l’szﬂvag»l) Ry, RL:

m, 2
L dangans) (e =, )
L

)

Now we have to express the last three sums in the right hand side of this term in function
of uy. The definitions of ux1 and ¢ given in Deﬁnition@lead up to,

ha
e = ury | = Jucllf(d(z,,T)) = 0(d(2ry, D))] < Co - |ucl,
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then noting that e < d(x, Try) and d(zc, ) < d(2c, 2r1) we have,

2
U — Upl
@17 me, | d(m it

o=LEEcqt

[te — ugl? 2
Ty Tl ) <Cr Y e, ’Cd = +Cjha [wom o o0 -
s TRL o=LEEcut K,c

In the same way, using the definitions of the centers T et Tt and noting that d(:cnz ) Tt )=
hq there exists Cr o > 0 independent of size(7") such that,

I

< O3Cranha S meg|ucl.

Z mei,iJrl

&0, F d(wngl,a?ni;l) oEZa,

We can remark that, at each boundary control volume £ € 99 corresponds n, — 1 (with

Ng = ﬁ) edges o € &, so we obtain

|u i — U i+1‘2
(418) Z mei,i+1 e e

—= e <aC20 2
oE8h, °F d(CL'RiL+1,5L'R2+1) < @05 G [t o oo

Finally, thanks to the definitions of Uni, and u,: and since < 1, by noting that for any
Ll
o€ &y, ,m, = hq there exists Cr. , . > 0 independent of size(7T) such that,

m |u, — uer|?

2
- (uR’L - URZ/) S Cr,oc,nhoz Z

c€Eu | d(xR’E ) xniﬁl) o€ de,cr

At each vertex v = |’ € V we can associate n,, edges o € &, , thus

m 2 2
4.19 7G<ul—ul) < aC U .
( ) O‘E;QL d(xR2’$R7 /) Re RE, o e | 6£m|1789ﬁ
L
Combining estimates (#.17)), @.18)) and (#.19) we can conclude the proof. O

Now we can apply the classical lemma of space translate estimates (see for instance [10,
Lemma 3.3]) to the function (7 (U9 (u,)) € R72" on the polygonal mesh 7.” (by noticing
that size(7.)) < Cy rsize(T)).

For a function u,, € R7> (respectively u,r € R7"), we denote ur, (respectively uNT(;) the
extension by 0 of ur, (respectively u,r) outside of €2, (respectively (27).

THEOREM 4.20 (Estimation of space translates).

There exists Cy > 0 independent of size(T) such that for any u, € R” and for any n € R?
the following estimate holds,

&7 o8 ) C+m = (@ )|,

. 2 2
< Caln| (1] + size(T)) (Jurl] ;- + [tomlF oa ) -

Let us remark that the estimate of space translates uses the extension operator (7 (U9« (u))
defined on the approximate polygonal domain 2”. However, to prove the convergence theo-
rem we would like to deal with the original mesh 7 of the original domain €2 and the exten-
sion operator W (u,) defined on this domain. So we have to begin by proving that when
the mesh size tends to 0 these operators converge towards the same limit.
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PROPOSITION 4.21. There exists C1g > 0 independent of size(T) such that for any
Sunction ur € R7 the following identity holds for a small enough size(T),

|95 )~ T 0=

. 2 2
) < qulze(T)z (|UT|1,T + ”UamHLamz) :

Proof.  For any control volume IC € 7,, we note 1, the indicator function of the control
volume K and 1, those of the control volume K. Then, for a small enough size(7"), for any
wr, € R7= we have,

wr, = (7 (wr)

S owele = 30 wele

KETa KETa

(Lene(we = we) + Leng(we — wi))
~e€0ke |

+ Z w,c(llcmt _1£Emt

«
o€l

where ket = {z € (Q"UQL):z € kandx ¢ k} and k" = {z € (QU QL) : z €
kand x ¢ k}.
The sets which appear in the indicator functions are pairwise disjoint thus we can write,

2

= Y (Lerz — L) |we —wel* + 3 (Lgenr — Liewr )2 wie]?.
cEEUEX cEEX

int ext

’{U\T: - Zg(wn)

Noting that for any w,, € R7«,

2

—_— 2

-/ [T (@)~ O (wr,) ()] da
QUOQLUQE

wr, — (7 (wr,)

L?(R?)

By noting that for any o = x|c € €N EY, (respectively o € £2,,) theset k U £and K U £

mn
(respectively k=t and £**) are disjoint we have,

2
W, — ¢ (wr,)

. = Z (m,cﬁ£+m£m£)‘w;c—w5|2+ Z (mlcemt+m&ezt)|w,c|2.
L*(R)  scéoeg, scel

ext

Thus there exists a constant C,  (reg(7)) > 0 independent of size(T) such that,

__ 2
‘U’Ta — (7o (wr,,)

SCna(reg(T))Size(T)z(IICT“ (wr ) e + 3 SiZG(T)IwKIQ)-

o
Uegezt

Setting wr, = U9 (u,) and noticing thatif C € 7" suchthato = ¢ (¢ x {a}) € £

axt mg}c 1)
we have

lwe| = W (ur)| =

we (Awrpe, 1)| < Jucl,

we obtain,

—_— — 2
W9 (ur) = (o (U5 (ur))| <Cl, (reg(T))size(T)? (€7 (U5 (ur))I rp + tomll§ oo )
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and Proposition f.19| conclude the proof. O
. . . (m)

PROPOSITION 4.22. Let (Ur(m)),,cn be a sequence of discrete functions in R” " as-

sociated with a sequence of discretizations such that the mesh size size(T ™)) tends to 0. We

assume that the regularity reg(T(m)) is bounded and that there exists M > 0 independent of
size(T(™) satisfying

(420) ||u7.(m) ||1,7,(m) S M and ||uagﬂ(m) Hl,azm(m) S M, vYm Z 0.

