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CONVERGENCE OF A FINITE-VOLUME SCHEME FOR THE CAHN-HILLIARD

EQUATION WITH DYNAMIC BOUNDARY CONDITIONS

F. NABET∗

Abstract. This work is devoted to the numerical study of the Cahn-Hilliard equation with dynamic boundary

conditions. A spatial finite-volume discretization is proposed which couples a 2d-method in a smooth connected

domain and a 1d-method on its boundary. The convergence of the sequence of approximate solutions is proved and

various numerical simulations are given.
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1. Introduction.

1.1. The Cahn-Hilliard equation. The Cahn-Hilliard equation describes the process of

phase separation when, for example, a binary allow is cooled down sufficiently. This model is

a diffuse interface model because the interface thickness between the two phases is small but

non-zero. The system is described by a smooth function c called the order parameter, which

is equal to 1 in one of the two phases, 0 in the other and which varies continuously between

0 and 1 in the interfaces.

We consider a connected and bounded domain Ω ⊂ R
2 with a C3,1-continuous boundary Γ

and we choose an orientation of Γ such that ~n is the unit normal vector outward to Ω.

For a given final time T > 0, the problem is written as follows: To find the concentration

of one of the two phases c : [0, T ]× Ω → R such that,

(1.1a)

(1.1b)





∂tc =Γb∆µ,

µ =− 3

2
εσb∆c+

12

ε
σbf

′
b(c);

where ε > 0 accounts for the interface thickness (see Fig. 1.1b), fb is the bulk Cahn-Hilliard

potential, Γb > 0 is a bulk mobility coefficient and σb > 0 is a fluid-fluid surface tension

coefficient. This is supplemented by an initial condition in Ω,

(1.2) c(0, .) = c0.

In order to solve this equation, we have to add two boundary conditions on Γ = ∂Ω. With

respect to the chemical potential µ, we assure that there cannot be any mass exchange through

the boundary, thus we consider the homogeneous Neumann boundary condition on (0, T )×Γ,

(1.3) ∂nµ = 0.

Usually, the boundary condition associated with the order parameter c is the Neumann bound-

ary condition. However, for some physical systems this condition is too restrictive. Indeed,

the homogeneous Neumann boundary condition on c implies that the contact angle between

the interface and the wall is equal to π
2 . But in some physical systems, for example for bi-

nary mixture, the dynamic contact angle deviate from the static contact angle π
2 . In order to
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describe this phenomenon, physicists [12, 13, 16] have introduced the following boundary

condition on (0, T )× Γ, called the dynamic boundary condition,

(1.4)
1

64

ε3

ΓbΓs

∂tcpΓ =
3

8
ε2σbσs∆ΓcpΓ − 6σbf

′
s(cpΓ)−

3

2
εσb∂nc.

The trace of c on Γ is noted cpΓ, ∆Γ is the Laplace-Beltrami operator on Γ, ∂n is the normal

derivative at the boundary, Γs > 0 is a surface kinetic coefficient and σs > 0 is a surface

capillarity coefficient. The bulk potential fb and the surface potential fs satisfy the following

assumptions.

• Dissipativity

(1.5) lim inf
|c|→∞

f ′′b (c) > 0 and lim inf
|c|→∞

f ′′s (c) > 0.

These conditions imply that there exist α1 > 0 and α2 ≥ 0 such that for all x ∈ R,

fb(c) ≥ α1c
2 − α2 and fs(c) ≥ α1c

2 − α2.

• Polynomial growth for fb: there exist Cb > 0 and a real p ≥ 2 such that,

(1.6)
∣∣∣f (m)

b (c)
∣∣∣ ≤ Cb

(
1 + |c|p−m

)
, m = {0, 1, 2}.

A typical choice for the bulk potential is the polynomial double-well function (see Fig. 1.1a).

0 1

fb(c) = c2(1− c)2

(a) Bulk potential

0.0

0.5

1.0

Interface: ε

(b) Interface thickness

Fig. 1.1: Double-well structure of fb and definition of the interface thickness

For the sake of simplicity, we note

A∆ =
3

2
εσb, Afb =

12

ε
σb, A∂t =

1

64

ε3

ΓbΓs

, A∆Γ
=

3

8
ε2σbσs and Afs = 6σb,

and we write the Cahn-Hilliard equation with dynamic boundary conditions as follows

(1.7)





∂tc = Γb∆µ; in (0, T )× Ω;

µ = −A∆∆c+Afbf
′
b(c); in (0, T )× Ω;

A∂t∂tcpΓ = A∆Γ
∆ΓcpΓ −Afsf

′
s(cpΓ)−A∆∂nc; on (0, T )× Γ;

∂nµ = 0; on (0, T )× Γ;

c(0, .) = c0; in Ω.
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The free energy functional associated with this equation is decomposed into a bulk and

a surface contribution

(1.8) F(c) = Fb(c) + Fs(c)

where the bulk contribution is the usual energy functional associated with the Cahn-Hilliard

equation with Neumann boundary conditions

Fb(c) =

∫

Ω

ÅA∆

2
|∇c|2 +Afbfb(c)

ã
.

As regards the surface contribution, we have

Fs(c) =

∫

Γ

ÅA∆Γ

2
|∇ΓcpΓ|2 +Afsfs(cpΓ)

ã

and we can note that the dynamic boundary condition (1.4) is obtained by requiring that the

system tends to minimize its total free energy F . Indeed, with this definition, the free energy

functional is dissipated as follows,

(1.9)
d

dt
F(c(t, .)) = −Γb

∫

Ω

|∇µ(t, .)|2 −A∂t

∫

Γ

|∂tcpΓ(t, .)|2 , t ∈ [0, T [.

We can see that the natural energy space for this problem is the following function space,

(1.10) H1
Γ(Ω) = {u ∈ H1(Ω) : Tru = upΓ ∈ H1(Γ)}.

From a mathematical point of view, the Cahn-Hilliard equation with dynamic boundary con-

ditions is now well understood. We refer the reader to [7, 17, 18, 19, 20] and the references

therein for details on the existence, uniqueness and regularity of solutions, existence of attrac-

tors and convergence to stationary states. Moreover, in [15] the authors prove (in a more gen-

eral framework) the existence of solutions to continuous Problem (1.7) in the energy spaces.

From a numerical point of view, there are less results. In [12, 13, 16] the authors consider

finite-difference methods and give numerical results without proof of convergence. A spa-

tial finite-element semi-discretization is proposed in [6] where the authors prove convergence

results and optimal error estimates for the space semi-discrete scheme. All these results are

obtained in a slab by imposing periodic conditions in lateral directions. Thus, more complex

geometries of the domain are not considered.

In this article, we investigate a finite-volume scheme for solving Problem (1.7) with a

smooth domain Ω. This spatial discretization allows to easily couple the dynamics in the

domain and those on the boundary by the flux term ∂nc. Furthermore, finite-volume schemes

account naturally for the non-flat geometry of the boundary and for the associated Laplace-

Beltrami operator. Moreover, this kind of scheme preserves the mass.

1.2. Outline. The article is organized as follows. In Section 2, we first give the finite-

volume notation associated with the particular geometry of the domain and the discrete un-

knowns and inner products. Section 3 is dedicated to introducing the finite-volume scheme

and the associated energy estimates. In Section 4, we first prove the existence of a solution

to the discrete scheme and then, we state a convergence theorem. The key-point is to obtain

strong compactness for the approximate solutions and their traces. To this end, we introduce

a new space translation operator and we prove a suitable space translation estimate which

gives a limit in L∞(0, T,H1(Ω)) whose trace is in L∞(0, T,H1(Γ)). Finally, in Section

5, we give numerical error estimates for the Cahn-Hilliard equation with dynamic boundary

conditions. We also present qualitative results which are in agreement with the numerical

simulations observed in the literature.
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2. The Finite-Volume framework.

2.1. Main notation. We recall that the domain Ω is not polygonal and that we have to

solve an equation on the boundary Γ. Thus, the notation (see Fig. 2.1) are slightly different

from the usual finite-volume notation (introduced for example in [10]).

Admissible mesh. We say that T is an admissible mesh of Ω if T is constituted of an

interior mesh M and a boundary mesh ∂M satisfying the following properties.

• The interior mesh M is given by a family of disjoint open subsets of Ω called control

volumes and denoted by K such that,

– Ω = ∪K∈MK;

– if K,L ∈ M,K 6= L, then K̊ ∩ L̊ = ∅;

– if K,L ∈ M,K 6= L such that the dimension of K̄ ∩ L̄ is equal to 1, then K̄ ∩ L̄

is the edge of the mesh separating the control volumes K and L;

– for any K ∈ M, we associate a point xK such that if K, L are two neighboring

interior control volumes, the edge which separates K and L is orthogonal to the

straight line going through xK and xL.

• The boundary mesh ∂M is the set of edges of the control volumes in M included in

Γ. We remark that these edges are not segments but curved sections. We note that

the elements of ∂M are both edges of control volumes in M and boundary control

volumes. Thus, when we consider them as control volumes belonging to ∂M we

note L ∈ ∂M and when we consider them as edges of an interior control volume we

note σ. This mesh must also satisfies an orthogonality condition: for any L ∈ ∂M
which is an edge of the interior control volume K, we define xL as the intersection

between L and the straight line passing through xK and orthogonal to the chord eL

associated with L. Then, yL is the intersection between the chord eL and the line

(xKxL).

The set of edges. Let E be the set of edges of the mesh T , Eint is the set of interior (flat)

edges and Eext is the set of exterior (curved) edges (we note that Eext = ∂M). Let EK be the

set of edges of a given control volume K ∈ M.

For any σ ∈ E , we note

• mσ its length;

• σ = K|L if σ ∈ Eint is the edge which separates the control volumes K and L;

• D = Dσ the quadrangle whose diagonals are the edge σ and the line segment [xK, xL]
if σ ∈ Eint;

• D = Dσ = {tx+ (1− t)xK, t ∈ [0, 1], x ∈ σ} if σ ∈ Eext ∩ EK;

• mD the Lebesgue measure of D.

The interior mesh. We note that if K is a control volume with one edge, at least, on the

boundary, then K is not polygonal and may be not convex.