Then, we can extract a subsequence, still referred to as (u.,.(m)) men Jor simplicity, which is
strongly converging in L*(S)) towards a certain function u € H'(§) whose trace belongs
to HY (L) and such that (Wyeom)),mey is Strongly converging in L*(T) towards .. Fur-
thermore up to a subsequence, (N7 U(m)),, cy Weakly converges towards Vu in L?(Q) and
(V™ U (m) ) eny Weakly converges towards Vv, in L*(T).

In our study, the functions are also time-dependent thus we give below an adapted version
for these functions.

PROPOSITION 4.23. Let ((uﬁt)(m)> N be a sequence of functions associated with a

m

sequence of discretizations such that the time step and the mesh size, At and size(T (™))
respectively, tend to 0 and such that the regularity rcg(T(m)) is bounded. We assume that
there exists a positive constant M such that,

@20 sup @™ < Mand swp (i)™
n<N(m) 1,7(m n<Nm)

<M, Vm>0.

1,0m(™) —

Moreover, we assume that there exists a function u € L*((0,T) x R?) satisfying (up to a
subsequence) the following convergence,

4.22) T (U5 ((u3)™)) ——— @in L*((0,T) x R?).

m——+o0

We denote by u the restriction of U to 0, thenu € L*(0,T; H'(?)) and u,. € L*(0,T; H'(T)).
Furthermore the following convergences hold (up to a subsequence),

@)™ ——w in (0,1)xQ),  (uga)"™ ———ur in L((0,T) x T),
(VTuf_t)(m) Vu weakly in L*((0,T) x ),

m——+oo

(V2™ ugs) ™

Vi weakly in L*((0,T) x T).

m——00

Proof of Proposition We split this proof into several steps and we notice that all the
convergences below occur up to a subsequence.
e We prove that the sequence (U2 (u,m )),, ey Strongly converges in L*(R?) to-
wards a certain u € H'(R?).
Theorem #.20] and assumption (#.20) imply that for all m € N,

67 (s i) ) = T (08 oD

< 2M>Cln| (Inl + size(T)) .

(4.23)

Moreover Proposition[d.21] gives,

— 2
[ w5 )| o, <2CHTE(T)? (Jurcn

L2 (R?

2
1,00m

2
117— + ||u89]l("”)

—_— 2
) H\II%’ (uﬂm))‘

L2(R?)
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Furthermore, using Definition of the operator ¥,

. 2
Oa
H\IIT (UT(m))‘ L2(R?)

< Mo, [[urom ||§7m(m) + 16 Ca s [[Ugamm ||§73m(m) ;

and thus assumption (4.20) gives that (CAT: (T (U (m) ))) . is bounded in L?(IR?).
Then, thanks to the Kolmogorov theorem we can extract a subsequence, still referred
to as (CTa (U (uT(m))) _ for simplicity, and find u € L?(R?) such that

(4.24) CTo (U2 (ty(m))) ———> @ in L*(R?).

m——+oo

Passing to the limit in equation (#.23), convergence [@.24) gives that u € H'(R?).
According to Proposition .21 and assumption (#.20) we have,

(4.25) ‘ﬁ (T2 (1 (m)) — T (uﬂm))( —— 0 in L(B?),
thus setting © = u lo WE obtain, by restriction to 2,

Uypm) —— win L*(Q) and u € HY(Q).
m—+00

Let us prove that the subsequence (t,y,(m) ),y Strongly converges in L*(T') to-
wards v = Tr (u).

Let Qa), = {z € Q°,d(z,I") < §} then Definition of U= and especially the
fact that & = 1 on [0, §] implies,

(\Ilga (uT(m,))) (1‘) = Uggn(m) (]P)pl‘), Vo € Qa/z.

Hence for any 2. € T, s € [0, §],

(4.26) U (1) = (V52 (1)) (r + s (1)
and for any . € I' we thus have,

2

%
gt (@) = 2 |7 (08 () (o -+ s ).
0

For any . € I" we define,

2 (% -
w(zr) = 04/0 u(zr + sti(xr))ds.

By the change of variables 2 = 21 + sfi(z) on 2./, we obtain,

/F [w(@r) = Upe(m) (xr)|2 dor < Coxllt = U7 (urem) ||2L2(Qa/2)'

Thanks to convergences (4.24) and @.23) we have U2 (u, (m)) —— U in

m——+o00
L?(R?), thus we can deduce

a

(4.27) Uggp(m) ———> W = g/2 (. + sii(.))ds in L*(T).
0

m——+o0 e
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Using the change of variables & = . + sfi(xr) on Qa/, and then equality (4.26)
together with convergence (@.27) we obtain,

m——+oo

|10 () (@)~ w(Bea) o

Qa/Z

Finally, recalling that U2 (., (m) ) — @ in L?(R?) we deduce
m—+0o0

(4.28) w(Prz) = u(x), Ve Qap.

Therefore, the function w is the trace of & on d(Q¢) = 9N and u € H'(R?) thereby
it is also the trace of u. Thus convergence ([@.27) implies

Ugan(m) ————Tr (u) in L*(T).
Now we have to verify that u,, = Tr (u) € H'(T'). Thanks to equality [#.28) we
can observe that for any = € Qa,, u(z) does not depend on d(x, T'), then we have
Viu(z) = Vrd(m,mﬁ(m), vV € Qay,.
We can deduce that for any z € Qa, :

~ 1
Vile) = T am Dnmy) e e

namely for any x. € I" and for any s € [0, §] we can write,

Viur(zr) = (1 — sk(zr)) Vu(ay + sii(zr)).

Integrating this equation for s € [0, §] and for any x € I', then using the change of

variables x = xr + sfi(2r) on (2., we obtain,

2 !
rr T 2 F<7 1 o / U 2 .
/F|v (o) dae < = (14 1)) Vi) de

a/2

Since u € H'(R?) we conclude that Tr (u) € H(T).

Since (U(m)),,ey converges in L?(€2) towards v € H'(Q), Proposition to-
gether with the H'(Q2)-bound [@20) gives that (V. (m) ),, .y Weakly converges in
L?(Q) towards Vu.

Let us prove that the subsequence (V2™ .y, (m) ),,cn Weakly converges in L*(T)
towards Vi u, .

We consider a vector field ¢ : I' — R? of C* class and tangent to the hypersurface
I'. The sequence (Uyo(m) ),y converges in L?(I') towards u,. € H*(T'), thus by
noting div. the tangential divergence operator we have,

(4.29) /Fuam(m) (x)divpp(x)do(x) —— — | Viur(z) - ¢(x)do(x).

m——+o0 r

Furthermore, thanks to the Stokes formula

/ Uyt (2)dive $(z)do () = — / VO () - 7 () do (2)
I r

+ E d£7ﬁlvg?ﬁuagn(m)Rf

v=CL|L eV
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where

R = [ o) Fahdo() - o(v) - 7).

dﬁ’ﬁ/ cc’
Moreover, we have m., ., —dz o = O (m,,, (m, +m,:)), then since ¢ is C>,
RS < OVl oo ry size(T), Vv eV.

Furthermore, H' (T")-bound @20) gives that (V2™ g (m) )., <y is bounded in L?(T")

/ Vo Uy oy (2) () - F(2)do(x) = — / U () (2)divrg(z) + Oy (size(T)) ,
r r

and thanks to equation (@.29),

m——+0o0

[ 6@ P i (@7 s [ 0(a) Trtin(a)da
r

O
Let us remark that in Proposition we have to add assumption (#22) which gives the L2-
strong convergence of a subsequence ((uﬁt)(m)>m N Indeed, we consider time-dependent
function so we have to add an estimate of time translates (that we are going to do in the sequel)
to obtain this convergence. Thus, assumption (.22)) allows to obtain convergence (@.24).
We have given above the proof of Proposition [#.22] where the functions are supposed to be
time-independent but we can remark that once the convergence (@.24) is obtained the sequel
of the proof is almost the same.

DEFINITION 4.24 (Extension operator for time-dependent functions).

We define the extension operator (1> for time-dependent functions using operators W«
and ("™ introduced in Definitions .17 and[d-18|as follows,

{C“ (W2 (uz)) (t,.) ift €0, 7],

0 otherwise.

Ta

7" (uz") (8, x) =

By the sake of simplicity we use the notation uﬁ (t,.)= (T (T2 (u2h)) (¢, .).

LEMMA 4.25 ([14, Lemma A.1]). Let (t")o<n<n such that t® = 0, t" = nAt, tN =T,
T is a positive real number and X7} : R — R is the function defined as follows

(4.30)

lift<t"<t+r
Xp(t) = . ’
0 otherwise.

Then, for any family of real numbers (,)1<n<n and for any real number t, the following
identity holds

|15 co]a=r < s

As we have just seen, the estimation of space translates (see Theorem [4.20) does not use
that ¢4 is solution to Problem (3.2). In fact this estimate is true for any u, € R” and to
obtain the convergence of approximate solutions we have to get the discrete H'-bounds on
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the solution and on its trace (see assumption (@.20) of Proposition[#.22). Thus, if we consider
another problem but whose discrete solutions also satisfy discrete H'-bounds {#.20), we can
apply the previous results.

On the contrary to obtain estimation of time translates, we have to use that the couple
(c5*, u2*) is solution to the discrete Problem (3.2) and this estimate is specific to the studied
system.

Now we give the estimate of time translates of the discrete order parameter which allows
us to obtain the strong compactness that we lacked in Proposition 23]

Thanks to the particular shape of the discrete extension operator which uses the trace of
discrete solutions, the coupling between the domain and its boundary enable to obtain simul-
taneously the estimate both in {2 and on I'.

THEOREM 4.26 (Estimation of time translates).

We assume that the assumptions of Theorem are satisfied so that there exists a solution
(c2', p%) to discrete Problem (3.2) for all N € N and for all admissible mesh T.
Let T > 0, then there exists C11 > 0 independent of T, At and T such that

t o t 2
167 (e5) (- +75) = G () 2 (rxme) < G-

We adapt the proof of Theorem A.2 in [[14].
Proof.
Let t € R. Using Definition of (7 and definition @.30) of x”,
T (8 (7, — G (3 (1) =k p — Y ()
431) N
+ X0 (G =)

For any s € R, we define

—2 if s < 0;
(4.32) n(s) = { the index such that t"(*) < s <"+ if 0 < s <V,
N if s > V.
Let ng(t) and nq (t) be given by ng(t) = n(t) and n (t) = n(t+ 7). We adopt the convention
c;' = N1 = 0. With this notation, equation (#.31) is equivalent to
(4.33) TS (7)) = (5 () = ! — o,