For any K ∈ M, we note:

• K the polygon shaped by the vertices of K; we remark that K = K if EK ∩ Eext = ∅
and that K can be not included in Ω if EK ∩ Eext 6= ∅;

• mK (respectively mK) the Lebesgue measure of K (respectively K).

The boundary mesh. Let eL be the chord associated with L. We note mL (respectively

meL
) the length of L (respectively eL).

Let V be the set of vertices included in the boundary Γ and VL is the set of vertices of the

boundary control volume L.

Distances and normals. For an edge σ ∈ E , we note:

• ~nKL the unit normal vector to σ going from K to L and dK,L the distance between

xK and xL if σ ∈ Eint;
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• ~nKL the unit normal vector to eL outward to K and dK,L the distance between xK

and yL if σ ∈ Eext.
• ~nKσ(x) the unit normal vector to σ at the point x ∈ σ outward to K (we remark that

if σ ∈ Eint, ~nKσ(x) = ~nKL for all x ∈ σ).

For a vertex v = L|L′ which separates the boundary control volumes L,L′ ∈ ∂M, we note

• dL,v the distance between the vertex v and the center yL;

• dL,L′ the sum of dL,v and dL′,v: it is the approximation of the length mγLL′ of the

arc γLL′ ⊂ Γ passing through the vertex v = L|L′ and whose ends are xL and xL′ ;

• nvL gives an orientation of the curve γLL′ in function of the orientation of the curve

Γ : nvL = 1 if the orientation of Γ going from L to L′. Thus nvL = ±1 and

nvL = −nvL′ .

v = L|L′

xL

xK

yL

xLi

d
K,L

i

d
K
,L

dL,v

xL′

yL′

d
L ′,v

~nKLi

~nKL

~nKσ(xL)

Interior vertex
Boundary vertex

Interior center
Boundary center

Interior mesh M

K

Boundary mesh ∂M

L ∈ ∂M eL chord associated with L

Fig. 2.1: Mesh T associated with Ω

As regards the boundary mesh, we can remark that in the proposed scheme (Section

3.1) we only use the coordinates of the vertices of the mesh. All the other quantities are

approximations and we do not use the equation of Γ. However, to pass to the limit in the

convergence theorem we reason with the exact quantities. In the sequel (in particular in the

proof of the convergence theorem) the following relations will be very useful and frequently

use even if it is not expressly mentioned. For any L ∈ ∂M,

meL
−mL = O

(
m3

L

)
, mγLL′ − dL,L′ = O

(
mγLL′ (mL +mL′)

)

and for any K ∈ M such that σ = L ∈ EK ∩ Eext,

mK −mK = O
(
diam(K)3

)
, |d(xK, xL)− dK,L| = d(xL, yL) = O

(
m2

L

)
.

We can also note that for all x ∈ L ⊂ Γ, ~n(x) − ~nKL = O (mL). The proof of these results

can be obtained by using the Taylor formulas and a parametrization of Γ.
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The mesh size is defined by size(T ) = sup{diam(K),K ∈ M}. We introduce a positive

number reg(T ) which measures the regularity of a given mesh,

(2.1) reg(T ) := max

Ñ
N , max

K∈M

σ∈EK

diam(K)

diam(Dσ)
,max

D

diam(D)√
mD

,max
K∈M

diam(K)√
mK

é

where N is the maximum of edges incident to any vertex.

All the constants in the results below depends on this quantity which is very useful to perform

the convergence analysis of finite-volume schemes. The number reg(T ) must be uniformly

bounded when the mesh size tends to 0 for the convergence results hold.

2.2. Discrete unknowns. Regarding the space discretization, we define the piecewise

constant functions uM ∈ R
M and u∂M ∈ R

∂M as follows

uM =
∑

K∈M

uK1K ∈ L∞(Ω) and u∂M =
∑

L∈∂M
uL1L ∈ L∞(Γ),

where 1K (respectively 1L) is the indicator function of the control volume K (respectively L).

We also define the discrete function uT ∈ R
T which we associate with the couple uT =

(uM, u∂M).
As regards the time discretization, we setN ∈ N

∗ and then ∆t = T
N . For all n ∈ {1, . . . , N},

we define tn = n∆t. Then, we define u∆t
M

(respectively u∆t
∂M

) as the piecewise constant

function in (0, T )× Ω (respectively (0, T )× Γ) such that for any t ∈ [tn, tn+1[,

u∆t

M
(t, x) = un+1

K if x ∈ K and u∆t

∂M
(t, x) = un+1

L if x ∈ L.

For a given time step tn, the finite-volume scheme associates with each interior control

volume K ∈ M an unknown value cnK and with each boundary control volume L ∈ ∂M an

unknown value cnL for the concentration. Regarding the chemical potential, the same notation

are used with an interior unknown µn
K for all K ∈ M and a boundary unknown µn

L for all

L ∈ ∂M. However the homogeneous Neumann boundary condition is associated with µ, so

we impose the value of the boundary unknowns µn
∂M

∈ R
∂M as follows

µn
L = µn

K, ∀L ∈ ∂M such that L = σ ∈ EK ∩ Eext.

2.3. Inner products and norms. Here, we define the inner products and the norms used

in the paper. We define the discrete L2-inner products and the discreteH1-semi-definite inner

products on R
T and R

∂M.

DEFINITION 2.1 (Discrete L2-inner products).

For any uM, vM ∈ R
M and for any u∂M, v∂M ∈ R

∂M, we define

(uM, vM)
M

=
∑

K∈M

mKuKvK and (u∂M, v∂M)
∂M

=
∑

L∈∂M
meL

uLvL.

The associated L2-norms are noted ‖.‖0,M and ‖.‖0,∂M
.

For any uM ∈ R
M and for any u∂M ∈ R

∂M, we define the discrete Lp-norms on R
M and

R
∂M as follows

‖uM‖p0,p,M =
∑

K∈M

mK|uK|p and ‖uM‖p0,p,∂M
=

∑
L∈∂M

meL
|uL|p.

We can remark that the norm ‖.‖0,p,M (respectively ‖.‖0,p,∂M
) is equivalent to the usual Lp

norm ‖.‖p
Lp(Ω)

=
∑

K∈MmK|uK|p in Ω (respectively ‖.‖p
Lp(Γ)

=
∑

L∈∂MmL|uL|p in Γ) with

constants independent of the mesh size.
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DEFINITION 2.2 (Discrete H1-semi-definite inner products).

• For any uT , vT ∈ R
T , we define theH1-semi-definite inner product in R

T as follows

JuT , vT K1,T =
∑

σ=K|L∈Eint

mσ

dK,L
(uK − uL) (vK − vL) +

∑
σ=L∈Eext

meL

dK,L
(uK − uL) (vK − vL) .

• For any u∂M, v∂M ∈ R
∂M, we define the H1-semi-definite inner product in R

∂M

Ju∂M, v∂MK1,∂M =
∑

v=L|L′∈V

dL,L′

Å
uL − uL′

dL,L′

ãÅ
vL − vL′

dL,L′

ã
.

The associated H1-seminorms are noted |.|1,T and |.|1,∂M
.

From this, for any uT ∈ R
T , u∂M ∈ R

∂M we can define the H1-norms as follows

‖uT ‖21,T = ‖uM‖20,M + |uT |21,T and ‖u∂M‖21,∂M
= ‖u∂M‖20,∂M

+ |u∂M|21,∂M
.

Moreover, we have to define norms in time and space.

DEFINITION 2.3 (Discrete norms in time and space).

Let N be a discrete norm on a space B, then we define

• The discrete Lp(0, T ;N (B)) norm by

‖u∆t‖Lp(0,T ;N (B)) =

(
N−1∑

n=0

∆t(N (un+1))p

) 1
p

.

• The discrete L∞(0, T ;N (B)) norm by

‖u∆t‖L∞(0,T ;N (B)) = sup
n≤N

N (un).

3. The Finite-Volume scheme and the discrete energy.

3.1. The numerical scheme.

DEFINITION 3.1 (Discrete mean projection).

Let u be an integrable function on Ω which admits a trace upΓ integrable on Γ, we set Pm
T u =

(Pm
M
u,Pm

∂M
upΓ) with

P
m
M
u =

Å
1

mK

∫

K

u(x)dx

ã

K∈M

and P
m
∂M
upΓ =

Å
1

mL

∫

L

upΓ(x)dσ(x)

ã

L∈∂M

.

With this definition, choosing c0 ∈ H1
Γ(Ω) (where H1

Γ(Ω) is defined by (1.10)), we can

define the discrete initial concentration as follows,

(3.1) c0T = P
m
T c

0.

In order to obtain the finite-volume scheme associated with the Cahn-Hilliard model (1.7),

we have to integrate the continuous equations. We integrate equations (1.1) for t ∈ [tn, tn+1]
and for K ∈ M . For Laplace operators, we use a consistent two-point flux approximation

together with the homogeneous Neumann boundary condition (1.3) for the equation (1.1a).

The dynamic boundary condition (1.4) is integrated for t ∈ [tn, tn+1] and for L ∈ ∂M. We

use a consistent two-point flux approximation for the Laplace-Beltrami operator on Γ.

With respect to the non-linear terms, in the paper we use a semi-implicit discretization de-

scribed in Subsection 3.3. We denote by dfb (respectively dfs ) the discretization of the po-

tential fb (respectively fs).
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The scheme we propose reads: For any n ≥ 0, find (cn+1
T , µn+1

T ) ∈ R
T × R

T such that for

any uT , vT ∈ R
T ,

(3.2a)

(3.2b)

(3.2c)





Å
cn+1
M

− cn
M

∆t
, vM

ã
M

=− ΓbJµ
n+1
T , vT K1,T ,

(
µn+1

M
, uM

)
M

=A∆

∑
σ=K|L∈Eint

mσ

dK,L

(
cn+1
K − cn+1

L

)
(uK − uL)

+A∆

∑
σ=L∈Eext

meL

dK,L

(
cn+1
K − cn+1

L

)
uK

+Afb

∑
K∈M

mKd
fb(cnK, c

n+1
K )uK,

A∂t

Å
cn+1
∂M

− cn∂M

∆t
, u∂M

ã
∂M

=−A∆Γ
Jcn+1

∂M
, u∂MK1,∂M

−Afs

∑
L∈∂M

meL
dfs(cnL, c

n+1
L )uL

−A∆

∑
σ=L∈Eext

meL

dK,L

(
cn+1
L − cn+1

K

)
uL.

We notice that we write the scheme in a "variational" formulation which is equivalent to the

classical finite-volume formulation and which will be more useful in the analysis.

Let us remark that in equation (3.2a) the finite-volume approximation of the term ∆µ
only uses the interior edges of the mesh M while in equation (3.2b) the approximation of the

term ∆c uses all the edges of the mesh (interior and exterior). The reason for this is that µ
satisfies the homogeneous Neumann boundary condition (so the exterior edges do not step

in) while c satisfies the dynamic boundary condition (1.4) where the exterior edges intervene

(this term is essential to allow the coupling with equation (3.2c) on the boundary mesh ∂M).

Setting vT ≡ 1 in equation (3.2a), we note that we have the conservation of the volume at the

discrete level,

(3.3)
∑

K∈M

mKc
n
K =

∑
K∈M

mKc
0
K, ∀n ∈ {1, . . . , N}.

3.2. Energy estimates. We define the discrete free energy associated with the continu-

ous free energy (1.8). As in the continuous case, the discrete free energy is decomposed into

a bulk contribution Fb,T and a surface contribution Fs,∂M: For any cT ∈ R
T , we set

FT (cT ) =
A∆

2
|cT |21,T +Afb

∑
K∈M

mKfb(cK)

︸ ︷︷ ︸
:=Fb,T (cT )

+
A∆Γ

2
|c∂M|21,∂M

+Afs

∑
L∈∂M

meL
fs(cL)

︸ ︷︷ ︸
:=Fs,∂M(c∂M)

.

Regardless of the choice of the discretization of non-linear terms, we have a general energy

estimate.

PROPOSITION 3.2 (General energy equality).

Let cnT ∈ R
T . We assume that there exists a solution (cn+1

T , µn+1
T ) to discrete Problem (3.2).

Then, the following equality holds

(3.4)

FT (c
n+1
T )−FT (c

n
T ) + ∆tΓb

∣∣µn+1
T

∣∣2
1,T

+
A∂t

∆t

∥∥cn+1
∂M

− cn∂M

∥∥2
0,∂M

+
A∆

2

∣∣cn+1
T − cnT

∣∣2
1,T

+
A∆Γ

2

∣∣cn+1
∂M

− cn∂M

∣∣2
1,∂M

=Afb

∑
K∈M

mK

(
fb(c

n+1
K )− fb(c

n
K)− dfb(cnK, c

n+1
K )(cn+1

K − cnK)
)

+Afs

∑
L∈∂M

meL

(
fs(c

n+1
L )− fs(c

n
L)− dfs(cnL, c

n+1
L )(cn+1

L − cnL)
)
.
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Proof. We consider the scheme (3.2) with uT = cn+1
T − cnT and vT = −∆tµn+1

T as test

functions and we add the three equations. �

The definition of the discrete energy cannot give a discrete counterpart to the equality

(1.9) which gives the dissipation of the continuous energy. However, with a good choice for

the discretization of non-linear terms, we can obtain the dissipation of the discrete energy.

3.3. Discretization of non-linear terms. In order to obtain an energy estimate without

any condition on the time step ∆t, we choose a time discretization for the non-linear terms

such that the right hand side of (3.4) is equal to 0. Namely, we set

dfb(x, y) =
fb(y)− fb(x)

y − x
and dfs(x, y) =

fs(y)− fs(x)

y − x
, ∀x, y, x 6= y.

In practice, we mostly used polynomial functions for the potentials fb and fs. Then, the terms

dfb(x, y) and dfs(x, y) can be written as polynomial functions in the variables x, y. Thus, we

do not have numerical instability when x is too close from y.

In effect, we have

dfb(x, y) = f ′b

(x+ y

2

)
+ (x− y)2P (x, y);

where P is a polynomial function in the variables x, y.

Thus, we remark that dfb(x, x) = f ′b(x) and dfs satisfies the same properties.

PROPOSITION 3.3 (Discrete free energy equality).

Let cnT ∈ R
T . We assume that there exists a solution (cn+1

T , µn+1
T ) to discrete Problem (3.2).

Then, the following equality holds

(3.5)

FT (c
n+1
T )−FT (c

n
T ) + ∆tΓb

∣∣µn+1
T

∣∣2
1,T

+
A∂t

∆t

∥∥cn+1
∂M

− cn∂M

∥∥2
0,∂M

+
A∆

2

∣∣cn+1
T − cnT

∣∣2
1,T

+
A∆Γ

2

∣∣cn+1
∂M

− cn∂M

∣∣2
1,∂M

= 0.

Remark: We can also use a fully implicit discretization for non-linear terms, namely

dfb(cnK, c
n+1
K ) = f ′b(c

n+1
K ), ∀K ∈ M and dfs(cnL, c

n+1
L ) = f ′s(c

n+1
L ), ∀L ∈ ∂M.

In this case, we obtain the dissipation of the discrete energy for any ∆t ≤ ∆t0 where ∆t0
only depends on the parameters of the equation. All the results given in the paper are true for

this discretization if we assume that the time step satisfies ∆t ≤ ∆t0.

4. Existence and convergence theorems. The existence and convergence results proved

below are true for other choices of discretization for the non-linear terms. Thus, we give here

general assumptions (which are satisfied by the semi-implicit discretization) of the discretiza-

tion of the non-linear potential dfb to obtain these results: dfb is of C1 class and there exist

Cb ≥ 0 and a real p such that 2 ≤ p < +∞,

(4.1)

∣∣∣dfb(a, b)
∣∣∣ ≤ Cb

(
1 + |a|p−1 + |b|p−1

)
,

∣∣∣D
(
dfb(a, .)

)
(b)
∣∣∣ ≤ Cb

(
1 + |a|p−2 + |b|p−2

)
.

4.1. Preliminary results. In this subsection, we consider a bounded connected Lips-

chitz domain Ω ⊂ R
2 and we denote by Γ = ∂Ω its boundary. Let T be an admissible mesh

associated with Ω as described in the subsection 2.1.
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First, we recall the discrete Poincaré inequality and the discrete Poincaré-Sobolev in-

equality which will be very useful in the sequel. The proofs can be found in [2] in the case

where Ω is polygonal and with Neumann boundary conditions but these results can be easily

adapted to our case.

LEMMA 4.1 (Poincaré inequality,[2, Theorem 5]).

There exists C1 > 0 depending only on Ω and reg(T ) such that

(4.2) ‖uM −mM (uM)‖0,M ≤ C1 |uT |1,T , ∀uT ∈ R
T ;

where mM (uM) = 1
MΩ

∑
K∈MmKuK and MΩ =

∑
K∈MmK.

This Lemma gives for any uT ∈ R
T ,

(4.3) ‖uT ‖21,T ≤
(
2C2

1 + 1
)
|uT |21,T + 2MΩ (mM (uM))

2
.

LEMMA 4.2 (Poincaré-Sobolev inequality,[2, Theorem 3]).

Let 1 ≤ q < +∞, then there exists C2 > 0 depending only on q, Ω and reg(T ) such that

(4.4) ‖uM‖0,q,M ≤ C2 ‖uT ‖1,T , ∀uT ∈ R
T .

Now, we give a Sobolev inequality for the one dimension manifold Γ.

LEMMA 4.3. There exists C3 > 0 depending only on Γ and reg(T ) such that

‖u∂M‖L∞(Γ) ≤ C3 ‖u∂M‖1,∂M
.

Proof. Let L1 ∈ ∂M, then

uL1
=

Å
uL1

− 1

MΓ

∑
L∈∂M

meL
uL

ã
+

1

MΓ

∑
L∈∂M

meL
uL with MΓ =

∑
L∈∂M

meL
.

The Cauchy-Schwarz inequality implies

|uL1
|2 ≤ 2

MΓ

Å ∑
L∈∂M

meL
|uL1

− uL|2 + ‖u∂M‖20,∂M

ã
.

If uL1
, uL2

∈ ∂M, the triangle inequality and the Cauchy-Schwarz inequality give

|uL1
− uL2

| ≤
Ç

∑
v=L|L′∈V

dL,L′

å 1
2

|u∂M|1,∂M
.

Thus, there exists CΓ > 0 depending only on Γ such that

|uL1
|2 ≤ 2

Å
CΓ |u∂M|21,∂M

+
1

MΓ

‖u∂M‖20,∂M

ã
,

and the proof is complete. �

4.2. Existence theorem. This subsection is devoted to state general existence theorem.

THEOREM 4.4 (Existence of a discrete solution).

Let cnT ∈ R
T . We assume that:

• the potentials fb and fb satisfy dissipativity assumption (1.5) and the bulk potential

satisfies the growth condition (1.6);
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• the discretization of non-linear terms satisfies growth condition (4.1) for fb.

Then, there exists at least one solution (cn+1
T , µn+1

T ) ∈ R
T × R

T to Problem (3.2).

Proof.

The proof is very similar to the one given in [4, Theorem 2.9], thus we do not give the

details here. The key-point is the use of the topological degree theory [8].

As regards the a priori estimates, we have three key-points.

• We consider the Problem (3.2) with δdfb (respectively δdfs ) instead of dfb (respec-

tively dfs ) with δ ∈ [0, 1].
• Using the energy estimate (3.5), the quantities

∥∥cn+1
T

∥∥
1,T

,
∥∥cn+1

∂M

∥∥
1,∂M

and
∣∣µn+1

T

∣∣
1,T

are bounded independently of δ.

• Choosing uT ≡ 1 as test function in the equations (3.2b) and (3.2c), we obtain a

bound (independent of δ) on the mean-value of µn+1
T and thanks to the Poincaré

estimate (4.3), we have the expected bound on
∥∥µn+1

T

∥∥
1,T

.

The proof of the well-posedness of the scheme when δ = 0 is classical.

�

4.3. The convergence theorem. In order to give the convergence theorem, we have to

recall the definition of a solution to the continuous equation (1.7) in a weak sense.

DEFINITION 4.5 (Weak formulation).