Gathering @31)) and @.33)), we write

(4.34) / (CF () (t+7,2) — (7 (e2Y) (t,2)))?dx = Ty (t) + To(t) + T(t)
R2

where:

TP

o

Ti(t) =x2(1) / (ens Ot = ehs Ot el pda = TP (1) + TP (1);
QruQl «
n=1

N-1 n n n P
Rl =2 w0 /QP QF <CT<1€°(t)+1 N CT}(tHl) (CTEI - Cif) dz := T2QP (t) + nga (t);
U [e3

T5(t) = — N (#) / (Ciﬁtm _ C:L_(;)(t)+1> eNpdz == T9" (t) + TS (1),
QruQl

% o
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We begin with the terms TQP( t) that concern contributions of 2%

Since x2(t) is equal to 1 on [—, 0] and 0 elsewhere, and since cho(®)+1

we have

/T{’P t)dt = // (em Ot — @) el dadt = // e Ol qadt,
-7 JQF —7 JQF

thus the definition of the discrete norm ||.||, ,, implies

= ( for any negative ¢,

P 2
(4.35) /RTlg (t)dt S T ||C$1tHLOO(O,T§”-”O,Sm) .
Similar arguments with x~ and cnl(t) give,
obf At(12
(4.36) /RT3 () dt < 7 llear 1z 0,750 10.0m) -
Regarding the term 75", setting v, = ¢* (OF1 _ ono(FL s test function in equation (3:24),

then thanks to the Cauchy-Schwarz inequality, we have

P N—-1 n
T3 () < 20 65 oo iy ) X, X7 (AW

Thanks to Lemma[4.25]and the Cauchy-Schwarz inequality we finally obtain,
P
@sn [ T3 < T o 1 iz

P
Now, we have to study the terms 73> (¢) concerning the contributions in Qr.
The same arguments that for the term 73" (¢) and Definition of ¢y, give

0
2
/ T ()dt = > mgies P elo (d(agy, 1)) dt
R -7 R" eEMe £

where MR, is the Lebesgue measure of the quadrilateral whose vertices are those of the

control volume R%. Noticing that § < 1 and that there exists Cr,a,x > 0 independent of
size(T') such that 3772 mg: = Cr o xMMe,, We obtain

-
(4.38) /lR Ty= (8)dt < CraT leoill7o (0 74110 o) -

A similar reasoning gets:

P + 2
(4.39) /RT;“ ()dt < CroiaT a1z (0,75 10.00n) -

P
As regards to the term T2Q « thanks to Definition of cyn,, we have

ob

N—1

n 1 1 1 n n

Ty (t) < Crp,a Zl X (t) ezgm Me, (CZ (t+1 CZO(tH ) (C£+1 . Cc)'
n= C
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Setting u, = ¢t T _ 70+ 4 test function in equations (3:26) and (3:2d), we have

P At P P P P P
T35 (1) < oo e (Ase T35 (0 + ASTSS (0 + 45 755 (0 + T35 (0 + 4,35 1)
where
T () == ¥ Ol ™ = i rom,
Tzn,g (t)=- X_:l X7 (1) [[C7TH_17 CTl(t)+1 - CTO(t)+1ﬂ1,T7

P N-1 n n oon n 1 n 1
TG0 =— 3 XMt S mepdl(ch,cpth) (et O = @)
n=1 LEOM

m

P N—-1 ) X
T35 (1) = 21 X7 (t) (Mgfl,cf};(tH _ o+ ) 7
n=

N-1
and T75 (1) = — () T med® (e, it (O - 0T,

KeEM

Applying the Cauchy-Schwarz inequality, we obtain
oP N—1
T3 () < 2|lcgamll oo 0,7:).11 pon) n; X7 (1) {antzlh,@m )
oP N—1
Ty5 ) < 2|2 10,7511 1) n; X7 (1) {C?+1|1,r’

P N-1
and TZQ,Z (t) <2 HQ%:”L"C(O,T;H.HOYM) 21 X (1) Hﬂ&“”o,m-
Using Sobolev inequality @3) on T, for any n € {1,..., N} we have

”Cgsm ||L°°(1") < q%] ”ngm ” 1,0
thus using bounds on the discrete solutions ([.7) and the Cauchy-Schwarz inequality, the term
P
T; 5 satisfies

1

05 At N1 n
T2,3 (t) <2/ My B(gflC%XMg) |Cam||L°°(0,T;H-Ho,amz) ngl X7 (1)

Moreover, thanks to polynomial growth assumption (@.)), the Holder inequality and Poincaré-
Sobolev inequality #.4),

P N—-1
T;% (t) <2Cy/ M, Hcgnt||L°°(0,T;\|.|\0m) 21 X7 (t)
D || At R n|p—1 n+1||p—1
+2Cy (g 7 HL""(O,T;H.HLT) n; X7 (1) (HCTHI,T + HCT ||1,T ) .

Integrating the terms T; ‘.F: (t) over the time and using Lemma and the Holder inequality,
we obtain

-
(4.40) At/ T4 (t) <2VTr ll€omll 2o (0,731.11 pon) 1€om 11 20,751, 11 omm) -
R
-
(4.41) At/RT;‘E (t) <2VTr ez 1 zoe 0,751 Ne7 N 20,3000 7 5

4.42 At | TS (8) < 2¢/M.Tr max
(442 /RZ’?’()_ " B0.GgMe)

f:

|C§§n HL°° 0,75]|1l0,09m) *
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.
(443 At/RT;Z (8) < 2VTT [l o= o.140- ooy 1480 | 220,740 100

,
At / T (1) <207/ AT (163 e 0241 o o)

1 1
+4CGET> x> 0,201, 17 Wze 0,510, -

Gathering the equations (4.34)-(4.44) and using bounds on the solutions complete the
proof.