We say that a couple (c, µ) ∈ L∞(0, T ;H1(Ω))×L2(0, T ;H1(Ω)) such that cpΓ ∈ L∞(0, T ;H1(Γ))
is solution to continuous Problem (1.7) in the weak sense if for all φ ∈ C2

c

(
R× R

2
)

such

that φ(T, .) = 0, the following identities hold

∫ T

0

∫

Ω

(−∂tφc+ Γb∇µ · ∇φ) dxdt =
∫

Ω

c0φ(0, .)dx,(4.5)

∫ T

0

∫

Ω

(−µφ+A∆∇c · ∇φ+Afbf
′
b(c)φ) dxdt

+

∫ T

0

∫

Γ

(
−A∂t∂tφcpΓ +A∆Γ

∇ΓcpΓ · ∇Γφ+Afsf
′
s(cpΓ)φ

)
dσ(x)dt

=A∂t

∫

Γ

Tr (c0)φ(0, .)dσ(x).

(4.6)

THEOREM 4.6 (Convergence theorem).

Let c0 ∈ H1
Γ(Ω) (see definition (1.10)) and

ÄÄ
(c∆t

T )
(m)
ä
,
Ä
(µ∆t

T )
(m)
ää

m∈N
a sequence of

solutions to Problem (3.2) associated with a sequence of discretizations such that the space

and time steps, size(T (m)) and ∆t(m) respectively, tend to 0. Then, assuming that reg(T (m))
is bounded when m → +∞, there exists a weak solution (c, µ) to Problem (1.7) (in the

sense of Definition 4.5) for the initial data c0 such that, up to a subsequence, the following

convergence properties hold, for all q ≥ 1

(c∆t

T )
(m) → c in L2(0, T ;Lq(Ω)), (c∆t

∂M
)
(m) → cpΓ in L2(0, T ;Lq(Γ)),

and (µ∆t

T )
(m)

⇀ µ in L2(0, T ;Lq(Ω)) weakly.

Because of non-linearities in the equation both in Ω and on Γ, to prove this theorem we

need strong compactness both inL2((0, T )×Ω) and inL2((0, T )×Γ). Thus, we have to apply

the Kolmogorov theorem to obtain the existence of the limit and the strong convergences.

Then, we can pass to the limit in the scheme and, especially in the non-linear terms. To apply

the Kolmogorov theorem we have to apply three key elements: the bounds on the discrete
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solutions (see Proposition 4.11), an estimate of space translates (see Theorem 4.20) and an

estimate of time translates (see Theorem 4.26).

4.3.1. Properties of the mean-value projection. Definition (3.1) of the discrete initial

concentration induce us to give the following properties on the discrete mean-value projection

which will be useful in the sequel.

PROPOSITION 4.7 ([1, Proposition 3.5]).

For any p ≥ 1, there exists C4 > 0 independent of size(T ) such that

‖Pm
M
u‖0,p,M ≤ C4 ‖u‖Lp(Ω)

, ∀u ∈ Lp(Ω).

Assumption A: Let P ⊂ R
2 be a pseudo-triangle with one curved side σ ⊂ R

2. There

exist ν1, ν2 > 0 such that for any sub-arc σ̃ ⊂ σ, the corresponding sub-triangle Pσ̃ (see

Fig. 4.1) satisfies,

ν1 ≤ mPσ̃

mσ̃
≤ ν2.

σ

P σ̃
Pσ̃

Fig. 4.1: The pseudo-triangle P and one of its sub-triangles

LEMMA 4.8 ([10, Lemma 3.4] and [3]).

For any p ≥ 1, there exists C5 > 0 depending only on reg(T ), ν1, ν2 and p such that,

• for any segment σ ⊂ R
2 and for any bounded set P ⊂ R

2 with positive measure,

• for any pseudo-triangle P ⊂ R
2 with one curved side σ ⊂ R

2 which satisfies the

Assumption A,

and for any u ∈ H1(R2), then

|uP − uσ|p ≤ C5
(mσ + diam(Q))

p

mP

∫

Q

|∇u(z)|p dz,

where uP denotes the mean-value of u on P , uσ the mean-value of u on σ and

• Q =”Pσ is the convex hull of P ∪ σ if σ is a segment;

• Q = P if σ ⊂ ∂P is the curved edge of the pseudo-triangle P .

In this study, we want to apply this lemma (specifically the second point) to the control

volumes K ∈ M with one edge belongs to Γ (namely it is a curved edge). Let us remark that

we can prove that for a small enough mesh size the assumption A is satisfied for these control

volumes (see [3]).

Remark: This lemma is crucial to prove the proposition below which will be used in the

proof of Proposition 4.11 which yields the bounds on the discrete solutions. These bounds

are one of the key point of the proof of the convergence Theorem 4.6.

Indeed, to obtain the bounds on the discrete solutions we have to project the initial data such

that the discrete H1-norms on Ω and Γ are both controlled by the H1
Γ(Ω)-norm of the initial
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data. If σ is a segment (the first point of the lemma) the proof of this result is classical and

can be found, for instance in [10, Lemma 3.4]. Thus, we can think that we can avoid to use

the case where σ is a curved edge, whose proof is more complicated, by choosing the mean

on the chords for the initial data. However, with this choice, we lose the H1-estimate on the

boundary. In fact, in this case we are not able to prove the Proposition 4.10 which allows

to obtain the H1-estimate on the boundary. For this reason, we choose the discrete initial

concentration equals to the mean projection on the curved edges (see definition (3.1) of c0T ).

Thus, in this case we need to use the second point on the Lemma 4.8 which is a technical

result whose proof is given in [3].

PROPOSITION 4.9. There exists C6 > 0 independent of size(T ) such that for any func-

tion u ∈ H1(Ω),

|Pm
T u|1,T ≤ C6 ‖∇u‖L2(Ω)

.

Proof. Lemma 4.8 gives,

|Pm
T u|21,T ≤2C5

∑
σ=K|L∈Eint

mσ

dK,L

Å
4diam(K̂)2

mK

∫

K̂

|∇u(z)|2 dz + 4diam(L̂)2

mL

∫

L̂

|∇u(z)|2 dz
ã

+ C5
∑

σ=L∈Eext

meL

dK,L

(mσ + diam(K))
2

mK

∫

K

|∇u(z)|2 dz.

Then, thanks to definition (2.1) of reg(T ) we conclude the proof. �

PROPOSITION 4.10. Let u ∈ H1(Γ), there exists C7 > 0 independent of size(T ) such

that,

|Pm
∂M
u|1,∂M

≤ C7 ‖∇Γu‖L2(Γ)
.

Proof. We consider two neighboring boundary control volumes L,L′ ∈ ∂M, then

|Pm
L u− P

m
L′u|2 ≤ 1

mLmL′

∫

L

∫

L′

∣∣∣∣∣

∫

Ùxy ∇Γu(z) · ~τ (z)dσ(z)
∣∣∣∣∣

2

dσ(x)dσ(y),

where ~τ is the unit tangent vector to the curve Γ.

Thanks to the Cauchy-Schwarz inequality, we have

|Pm
L u− P

m
L′u|2 ≤ (mL +mL′)

∫

L∪L′

|∇Γu(z)|2dσ(z),

and the mesh regularity completes the proof. �

4.3.2. Bounds of the solutions. The following proposition is one of the key points of

the proof of convergence.

PROPOSITION 4.11 (Bounds of the discrete solutions).

Assuming that the assumptions of Theorem 4.6 are satisfied. Then, there exist positive con-

stants M1, M2, M3, M4 and M5 independent of ∆t and size(T ) such that,

(4.7)

sup
n≤N

‖cnT ‖1,T ≤M1, sup
n≤N

‖cn∂M
‖1,∂M

≤M2,

N−1∑

n=0

∆t
∥∥µn+1

M

∥∥2
1,T

≤M3,
N−1∑

n=0

∆t

∥∥∥∥
cn+1
T − cnT

∆t

∥∥∥∥
2

1,T

≤ M4

∆t

and

N−1∑

n=0

∆t

∥∥∥∥
cn+1
∂M

− cn∂M

∆t

∥∥∥∥
2

0,∂M

+∆t2
N−1∑

n=0

∣∣∣∣
cn+1
∂M

− cn∂M

∆t

∣∣∣∣
2

1,∂M

≤M5.
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Proof.

• The discrete energy estimate (3.5) gives a uniform bound on the discrete free energy,

(4.8) ∀n ∈ J0, NK, FT (c
n
T ) ≤ FT (c

0
T ).

Then, thanks to the polynomial growth assumption (1.6), we have

FT (c
0
T ) ≤

A∆

2

∣∣c0T
∣∣2
1,T

+AfbCb

Ä
MΩ +

∥∥c0T
∥∥p
0,p,M

ä

+
A∆Γ

2

∣∣c0∂M

∣∣2
1,∂M

+AfsCΓ max
B
(
0,‖c0‖L∞(Γ)

) |fs|.

Thus, definition (3.1) of c0T and Propositions 4.7, 4.9 and 4.10 imply that there exists

K0 > 0 such that,

(4.9) FT (c
0
T ) ≤ K0.

Thanks to dissipativity assumption (1.5),

(4.10)

FT (c
n
T ) ≥

A∆

2
|cnT |21,T +Afbα1 ‖cnM‖20,M −Afbα2MΩ

+
A∆Γ

2
|cn∂M

|21,∂M
+Afsα1 ‖cn∂M

‖20,∂M
−Afsα2MΓ.

Using (4.8), (4.9) and (4.10) and setting K1 := K0 + α2 (AfbMΩ +AfsMΓ) > 0,

there exist positive constants K2, K3, K4 and K5 such that for all n ∈ J0, NK,

‖cn
M
‖20,M ≤ K1

Afbα1
:= K2, |cnT |21,T ≤ 2K1

A∆

:= K3,

‖cn∂M
‖20,∂M

≤ K1

Afsα1
:= K4, |cnT |21,∂M

≤ 2K1

A∆Γ

:= K5.

These estimates are established for all n ∈ J0, NK, thus

(4.11)

sup
n≤N

‖cnT ‖1,T ≤
√
K2 +K3 :=M1,

sup
n≤N

‖cnT ‖1,∂M
≤
√
K4 +K5 :=M2.

• Adding energy estimates (3.5) for n from 0 to N − 1, then

(4.12)

FT (c
N
T ) +

N−1∑

n=0

Å
∆tΓb

∣∣µn+1
T

∣∣2
1,T

+
A∂t

∆t

∥∥cn+1
∂M

− cn∂M

∥∥2
0,∂M

+
A∆

2

∣∣cn+1
T − cnT

∣∣2
1,T

+
A∆Γ

2

∣∣cn+1
∂M

− cn∂M

∣∣2
1,∂M

ã
= FT (c

0
T ).

Thanks to estimates (4.9) and (4.10), we have

(4.13)

N−1∑

n=0

∆t
∣∣µn+1

T

∣∣2
1,T

≤ K1

Γb

and

N−1∑

n=0

1

∆t

∥∥cn+1
∂M

− cn∂M

∥∥2
0,∂M

≤ K1

A∂t
.
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Setting uT ≡ 1 in scheme (3.2) and subtracting equations (3.2b) and (3.2c), then for

all n ∈ J0, N − 1K,

∑
K∈M

mKµ
n+1
K =Afb

∑
K∈M

mKd
fb(cnK, c

n+1
K ) +Afs

∑
L∈∂M

meL
dfs(cnL, c

n+1
L )

+
A∂t

∆t

∑
L∈∂M

meL

(
cn+1
L − cnL

)
.

Using polynomial growth assumption (4.1), Lemma 4.2 and bound (4.11), there

exists K6 > 0 such that

∑
K∈M

mK

∣∣∣dfb(cnK, cn+1
K )

∣∣∣ ≤ Cb

Ä
MΩ + 2(M1)

p−1Cp−1
2

ä
:= K6.

As regards the surface potential fs, there exists K7 > 0 such that,

∣∣∣dfs(cnL, cn+1
L )

∣∣∣ ≤ max
B(0,M2)

|f ′s| := K7, ∀L ∈ ∂M.

Then, applying Poincaré inequality (4.3) to µn+1
T , there exists a positive constant

K8 := 4
MΩ

(AfbK6 +AfsK7)
2

such that by using (4.13), we finally obtain

(4.14)

N−1∑

n=0

∆t
∥∥µn+1

M

∥∥2
1,T

≤ (2C2
1 + 1)

K1

Γb

+
4A∂tMΓK1

MΩ

+ TK8 :=M3.

• Using (4.9), (4.10) and (4.12), we deduce

N−1∑

n=0

∣∣cn+1
T − cnT

∣∣2
1,T

≤ 2K1

A∆

.

The discrete form of the volume conservation (3.3) gives mM

(
cn+1
M

− cn
M

)
= 0, so

thanks to Poincaré inequality (4.2),

N−1∑

n=0

∥∥∥∥
cn+1
T − cnT

∆t

∥∥∥∥
2

1,T

≤ 1

∆t2
(1 + C1)

2K1

A∆

:=
M4

∆t2
.

• In the same way, setting M5 =
K1

A∂t
+

2K1

A∆Γ

we obtain

N−1∑

n=0

∥∥∥∥
cn+1
∂M

− cn∂M

∆t

∥∥∥∥
2

0,∂M

+∆t
N−1∑

n=0

∣∣∣∣
cn+1
∂M

− cn∂M

∆t

∣∣∣∣
2

1,∂M

≤ M5

∆t
.

and the claim is proved.

�

4.3.3. Weak convergence of the discrete gradient. In this subsection, we give the def-

inition of the discrete gradient and a result of weak convergence used in the proof of Theorem

4.6

DEFINITION 4.12 (Discrete gradient).

We define the discrete gradient operator ∇T : RT → (R2)E as follows: For any uT ∈ R
T ,

∇T uT =
∑
σ∈E

1D∇T

DuT ∈
(
L2(Ω)

)2
, with ∇T

DuT = 2
uL − uK

dK,L
~nKL, ∀σ ∈ E ,
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where 1D is the indicator function of the diamond cell D.

PROPOSITION 4.13 (Weak convergence of the discrete gradient, see [11, Lemma 2]).

Let (uT (m))m∈N
be a sequence of discrete functions in R

T
(m)

associated with a sequence of

discretizations such that the mesh size size(T (m)) tends to 0 (with reg(T (m)) bounded). We

assume that there exists M > 0 independent of size(T (m)) such that

(4.15) ‖uT (m)‖1,T (m) ≤M, ∀m ≥ 0.

Then, up to a subsequence, (uT (m))m∈N
weakly converges inLq(Ω) (q ≥ 1) towards a certain

u ∈ H1(Ω) and (∇T uT (m))m∈N
weakly converges towards ∇u in L2.

DEFINITION 4.14 (Discrete tangential gradient).

For any u∂M ∈ R
∂M, we define the discrete tangential gradient ∇∂M

Γ : R∂M → R
V by

∇∂M

Γ u∂M =
(
∇∂M

Γ,vu∂M

)
v∈V

with ∇∂M

Γ,vu∂M =
uL′ − uL

dL,L′

nvL, ∀v = L|L′ ∈ V.

4.3.4. Time and space translates of approximate solutions. In order to pass to the

limit in the scheme, because of the non-linearities, we have to use strong compactness in

the domain Ω but also on its boundary Γ. Thus, we have to establish estimations of time

and space translates that will enable us to obtain the convergence of a sequence of solutionÄ
(c∆t

T )
(m)
ä
m∈N

to discrete Problem 3.2 towards a certain c in L2((0, T ) × Ω) and those ofÄ
(c∆t

∂M
)
(m)
ä
m∈N

towards Tr c in L2((0, T )× Γ).

To this end, we build a particular discrete extension operator on a neighborhood of Ω.

DEFINITION 4.15 (Projection on the boundary).

We consider the locally Lipschitz continuous map

(4.16) ψ : (xΓ, s) ∈ Γ× R
∗
+ 7→ xΓ + s~n(xΓ) ∈ R

2,

where ~n(xΓ) is the outward unit normal vector to Ω at the point xΓ ∈ Γ.

There exists α > 0 such that ψ is a Lipschitz diffeomorphism from Γ×]0, α[ onto Ωα = {x ∈
Ωc, d(x,Γ) < α} = ψ (Γ×]0, α[) with α < 2

‖κ‖L∞
(where κ is the curvature of Γ). Then, for

any x ∈ Ωα the projection on the boundary PΓx ∈ Γ is well defined: PΓx is the unique point

on Γ such that |PΓx− x| = d(x,Γ) and for any x ∈ Ωα, ψ(PΓx, d(x,Γ)) = x.

To build the extension operator associated with a mesh T of Ω, we consider the open set

Ωα. Noting that in the continuous case, we can define the extension operator P : H1
Γ(Ω) →

H1(R2) as follows,

Pu(x) =





u(x) if x ∈ Ω,

Tru(PΓx)θ(d(x,Γ)) if x ∈ Ωα,

0 otherwise,

where θ ∈ C∞
c (R) satisfies θ(0) = 1 and θ(α) = 0.

We follow the idea of the continuous case to build the discrete extension operator.

We first define a mesh Mα of the open set Ωα (see Fig. 4.2):

• Setting ñα = α
size(T ) then if we note E the floor function we can introduce,

nα =

®
ñα if ñα ∈ N

E(ñα) + 1 if ñα /∈ N
and hα =

α

nα
≤ size(T ).
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• For any L ∈ ∂M, we define nα control volumes as follows,

Ri
L = ψ (L×](i− 1)hα, ihα[) , ∀i ∈ {1, · · · , nα}.

At each control volume, we associate the point xRi
L

= ψ
(
{xL} × {(i− 1

2 )hα}
)

called the center of the control volume Ri
L.

• Let Eα
int be the set of interior edges of the mesh Mα and Eα

ext is the set of exterior

edges which do not belong to Eext. The set Eα
int is then split into two subsets:

– Eα‖
is the set of edges which separate two control volumes Ri

L and Ri+1
L

(for i ∈ {1, · · · , nα − 1}) associated with the same boundary control volume

L ∈ ∂M. For any edge σ ∈ Eα‖
, we note σ = σi,i+1

L the edge which separates

the control volumes Ri
L and Ri+1

L and mσi,i+1
L

its length. Noting that these

edges are curved sections, we denote by e
i,i+1
L the chord associated with σi,i+1

L

and m
e
i,i+1
L

its length.

– Eα⊥
is the set of edges which separate a control volume Ri

L (associated with

L ∈ ∂M) and a control volume Ri
L′ (associated with L′ ∈ ∂M) where L,L′

are two neighboring cells. For an edge σ ∈ Eα⊥
which separates the control

volumes Ri
L and Ri

L′ , we note γi
RR′ the arc passing through the centers xRi

L

and xRi

L′
, namely γi

RR′ = ψ
(
γLL′ × {(i− 1

2 )hα}
)

and we note mγi
RR′

its

length.

Ω

Ωα

α
hα

xL

xRi
L

Fig. 4.2: Definition of the mesh Mα

We can note that this mesh is only defined for the needs of the proof and, from a numer-

ical point of view, we never build it.

We can link the length of the edges of the mesh Mα and those of the mesh ∂M by the

following identity.

PROPOSITION 4.16. Let γ be an arc included in Γ and ς the arc defined by ς = ψ(γ ×
{δ}) with δ ∈ [0, α]. Thus, by denoting κ the curvature of Γ the following identity holds,

|mς −mγ | ≤ δ ‖κ‖
L∞ mγ .

The proof of this result is obtained by considering the function ψδ(t) = ϕ(t) + δ~n(ϕ(t))
where ϕ is an arc-length parametrization of the curve Γ.
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We define the mesh Tα = T ∪Mα and we note K ∈ Tα its control volumes.

DEFINITION 4.17 (Space extension operator).

Let ΨΩα
T : RT → R

2 be the extension operator defined as follows

ΨΩα
T (uT ) (x) =

{
uT if x ∈ Ω,

uRi
L
= uLθ

Ä
d(xRi

L
,Γ)
ä

if x ∈ Ri
L ∈ Mα,

where θ ∈ C∞
c ([0, α[) and satisfies θ(x) = 1 for all x ∈ [0, α2 ].