(4.44) and

O

4.3.5. Proof of the convergence result. We are now in position to complete the proof
of Theorem[d.6] We split the proof in three steps. First, we use the previous results to prove
the existence of the limits. Then, we study the passage to the limit for the time evolution
equation (T.Td) in © which is easier because there are no non-linear terms. Finally, we focus
on the passage to the limit for the equation on the chemical potential (I.1b) using the equation
on I given by the dynamic boundary condition (T:4).

Step 1: Existence of the limits

Using the estimate of space and time translates (see Theorems [#.20] and £.26)) and the
bounds on the discrete solutions (see Proposition @), there exists M > 0 independent of
size(T), At, ) and 7 such that,

t - £\ 112 .

1677 (e27) (o ) = G (212 (czy < Ml (In] + size(T))
2

and  [[¢77 () (4 7,.) = G (2|2 (e < MT.

Moreover, Definition of the extension operator (7 and Proposition associated with
the bounds on the discrete solutions imply

o2
HCF (c7 )HL2(R><R2) <M.

Thus, we can apply the Kolmogorov theorem and there exists a function ¢ € L2((0,T) x R?)
such that, up to a subsequence, the following convergence holds

7 (2 ——— ¢ in L*((0,T) x R?).

m—+oo

Thanks to Proposition}4.23| the subsequence ((cﬁt)(m)> o strongly converges in L?(0, T; L*(Q))
m
towards the function ¢ = ¢, € L*(0,7, H'(Q)) and the subsequence ((CA" )(7'0)

oM

meN
strongly converges in L2(0,7; L*(T)) towards ¢, = Trc € L*°(0,T; H(T')). Further-

more, the subsequence ((VTcﬁt)(m)) _y Weakly converges towards Ve in L?(0,T; L*(Q))
and ((Vﬁ”ﬂcggn)(m)) .y Weakly converges towards Vrc,r in L2(0,T; L*(T1)).

Applying Proposition [4.13| together with Proposition 4.11] the sequence ((uﬁt)(m))

meN
weakly converges, up to a subsequence, in L?(0, T, L(£2)) (¢ > 1) towards a certain p €

L2(0,T, H'()).

In the sequel, for enhanced readability, the superscript (™ will be omitted.
Step 2: Convergence for the equation (.3)

Let ¢ € C>Y(R x R?) such that ¢(7,.) = 0and V¢ - & = 0 on (0,7T) x T'. Since  is
an open subset of R? with a C®!-continuous boundary, the set of such function ¢ is dense for
the norm L2(0, T, H*(£2)) in the set of function ¢ € C2(R x R2) satisfying ¢(T,.) = 0 (see
19D.
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Multiplying equation (3:2a) by ¢% := ¢(¢", z,) and summing up over the interior con-
trol volumes and the times steps, we get

N—-1 un—i—l M”+1
(4.45) > el mﬁ(cfé'|r1 —c)+ AL, Y m, <¥> =0.

n=0 xeM Ueg,iélt dic,z:

The first term reads

N—-1
Ti=— Y meclob+ 5 3 myck (QSZ - QSZH) + 5 me oY Y,
KeEM n=1 kxeM KEM ~~
=¢(T,zxc)=0

and using a similar reasoning to this given for example in [[14} Theorem 4.2], we can prove

T
(4.46) Ty ——— — | P (2)¢(0,2)dx — / / c(t, x)0;¢(t, x)dxdt.
At,size(T)—0 Q 0 Q

Reordering the summations, the second term of {#.43)) can be written,

¢n+1 _ ¢n+1
T, = FbZAtZ nHl mc,(ndiﬁ).
K,L

KEM cegt

Since V¢ - i = 0on (0,T) x €, for any ¢t € R the Stokes formula gives

/}C Aot r)de = [ Vo(t,a)-fdo(e) = 5 [ Vé(t,z) - fixgdo(r).

oK ccEt Jo

Then,
/ / Ap(t, z)ps(t, x)dx
4.47)
+Fb Z At Z (NZ—H n+1)Ran+1
n=0 o=K|LEEint
where

tn+1

(4.48) RY .\ = L/ /Vqé t,x) Tixgdo(z)dt —

¢n+1 _ ¢2+1
d)c C

3

The regularity of the function ¢ and the bounds on the discrete solutions imply that the sec-
ond term of @.47) tends to 0. Moreover, p4* weakly converges (up to a subsequence) in
L2(0,T; L*(Q2)) towards pp € L%(0,T; H(2)) and V¢ - & = 0 on (0,7 x €, thus

T
(4.49) Ty ———mm— FI,/ / Vo(t,x) - Vu(t, z)dzdt.
At,size(T)—0 0 Q

Finally, since 71 + 75 = 0 the convergences (#.46) and (.49) allow to obtain the follow-
ing equality for any ¢ € C*!(R x R?) such that ¢(7,.) = 0 and V¢ - i@ = O on (0,7) x .

(4.50) / / c(t,x)0p(t, x) + TVo(t,x) - Vu(t,x)) dedt = Ac%x)qﬁ((),:r)daz.
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By density, we obtain the equality (#@30) for any function ¢ € C?(R x R?) satisfying
o(T,.) = 0.