In the mesh Mα there are curved edges which complicates the understanding of the

results. Thus, we would like to use a polygonal mesh whose edges are segments. To this end,

we use the mesh Tα to construct a polygonal mesh T P
α . As for the mesh T , for any K ∈ Tα

we note K the polygon shaped by the vertices of K. Then, we can define the mesh T P
α as the

union, on all the control volumes of Tα, of the control volumes K. The center of the control

volume K is the same of the one associated with the control volume K, thus we note it xK.

We define ΩP =
⋃

K∈M

K and ΩP
α =

⋃

K∈Mα

K the polygonal approximations of Ω and Ωα.

Noting that there exists Cα,Γ > 0 independent of size(T ) such that size(T P
α ) ≤ Cα,Γsize(T ).

DEFINITION 4.18.

We define the operator ζTα : RTα → R
T P
α such that, for any uTα

∈ R
Tα , we have

ζTα (uTα
) = (ζTα

K (uTα
))K∈T P

α
with ζTα

K (uTα
) = uK.

Noting σ the edges of the mesh T P
α , mσ their length and dK,L the distance between the

centers xK and xL of two neighboring control volumes K and L. Then, the discrete H1 norm

associated with the mesh T P
α is defined by,

‖ζTα (uTα)‖21,T P
α

=
∑

σ∈E∪Eα
int

mσ

dK,L
|uK − uL|2.

PROPOSITION 4.19. There exists C8 > 0 independent of size(T ) such that for any

uT ∈ R
T the following inequality holds,

‖ζTα (ΨΩα
T (uT ))‖21,T P

α
≤ C8

Ä
|uT |21,T + ‖u∂M‖21,∂M

ä
.

Proof. Using Definitions 4.17 and 4.18 of operators ΨΩα
T and ζTα , we have

‖ζTα (ΨΩα
T (uT ))‖21,T P

α
=

∑
σ=K|L∈Eint

mσ

dK,L
(uK − uL)

2
+

∑
σ=L∈Eext

meL

d(xK, xR1
L
)

Ä
uK − uR1

L

ä2

+
∑

σ∈Eα‖

m
e
i,i+1
L

d(xRi
L
, xR

i+1
L

)

Ä
uRi

L
− uR

i+1
L

ä2

+
∑

σ∈Eα⊥

mσ

d(xRi
L
, xRi

L′
)

(
uRi

L
− uRi

L′

)2
.

Now we have to express the last three sums in the right hand side of this term in function

of uT . The definitions of uR1
L

and θ given in Definition 4.17 lead up to,

|uL − uR1
L
| = |uL||θ(d(xL,Γ))− θ(d(xR1

L
,Γ))| ≤ Cθ

hα
2
|uL|,
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then noting that hα

2 ≤ d(xK, xR1
L
) and d(xK, xL) ≤ d(xK, xR1

L
) we have,

(4.17)
∑

σ=L∈Eext

meL

|uK − uR1
L
|2

d(xK, xR1
L
)

≤ CΓ

∑
σ=L∈Eext

meL

|uK − uL|2
dK,L

+ C2
θhα ‖u∂M‖20,∂M

.

In the same way, using the definitions of the centers xRi
L

et xR
i+1
L

and noting that d(xRi
L
, xR

i+1
L

) =

hα there exists CΓ,α,κ > 0 independent of size(T ) such that,

∑
σ∈Eα‖

m
e
i,i+1
L

|uRi
L
− uR

i+1
L

|2

d(xR
i+1
L
, xR

i+1
L

)
≤ C2

θCΓ,α,κhα
∑

σ∈Eα‖

meL
|uL|2.

We can remark that, at each boundary control volume L ∈ ∂M corresponds nα − 1 (with

nα = α
hα

) edges σ ∈ Eα‖
so we obtain

(4.18)
∑

σ∈Eα‖

m
e
i,i+1
L

|uRi
L
− uR

i+1
L

|2

d(xR
i+1
L
, xR

i+1
L

)
≤ αC2

θCΓ,α,κ ‖u∂M‖20,∂M
.

Finally, thanks to the definitions of uRi
L

and uRi

L′
and since θ ≤ 1, by noting that for any

σ ∈ Eα⊥
, mσ = hα there exists CΓ,α,κ > 0 independent of size(T ) such that,

∑
σ∈Eα⊥

mσ

d(xRi
L
, xRi

L′
)

(
uRi

L
− uRi

L′

)2
≤ CΓ,α,κhα

∑
σ∈Eα⊥

|uL − uL′ |2
dL,L′

.

At each vertex v = L|L′ ∈ V we can associate nα edges σ ∈ Eα⊥
, thus

(4.19)
∑

σ∈Eα⊥

mσ

d(xRi
L
, xRi

L′
)

(
uRi

L
− uRi

L′

)2
≤ αCΓ,α,κ |u∂M|21,∂M

.

Combining estimates (4.17), (4.18) and (4.19) we can conclude the proof. �

Now we can apply the classical lemma of space translate estimates (see for instance [10,

Lemma 3.3]) to the function ζTα (ΨΩα
T (uT )) ∈ R

T P
α on the polygonal mesh T P

α (by noticing

that size(T P
α ) ≤ Cα,Γsize(T )).

For a function uTα ∈ R
Tα (respectively uT P

α
∈ R

T P
α ), we denote ũTα (respectivelyfiuT P

α
) the

extension by 0 of uTα (respectively uT P
α

) outside of Ωα (respectively ΩP
α).

THEOREM 4.20 (Estimation of space translates).

There exists C9 > 0 independent of size(T ) such that for any uT ∈ R
T and for any η ∈ R

2

the following estimate holds,

∥∥∥ζ̃Tα (ΨΩα
T (uT )) (.+ η)− ζ̃Tα (ΨΩα

T (uT ))
∥∥∥
2

L2(R2)

≤ C9|η| (|η|+ size(T ))
Ä
|uT |21,T + ‖u∂M‖21,∂M

ä
.

Let us remark that the estimate of space translates uses the extension operator ζ̃Tα (ΨΩα
T (uT ))

defined on the approximate polygonal domain ΩP . However, to prove the convergence theo-

rem we would like to deal with the original mesh T of the original domain Ω and the exten-

sion operator ΨΩα
T (uT ) defined on this domain. So we have to begin by proving that when

the mesh size tends to 0 these operators converge towards the same limit.
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PROPOSITION 4.21. There exists C10 > 0 independent of size(T ) such that for any

function uT ∈ R
T the following identity holds for a small enough size(T ),

∥∥∥fiΨΩα
T (uT )− ζ̃Tα (ΨΩα

T (uT ))
∥∥∥
2

L2(R2)
≤ C10size(T )2

Ä
|uT |21,T + ‖u∂M‖21,∂M

ä
.

Proof. For any control volume K ∈ Tα, we note 1K the indicator function of the control

volume K and 1K those of the control volume K. Then, for a small enough size(T ), for any

wTα
∈ R

Tα we have,

∣∣∣fiwTα
− ζ̃Tα (wTα

)
∣∣∣ =

∣∣∣∣∣
∑

K∈Tα

wK1K − ∑
K∈Tα

wK1K

∣∣∣∣∣

=

∣∣∣∣∣
∑

σ∈E∪Eα
int

(
1K∩L(wK − wL) + 1L∩K(wL − wK)

)

+
∑

σ∈Eα
ext

wK(1Kext − 1Kext

∣∣∣∣∣.

where Kext = {x ∈ (ΩP ∪ ΩP
α)

c : x ∈ K and x /∈ K} and K
ext = {x ∈ (Ω ∪ Ωα)

c : x ∈
K and x /∈ K}.

The sets which appear in the indicator functions are pairwise disjoint thus we can write,

∣∣∣fiwTα
− ζ̃Tα (wTα

)
∣∣∣
2
=

∑
σ∈E∪Eα

int

(1K∩L − 1L∩K)
2|wK − wL|2 +

∑
σ∈Eα

ext

(1Kext − 1Kext)2|wK|2.

Noting that for any wTα ∈ R
Tα ,

∥∥∥fiwTα − ζ̃Tα (wTα)
∥∥∥
2

L2(R2)
=

∫

Ω∪Ωα∪ΩP
α

∣∣∣fiwTα(x)− ζ̃Tα (wTα) (x)
∣∣∣
2
dx.

By noting that for any σ = K|L ∈ E ∩ Eα
int (respectively σ ∈ Eα

ext) the set K ∪ L and K ∪ L

(respectively Kext and K
ext) are disjoint we have,

∥∥∥fiwTα − ζ̃Tα (wTα)
∥∥∥
2

L2(R2)
=

∑
σ∈E∪Eα

int

(mK∩L+mL∩K)|wK−wL|2+
∑

σ∈Eα
ext

(mKext+mKext)|wK|2.

Thus there exists a constant CΩα
(reg(T )) > 0 independent of size(T ) such that,

∣∣∣fiwTα − ζ̃Tα (wTα)
∣∣∣
2
≤CΩα(reg(T ))size(T )2

Ç
‖ζTα (wTα)‖21,T P

α
+

∑
σ∈Eα

ext

size(T )|wK|2
å
.

SettingwTα = ΨΩα
T (uT ) and noticing that if K ∈ T P

α such that σ = ψ (L × {α}) ∈ Eα
ext∩EK,

we have

|wK| = |ΨΩα
K (uT )| =

∣∣∣uLθ
Ä
d(xR

nα
L
,Γ)
ä∣∣∣ ≤ |uL|,

we obtain,

∣∣∣fiΨΩα
T (uT )− ζ̃Tα (ΨΩα

T (uT ))
∣∣∣
2

≤CΩα
(reg(T ))size(T )2

Ä
‖ζTα (ΨΩα

T (uT ))‖21,T P
α
+ ‖u∂M‖20,∂M

ä
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and Proposition 4.19 conclude the proof. �

PROPOSITION 4.22. Let (uT (m))m∈N
be a sequence of discrete functions in R

T
(m)

as-

sociated with a sequence of discretizations such that the mesh size size(T (m)) tends to 0. We

assume that the regularity reg(T (m)) is bounded and that there exists M > 0 independent of

size(T (m)) satisfying

(4.20) ‖uT (m)‖1,T (m) ≤M and ‖u∂M
(m)‖1,∂M

(m) ≤M, ∀m ≥ 0.