Step 3: Convergence for the equation (4.6)

Let ¢ € C?(R x R?) such that ¢(7,.) = 0. First, multiplying equation (3:2B) by At¢r+!
and summing up over all interior control volume K € 90t and over all time interval [t", t"1].
Secondly, multiplying equation by ¢t = ¢(t"*!,x.) and summing up over all
boundary control volumes £ € 991 and over all time interval. Then, summing the two
identities we get

4.51) A T +T2+Abe3+AatT4+AAFT5+AfST6 =0

CnJrl _ Cn+1 Cn+1 _ Cn+1
Z ¢Z+1 z m, ( K y L ) + Z Mo, ( K y L )
KeM UEE}CM K,L aegl‘é“ K,L

cn+1 _ CQ+1 ]
)

where

N-1
T =3 At
n=0

n+1 L
+ Z c Me, d
o=LEEcxt K,L

KeM n=0 o=LEEcrzt vEVL

N1 n+1l, n+1 N1 n+1 C7LL+1 B szl
L=— 3 At 3 medc e, To= 3 At 5 6 S\ T )
n= c,c’

N-1 N—-1
Ti= 3 At S megr (@), To= A Y me gt (e,

reM n=0 o=LEEcxt
T _ N1 n+1 n+l _ n
4= Z Z meL¢ ( Ce cﬁ) .

n=0 oc=£EEcz¢t

We begin by the term 7. By reordering the summations and noting that for any /C € 90t
and forany ¢t € R,

/ Ap(t,x)dr — > /Vd)(t,ﬂi) Mo (z)do(z) =
K €€k Jo

/ / APt x)dadt —l—/ / ComVo(t,x) - f(z)do(x)dt

(4.52) FY ALY m (-t RS,

n=0 o=K|LEEint

=t +1 _ n+l\ po
+ Z At Z meL (CQ 77 )Ra' n+1

n=0 o=LEEcyt

we get

where Ri,n 41 is defined by [@#48).

Using the regularity of the function ¢ and the bounds on the discrete solutions the two last
terms of the right hand side of (@[) tend to 0. Furthermore, ¢3! converges in L2(0, T'; L*(12))
towards ¢ € L2(0,T; H(£2)) and ¢4, converges towards ¢, in L2(0,7T; L?(T")), so

T
(4.53) T — / / Ve(t, z) - Vo(t, x)dzdt.
At,size(T)—=0 J Q

Let us now turn to the term 75,

/ o(t, x)psidedt + Z At m,cu,c+1R¢
Q

reM



31

where

tn+1
Ath / /gbtxdxdt p(t" T ).

Since p4! weakly converges in L?(0,T; L?(2)) towards x4 and noting that the second term
of the rlght hand side of 75 tends to 0, we get

(4.54) R?, =

(4.55) T —> / / o(t, x)p(t, x)dzdt.
At,size(T)—

Considering now the term T3. Recalling that for any z € R, d/* (x,x) = f/(z) thus

N-1
= > At 3 mﬁqbz“ (df”(cz,cQH) —df”(cZH,cZH))
n=0 KeEM

N-1
+ 3 At 3 med T (.

n=0 KeEM

Then, the first term in the right hand side of 75 satisfies
~ N2t 1 +1 p—2 +1(p—2
(T51] < Cop Yo At 5= m [ g5 | [t — 2| (14 [eg "2 + et )
n=0 KeEMm
because the assumption @.I)) gives

d’ (a,b) —dfb(a,a)‘ < ( zttpl] ‘D dfb ;) (sa+(1— s)b)‘) |b—al

<Gy (1 +alP~2 + sup |sa+ (1— s)b|p2> |b — al
s€[0,1]

< Gy (L4 a2 + b =2) |b —al.

Hence, thanks to the Holder inequality, we get

T51] < Cy z At (|5 g o e

)

1ty e P,

»p,M ﬁHO,p,Dﬂ ’ 0,2
v p—2°

thus thanks to Poincaré-Sobolev inequality (#-4) and bounds on the solutions (@.7) the term
T3,; tends to 0 when the time step tends to 0.
With regard to the second term in the right hand side of 75, we have

T327/ /gbtxfb o )dxdt — ZlAt > mefilcp™RY
n=0 KeM
where R{ ,, is defined by the relation @#33).
We begin with the first term in the right hand side of T3 5.
On one hand, for any r > 1, thanks to Poincaré-Sobolev inequality (IE[) and bounds on the
solutions (@.7), we have

2 2 2 2 2
les 20,30 o,y < G W20 2000 1) < GET M-

Then, ¢3! weakly converges (up to a subsequence) towards a certain ¢ in L?(0,T; L .
But, we know that ¢4 strongly converges in L%(0, T'; L?(2)) towards ¢ € L2(0,T; H*(Q)).
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Thus, ¢ = c and ¢! weakly converges (up to a subsequence) in L?(0, T'; L™ (2)) towards c.
On the other hand, for any uq, € R™ and for any s €0, 1] the Holder inequality gives
s 1-s

1
with — = — + ,
iy with =2

[ull ey < lullZo g, |

L7 (@)
and with p = 2, for any ¢ € R we have
”CnAﬁt(t’ ) - C(t’ )‘ LT () < HcaAztt(t? ) - C(tv ')”iz(n) ||C$;(t7 ) ( )”L‘I(Q)

and thus,

2(1-s)

2
o~ 2 @) < llea = dllzzomaz@) lea = lfeg iy -

e
Since, ¢! strongly converges in L2(0,T; L?(£2)) towards ¢, we have

At 2
- "oy —————
ez C”LQ(O’T;L ) At size(T)—0

and thus together with the weak convergence of ¢3! in L?(0, T'; L"(£2)), we conclude that ¢!
strongly converges in L2(0,T'; L"(£2)) towards c. Thus, up to a subsequence we have

(4.56) {| At((t ,x) = c(t,x) aein (0,T) x Q,
c

t,x)] < S(t,x) ae. in (0,T) x Q with S € L*(0,T; L"(Q)).
Then, thanks to polynomial growth assumption (L.6),
|f; (e (t,2)) o(t, )| < Cy (14 [S(t,2)[P7Y) |o(t, )] € L0, T;9).