Then, we can extract a subsequence, still referred to as (uT (m))m∈N
for simplicity, which is

strongly converging in L2(Ω) towards a certain function u ∈ H1(Ω) whose trace belongs

to H1(Γ) and such that (u∂M
(m))m∈N

is strongly converging in L2(Γ) towards upΓ. Fur-

thermore up to a subsequence, (∇T uT (m))m∈N
weakly converges towards ∇u in L2(Ω) and

(∇∂M

Γ u∂M
(m))m∈N

weakly converges towards ∇ΓupΓ in L2(Γ).
In our study, the functions are also time-dependent thus we give below an adapted version

for these functions.

PROPOSITION 4.23. Let
Ä
(u∆t

T )
(m)
ä
m∈N

be a sequence of functions associated with a

sequence of discretizations such that the time step and the mesh size, ∆t(m) and size(T (m))
respectively, tend to 0 and such that the regularity reg(T (m)) is bounded. We assume that

there exists a positive constant M such that,

(4.21) sup
n≤N(m)

∥∥∥(unT )(m)
∥∥∥
1,T (m)

≤M and sup
n≤N(m)

∥∥∥(un∂M
)
(m)
∥∥∥
1,∂M

(m)
≤M, ∀m ≥ 0.

Moreover, we assume that there exists a function ũ ∈ L2((0, T ) × R
2) satisfying (up to a

subsequence) the following convergence,

(4.22) ζ̃Tα

Ä
ΨΩα

T

Ä
(u∆t

T )
(m)
ää

−−−−−→
m→+∞

ũ in L2((0, T )× R
2).

We denote by u the restriction of ũ to Ω, then u ∈ L2(0, T ;H1(Ω)) and upΓ ∈ L2(0, T ;H1(Γ)).
Furthermore the following convergences hold (up to a subsequence),

(u∆t

T )
(m) −−−−−→

m→+∞
u in L2((0, T )×Ω), (u∆t

∂M
)
(m) −−−−−→

m→+∞
upΓ in L2((0, T )× Γ),

(∇T u∆t

T )
(m) −−−−−⇀

m→+∞
∇u weakly in L2((0, T )× Ω),

(∇∂M

Γ u∆t

∂M
)
(m) −−−−−⇀

m→+∞
∇ΓupΓ weakly in L2((0, T )× Γ).

Proof of Proposition 4.22. We split this proof into several steps and we notice that all the

convergences below occur up to a subsequence.

• We prove that the sequence (ΨΩα
T (uT (m)))m∈N

strongly converges in L2(R2) to-

wards a certain ũ ∈ H1(R2).
Theorem 4.20 and assumption (4.20) imply that for all m ∈ N,

(4.23)

∥∥∥ζ̃Tα (ΨΩα
T (uT (m))) (.+ η)− ζ̃Tα (ΨΩα

T (uT (m)))
∥∥∥
2

L2(R2)

≤ 2M2C9|η| (|η|+ size(T )) .

Moreover Proposition 4.21 gives,
∥∥∥ζ̃Tα (ΨΩα

T (uT (m)))
∥∥∥
2

L2(R2)
≤2C10size(T (m))2

Ä
|uT (m) |21,T + ‖u∂M

(m)‖21,∂M

ä

+ 2
∥∥∥fiΨΩα

T (uT (m))
∥∥∥
2

L2(R2)
.
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Furthermore, using Definition 4.17 of the operator ΨΩα
T ,

∥∥∥fiΨΩα
T (uT (m))

∥∥∥
2

L2(R2)
≤MΩ ‖uT (m)‖20,M(m) + nαCα,κ ‖u∂M

(m)‖20,∂M
(m) ;

and thus assumption (4.20) gives that
Ä
ζ̃Tα (ΨΩα

T (uT (m)))
ä
m∈N

is bounded inL2(R2).

Then, thanks to the Kolmogorov theorem we can extract a subsequence, still referred

to as
Ä
ζ̃Tα (ΨΩα

T (uT (m)))
ä
m∈N

for simplicity, and find ũ ∈ L2(R2) such that

(4.24) ζ̃Tα (ΨΩα
T (uT (m))) −−−−−→

m→+∞
ũ in L2(R2).

Passing to the limit in equation (4.23), convergence (4.24) gives that ũ ∈ H1(R2).
• According to Proposition 4.21 and assumption (4.20) we have,

(4.25)
∣∣∣ζ̃Tα (ΨΩα

T (uT (m)))−fiΨΩα
T (uT (m))

∣∣∣ −−−−−→
m→+∞

0 in L2(R2),

thus setting u = ũ|Ω we obtain, by restriction to Ω,

uT (m) −−−−−→
m→+∞

u in L2(Ω) and u ∈ H1(Ω).

• Let us prove that the subsequence (u∂M
(m))m∈N

strongly converges in L2(Γ) to-

wards upΓ = Tr (u).
Let Ωα/2 = {x ∈ Ωc, d(x,Γ) < α

2 } then Definition 4.17 of ΨΩα
T and especially the

fact that θ ≡ 1 on [0, α2 ] implies,

(ΨΩα
T (uT (m))) (x) = u∂M

(m)(PΓx), ∀x ∈ Ωα/2.

Hence for any xΓ ∈ Γ, s ∈ [0, α2 ],

(4.26) u∂M
(m)(xΓ) = (ΨΩα

T (uT (m))) (xΓ + s~n(xΓ))

and for any xΓ ∈ Γ we thus have,

u∂M
(m)(xΓ) =

2

α

∫ α
2

0

(ΨΩα
T (uT (m))) (xΓ + s~n(xΓ))ds.

For any xΓ ∈ Γ we define,

w(xΓ) =
2

α

∫ α
2

0

ũ(xΓ + s~n(xΓ))ds.

By the change of variables x = xΓ + s~n(xΓ) on Ωα/2 we obtain,

∫

Γ

|w(xΓ)− u∂M
(m)(xΓ)|2 dxΓ ≤ Cα,κ‖ũ−ΨΩα

T (uT (m)) ‖2L2(Ωα/2)
.

Thanks to convergences (4.24) and (4.25) we have ΨΩα
T (uT (m)) −−−−−→

m→+∞
ũ in

L2(R2), thus we can deduce

(4.27) u∂M
(m) −−−−−→

m→+∞
w =

2

α

∫ α
2

0

ũ(.+ s~n(.))ds in L2(Γ).
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Using the change of variables x = xΓ + s~n(xΓ) on Ωα/2 and then equality (4.26)

together with convergence (4.27) we obtain,

∫

Ωα/2

|(ΨΩα
T (uT (m))) (x)− w(PΓx)|2 −−−−−→

m→+∞
0.

Finally, recalling that ΨΩα
T (uT (m)) −−−−−→

m→+∞
ũ in L2(R2) we deduce

(4.28) w(PΓx) = ũ(x), ∀x ∈ Ωα/2.

Therefore, the function w is the trace of ũ on ∂(Ωc) = ∂Ω and ũ ∈ H1(R2) thereby

it is also the trace of u. Thus convergence (4.27) implies

u∂M
(m) −−−−−→

m→+∞
Tr (u) in L2(Γ).

Now we have to verify that upΓ = Tr (u) ∈ H1(Γ). Thanks to equality (4.28) we

can observe that for any x ∈ Ωα/2, ũ(x) does not depend on d(x,Γ), then we have

∇ũ(x) = ∇Γd(x,Γ)
ũ(x), ∀x ∈ Ωα/2.

We can deduce that for any x ∈ Ωα/2 :

∇ũ(x) = 1

(1− d(x,Γ)κ(PΓx))
∇Γw(PΓx),

namely for any xΓ ∈ Γ and for any s ∈ [0, α2 ] we can write,

∇ΓupΓ(xΓ) = (1− sκ(xΓ))∇ũ(xΓ + s~n(xΓ)).

Integrating this equation for s ∈ [0, α2 ] and for any xΓ ∈ Γ, then using the change of

variables x = xΓ + s~n(xΓ) on Ωα/2 we obtain,

∫

Γ

|∇ΓupΓ(xΓ)|2 dxΓ ≤ 2

α

(
1 +

α

2
‖κ‖∞

)∫

Ωα/2

|∇ũ(x)|2 dx.

Since ũ ∈ H1(R2) we conclude that Tr (u) ∈ H1(Γ).
• Since (uT (m))m∈N

converges in L2(Ω) towards u ∈ H1(Ω), Proposition 4.13 to-

gether with the H1(Ω)-bound (4.20) gives that (∇uT (m))m∈N
weakly converges in

L2(Ω) towards ∇u.

• Let us prove that the subsequence (∇∂M

Γ u∂M
(m))m∈N

weakly converges in L2(Γ)
towards ∇ΓupΓ.

We consider a vector field φ : Γ → R
2 of C∞ class and tangent to the hypersurface

Γ. The sequence (u∂M
(m))m∈N

converges in L2(Γ) towards upΓ ∈ H1(Γ), thus by

noting divΓ the tangential divergence operator we have,

(4.29)

∫

Γ

u∂M
(m)(x)divΓφ(x)dσ(x) −−−−−→

m→+∞
−
∫

Γ

∇ΓupΓ(x) · φ(x)dσ(x).

Furthermore, thanks to the Stokes formula
∫

Γ

u∂M
(m)(x)divΓφ(x)dσ(x) =−

∫

Γ

∇∂M

Γ u∂M
(m)φ(x) · ~τ (x)dσ(x)

+
∑

v=L|L′∈V

dL,L′∇∂M

Γ,vu∂M
(m)Rφ

v
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where

Rφ
v
=

1

dL,L′

∫

γLL′

φ(x) · ~τ (x)dσ(x)− φ(v) · ~τ (v).

Moreover, we have mγLL′ − dL,L′ = O
(
mγLL′ (mL +mL′)

)
, then since φ is C∞,

Rφ
v
≤ C ‖∇φ‖L∞(Γ) size(T ), ∀v ∈ V.

Furthermore,H1(Γ)-bound (4.20) gives that (∇∂M

Γ u∂M
(m))m∈N

is bounded inL2(Γ)
so
∫

Γ

∇∂M

Γ u∂M
(m)(x)φ(x) ·~τ (x)dσ(x) = −

∫

Γ

u∂M
(m)(x)divΓφ(x) +Oφ (size(T )) ,

and thanks to equation (4.29),

∫

Γ

φ(x) · ∇∂M

Γ u∂M
(m)(x)~τ (x)dx −−−−−→

m→+∞

∫

Γ

φ(x) · ∇ΓupΓ(x)dx.