Thus, using the dominated convergence theorem and relation (@.36)), we obtain

At,size(

/ /fb ) o(t, x)dadt —>/ /fb (t,x)) o(t, x)dxdt.

Owing to polynomial growth assumption (T.6), Sobolev-Poincaré inequality (#.4) and bounds
on the solutions (#.7), the second term in the right hand side of T’ 5 tends to 0, thus

T
(457) Ts m} A /be (C(t7l')) gb(t,x)dxdt

Let us now study the convergence of the term 7.

Z Me, Qbr + Z Z me 7 (¢F — o) + Z Mme, ¢y cr.
—~—

LEOM n=1 £€od LEOM
¢(Tyxc)=0

As for the term 77 in the step 2, we use a similar reasoning to this given in [14, Theorem 4.2]
to obtain,

(458) Ty —— — / /c‘F t,x)0p(t, x)do(x)dt — / Tr < (2)¢(0, z)do ().

At,size(T)—0

Now, we focus on the term T5. Reordering the terms and noting that for any £ € 99N,

/ Arg(t,z)do(z) = > Vep(t,v) - T, ., VI €R;
L

veEV,
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where T, . = n T is the unit tangent vector going from £ to £’; we have
& +1 _ n+1
n
= [ [t nowa S a5 ) S i
n=0 v=C|L'ev

where,

1 tn+1 d)nfl _ ¢7l+1
Rv n+l T OAY /t" <vr¢(tav)nva - # dt.

Using the regularity of the function ¢ and bounds on the solutions the second term of
the right hand side of T} tends to 0. Then, since ¢4, converges in L?(0,7; L?(T")) towards
ar € L2(0,T; HY(T)), we finally obtain

6‘7)1

(4.59) Ts —>/ /Vrc,F (t,z) - Vio(t,z)do(x)dt

At,size(

To finish, as regards the term 7§, a similar reasoning that for the term 75 implies

T
(4.60) s [ [ £t ot oo @ar

Gathering the relation (¢.5T)) and the convergences @.53), @.53), @.37), @.38), (.39)
and (@.60), we conclude the proof.

5. Numerical experiments. In this section, we present some numerical experiments.
In order to validate the scheme, we first give numerical error estimates. Then, we present
qualitative results to compare the scheme (3.2)) with another scheme used in the literature.
In all tests below, in order to ensure orthogonality conditions for the mesh 7, we take a
Delaunay triangulation of the domain €2 and for any /C € 9, z is the circumcenter of k£ and
for any £ € 09, y,. is the middle of the chord e.. We choose the bulk potential equal to the
double-well function f,(c) = (1 — ¢)? and the corresponding semi-implicit discretization
is given by

T+y 1
o(ay) = £, (52) - 30—z )@ —y)?
Moreover, let us remark that at each time step, we have to use a Newton method (because of

non-linear terms). However, its convergence is achieved in a few inner iterations.

5.1. Numerical error estimates. In this subsection, we compare the discrete solution
obtained with the finite-volume scheme with the exact solution. However, there is no explicit
non trivial solution, thus we have to modify the Cahn-Hilliard equation (I.7). Indeed, we
have to build an exact solution and to add a source term g, in equation (I.Ta)), another one g
in equation ((I.4) and the chemical potential p have to satisfy a non homogeneous Neumann
boundary condition.

The domain €2 is the unit circle, thus we can easily obtain the exact coordinates of the centers
x.. For a fixed time t" > 0, for any K € 9 (respectively for any £L € 09) we can
compare the exact solution ¢(¢", x ) (respectively ¢(¢™, x.)) with the approximate solution
¢ (respectively ). We choose the exact solution c(t, (z,y)) = 3(1 + tanh(5(z 4 t)) and
we plot, at time 7" = N At = 0.5, the following norms

|eZ:|1,T |e<99ﬂ|1,89n

‘C;|1,T

el 2 ll€omll 20,

[cd HL (Q)7 ez

) )

HL 2(r) |Cgt.m|1,asm
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where el = (el el )and L = (cL,cl,,) with
eg;i = (C(T’ $,<) B C;ZCV)}CGDJ"I ) egm = (C(T’ xﬁ) B Cjﬁv)ceamz
and  co = (¢(T, 7)) com Com = (c(T, 7)) ccom

Then, we plot (see Fig.[5.T]and[5.2)) these relative errors

e when the mesh size size(7) going to 0 and fixed time step;

e when the time step At tends to 0 and fixed mesh size.
We choose the following parameters: ¢ = 0.5, I’y = o, = 0.1 for the bulk and I', = 10,
o, = 5 for the surface and f,(c) = f.(¢) = ¢*(1 — ¢)? for the Cahn-Hilliard potentials.
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Fig. 5.1: Relative errors in L?-norms

As expected, in each case, we observe the first order convergence in time above a certain
threshold which depends on the mesh size (see Fig.[5.1b6}[5.1d][5.2b]and[5.2d). As regards the
space convergence, above a certain threshold depending on the time step we observe:

e The second order convergence in discrete L2-norm both in  and on T" (see Fig.
et[5.1c). This super-convergence phenomenon is not surprising because it is also
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Fig. 5.2: Relative errors in H!-discrete seminorms

known for the Laplace problem. From a theoretical point of view this second order
convergence remains an open problem.

e When the mesh size is refined, a first order convergence in discrete H L_norm in Q
(see Fig.[5.24) which is the expected result.

e A second order convergence in discrete H'-norm on I (see Fig. . We expect a
first order convergence but we observe this super-convergence because of the partic-
ular geometry of the boundary mesh.

5.2. Spinodal decomposition. In this subsection, we observe the influence of the dy-
namic boundary conditions on the phase separation dynamics. The results below are obtained
with a smooth curved domain without particular geometry with a mesh size size(7) ~ 0.065
and a fixed random initial concentration with a fluctuation between 0.49 and 0.51. Let us
remark that for all the test cases below, the initial data is exactly the same.

5.2.1. Influence of the surface diffusion term. We begin by observing the influence
of the Laplace-Beltrami operator on the phase separation dynamics. To this end, we choose
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the following fixed parameters: I', = 0.15, o, = 0.006, ¢ = 0.07 and I', = 10 and we vary
the surface capillarity coefficient o, = 0 or o, = 5. To compare the results we also consider
the case where the order parameter satisfies the homogeneous Neumann boundary condition.
Let us notice that in the previous analysis we always assume that o, > 0 and thus from a
theoretical point of view the case o, = 0 has not been dealt with. We choose a constant time

step At = 1072 and we plot:

e The solution at the time ¢ = 0.09 in € for the three different boundary conditions.
The pure phase ¢ = 1 appears in red, the pure phase ¢ = 0 in blue and the homoge-
neous concentration ¢ = 0.5 is in white.

e The trace of the solution at the same time in function of the curvilinear abscissa by
starting from a given point of I" and running along the boundary in the anticlockwise.

Trace of the solution Trace of the solution

Trace of the solution

(e) o5 = 5, Solution in ©

1 2 3 4 5 6 7 8
Curvilinear abscissa

(b) Neumann B.C., Trace of the solution

1 2 3 4
Curvilinear abscissa

(d) os = 0, Trace of the solution

Curvilinear abscissa

(f) o5 = 5, Trace of the solution

Fig. 5.3: Solution at time £ = 0.09

We observe that several behaviours appear:

o the phase separation is faster with the dynamic boundary conditions than with the

Neumann boundary conditions;

e particular structures whose length scale depends on o,: these structure are larger
than those which appear in the bulk when o, > 0 and shorter than those when
o, = 0 (which is in accordance with [12]));

e when o, = 0 the trace of the solution quickly oscillates between the values 0 and 1
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(approximatively) while for o, = 5 the value of the trace is much more regular since
larger scale structures appear.
e we see emerging patterns which are organized parallel to the boundary.

5.2.2. Preferential attraction by the wall. Here, we consider the case where the physi-
cal properties of the wall are such that one of the two components is attracted preferentially by
the wall. To model this phenomenon, we consider the surface potential f,(c) = %¢*— hs—;g—sc
with g5 > 0, thus

e when hy = 0 the minimum of f, isin ¢ = % thus the wall has the same behaviour
with respect to the two components;
e when hy > 0 the minimum of f, is in ¢ = ’“T;ﬁ > % thus the wall attracts
preferentially the phase ¢ = 1; ’
e conversely when hy; < 0 the minimum of f, is in ¢ = }“2—';95 < % thus the wall
attracts preferentially the phase ¢ = 0.
Let us notice that the semi-implicit discretization of this surface potential is written

@ (o) = 11 (F32).
2
We choose the following fixed parameters: I', = 0.3, o, = 0.008, ¢ = 0.1, o, = 0.1,
I', = 10 and g; = 1 and we vary the coefficient hs. These results are given at time ¢t = 0.25
with a time step At = 1073,

Trace of the solution
S o
SN
%
Il Il

0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 [§ 7 8

Curvilinear abscissa

(b)hs =0
5 1
'§ 0.8 |- *
S
; 06 MM/V\M\/\/W,
k=
5 0.4 8
§ 0.2 .
= 0 | | | | | ! ! !
0 1 2 3 4 5 6 7 8
Curvilinear abscissa
() hs = 0.2 (d)hs =0.2

Fig. 5.4: Influence of the parameter A

The parallel structures that we observe when i, = 0 (see Fig[5.4a) are similar to those
observed in [6, [16] and the alternation between the phases confirms that the wall does not
prefer one of the two components. On the other hand, in Fig.[5.4c|the wall exerts a preferential
attraction on the phase ¢ = 1 (in red) that is in accordance with the choice of hy > 0.

6. Conclusion. We proposed here a finite-volume scheme for the Cahn-Hilliard equa-
tion with dynamic boundary conditions in a smooth domain.
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At the theoretical level, we are able to show the convergence of the discrete solution
towards a weak solution of the continuous problem (and thus, in particular, the existence of
this solution). For this purpose, we give a new space translation estimates which gives a limit
in L>°(0,T, H'(9)) whose trace is in L>°(0, T, H'(T")).

At the numerical level, the method allows an easy implementation for the coupling be-
tween the equation in the domain and whose on its boundary even with a curved geometry for
the domain. We have also presented numerical error estimates which allow us to validate the
scheme and simulations which illustrate the different properties of the Cahn-Hilliard model
with dynamic boundary conditions depending on physical properties of the system.

In [5] we give a more complex method called DDFV method to solve this problem
which enables us to use more general meshes without orthogonality condition as for exam-
ple non-conforming mesh. We also propose an original DDFV scheme to study the Cahn-
Hilliard/Stokes phase field model.
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