�

Let us remark that in Proposition 4.23 we have to add assumption (4.22) which gives the L2-

strong convergence of a subsequence
Ä
(u∆t

T )
(m)
ä
m∈N

. Indeed, we consider time-dependent

function so we have to add an estimate of time translates (that we are going to do in the sequel)

to obtain this convergence. Thus, assumption (4.22) allows to obtain convergence (4.24).

We have given above the proof of Proposition 4.22 where the functions are supposed to be

time-independent but we can remark that once the convergence (4.24) is obtained the sequel

of the proof is almost the same.

DEFINITION 4.24 (Extension operator for time-dependent functions).

We define the extension operator ζTα

T for time-dependent functions using operators ΨΩα
T

and ζTα introduced in Definitions 4.17 and 4.18 as follows,

ζTα

T (u∆t

T ) (t, x) =

®
ζ̃Tα (ΨΩα

T (u∆t

T )) (t, .) if t ∈ [0, T ],

0 otherwise.

By the sake of simplicity we use the notation u∆t

T P
α
(t, .) = ζ̃Tα (ΨΩα

T (u∆t
T )) (t, .).

LEMMA 4.25 ([14, Lemma A.1]). Let (tn)0≤n≤N such that t0 = 0, tn = n∆t, tN = T ,

τ is a positive real number and χn
τ : R → R is the function defined as follows

(4.30) χn
τ (t) =

®
1 if t < tn ≤ t+ τ,

0 otherwise.

Then, for any family of real numbers (βn)1≤n≤N and for any real number t, the following

identity holds

∫

R

ï
N∑

n=1
βnχ

n
τ (t)

ò
dt = τ

N∑
n=1

βn.

As we have just seen, the estimation of space translates (see Theorem 4.20) does not use

that c∆t
T is solution to Problem (3.2). In fact this estimate is true for any uT ∈ R

T and to

obtain the convergence of approximate solutions we have to get the discrete H1-bounds on
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the solution and on its trace (see assumption (4.20) of Proposition 4.22). Thus, if we consider

another problem but whose discrete solutions also satisfy discrete H1-bounds (4.20), we can

apply the previous results.

On the contrary to obtain estimation of time translates, we have to use that the couple

(c∆t
T , µ∆t

T ) is solution to the discrete Problem (3.2) and this estimate is specific to the studied

system.

Now we give the estimate of time translates of the discrete order parameter which allows

us to obtain the strong compactness that we lacked in Proposition 4.23.

Thanks to the particular shape of the discrete extension operator which uses the trace of

discrete solutions, the coupling between the domain and its boundary enable to obtain simul-

taneously the estimate both in Ω and on Γ.

THEOREM 4.26 (Estimation of time translates).

We assume that the assumptions of Theorem 4.4 are satisfied so that there exists a solution

(c∆t
T , µ∆t

T ) to discrete Problem (3.2) for all N ∈ N and for all admissible mesh T .

Let τ > 0, then there exists C11 > 0 independent of T , ∆t and τ such that

‖ζTα

T (c∆t

T ) (.+ τ, .)− ζTα

T (c∆t

T )‖2L2(R×R2) ≤ C11τ.

We adapt the proof of Theorem A.2 in [14].

Proof.

Let t ∈ R. Using Definition 4.24 of ζTα

T and definition (4.30) of χn
τ ,

(4.31)

ζTα

T (c∆t

T ) (t+ τ, .)− ζTα

T (c∆t

T ) (t, .) =χ0
τ (t)c

1
T P
α
− χN

τ (t)cN
T P
α

+
N−1∑
n=1

χn
τ (t)
Ä
cn+1
T P
α

− cn
T P
α

ä
.

For any s ∈ R, we define

(4.32) n(s) =





−2 if s ≤ 0;

the index such that tn(s) < s ≤ tn(s)+1 if 0 < s ≤ tN ;

N if s > tN .

Let n0(t) and n1(t) be given by n0(t) = n(t) and n1(t) = n(t+τ). We adopt the convention

c−1
T = cN+1

T = 0. With this notation, equation (4.31) is equivalent to

(4.33) ζTα

T (c∆t

T ) (t+ τ, .)− ζTα

T (c∆t

T ) (t, .) = c
n1(t)+1

T P
α

− c
n0(t)+1

T P
α

.

Gathering (4.31) and (4.33), we write

(4.34)

∫

R2

(ζTα

T (c∆t

T ) (t+ τ, x)− ζTα

T (c∆t

T ) (t, x)))2dx = T1(t) + T2(t) + T3(t)

where:

T1(t) =χ
0
τ (t)

∫

ΩP∪ΩP
α

Ä
c
n1(t)+1

T P
α

− c
n0(t)+1

T P
α

ä
c1
T P
α
dx := TΩP

1 (t) + T
ΩP
α

1 (t);

T2(t) =
N−1∑
n=1

χn
τ (t)

∫

ΩP∪ΩP
α

Ä
c
n1(t)+1

T P
α

− c
n0(t)+1

T P
α

ä Ä
cn+1
T P
α

− cn
T P
α

ä
dx := TΩP

2 (t) + T
ΩP
α

2 (t);

T3(t) =− χN
τ (t)

∫

ΩP∪ΩP
α

Ä
c
n1(t)+1

T P
α

− c
n0(t)+1

T P
α

ä
cN
T P
α
dx := TΩP

3 (t) + T
ΩP
α

3 (t).
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We begin with the terms TΩP

• (t) that concern contributions of ΩP .

Since χ0
τ (t) is equal to 1 on [−τ, 0[ and 0 elsewhere, and since c

n0(t)+1
M = 0 for any negative t,

we have

∫

R

TΩP

1 (t)dt =

∫ 0

−τ

∫

ΩP

Ä
c
n1(t)+1
M − c

n0(t)+1
M

ä
c1
M
dxdt =

∫ 0

−τ

∫

ΩP

c
n1(t)+1
M c1

M
dxdt,

thus the definition of the discrete norm ‖.‖0,M implies

(4.35)

∫

R

TΩP

1 (t)dt ≤ τ ‖c∆t

M
‖2L∞(0,T ;‖.‖0,M) .

Similar arguments with χN
τ and c

n1(t)+1
M give,

(4.36)

∫

R

TΩP

3 (t)dt ≤ τ ‖c∆t

M
‖2L∞(0,T ;‖.‖0,M) .

Regarding the term TΩP

2 , setting vT = c
n1(t)+1
T − c

n0(t)+1
T as test function in equation (3.2a),

then thanks to the Cauchy-Schwarz inequality, we have

TΩP

2 (t) ≤ 2Γb ‖c∆t

T ‖L∞(0,T ;|.|1,T )

N−1∑
n=1

χn
τ (t)∆t

∣∣µn+1
T

∣∣
1,T

.

Thanks to Lemma 4.25 and the Cauchy-Schwarz inequality we finally obtain,

(4.37)

∫

R

TΩP

2 (t)dt ≤ 2
√
TΓbτ ‖c∆t

T ‖L∞(0,T ;|.|1,T ) ‖µ∆t

T ‖L2(0,T ;|.|1,T ) .

Now, we have to study the terms T
ΩP
α

• (t) concerning the contributions in ΩP
α.

The same arguments that for the term TΩP

1 (t) and Definition 4.17 of cMα give

∫

R

TΩα
1 (t)dt =

∫ 0

−τ

∑
Ri

L
∈Mα

mRi
L
c
n1(t)+1
L c1Lθ

Ä
d(xRi

L
,Γ)
ä2

dt

where mRi
L

is the Lebesgue measure of the quadrilateral whose vertices are those of the

control volume Ri
L. Noticing that θ ≤ 1 and that there exists CΓ,α,κ > 0 independent of

size(T ) such that
∑nα

i=1mRi
L
= CΓ,α,κmeL

, we obtain

(4.38)

∫

R

T
ΩP
α

1 (t)dt ≤ CΓ,κ,ατ ‖c∆t

∂M
‖2L∞(0,T ;‖.‖0,∂M) .

A similar reasoning gets:

(4.39)

∫

R

T
ΩP
α

3 (t)dt ≤ CΓ,κ,ατ ‖c∆t

∂M
‖2L∞(0,T ;‖.‖0,∂M) .

As regards to the term T
ΩP
α

2 , thanks to Definition 4.17 of cMα
we have

T
ΩP
α

2 (t) ≤ CΓ,κ,α

N−1∑
n=1

χn
τ (t)

∑
L∈∂M

meL

Ä
c
n1(t)+1
L − c

n0(t)+1
L

ä (
cn+1
L − cnL

)
.
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Setting uT = c
n1(t)+1
T − c

n0(t)+1
T as test function in equations (3.2b) and (3.2c), we have

T
ΩP
α

2 (t) ≤ CΓ,κ,α
∆t

A∂t

(
A∆Γ

T
ΩP
α

2,1 (t) +A∆T
ΩP
α

2,2 (t) +AfsT
ΩP
α

2,3 (t) + T
ΩP
α

2,4 (t) +AfbT
ΩP
α

2,5 (t)
)

where

T
ΩP
α

2,1 (t) = −
N−1∑
n=1

χn
τ (t)Jc

n+1
∂M

, c
n1(t)+1
∂M − c

n0(t)+1
∂M K1,∂M,

T
ΩP
α

2,2 (t) = −
N−1∑
n=1

χn
τ (t)Jc

n+1
T , c

n1(t)+1
T − c

n0(t)+1
T K1,T ,

T
ΩP
α

2,3 (t) = −
N−1∑
n=1

χn
τ (t)

∑
L∈∂M

meL
dfs(cnL, c

n+1
L )

Ä
c
n1(t)+1
L − c

n0(t)+1
L

ä
,

T
ΩP
α

2,4 (t) =
N−1∑
n=1

χn
τ (t)
Ä
µn+1

M
, c

n1(t)+1
M − c

n0(t)+1
M

ä
M

,

and T
ΩP
α

2,5 (t) = −
N−1∑
n=1

χn
τ (t)

∑
K∈M

mKd
fb(cnK, c

n+1
K )

Ä
c
n1(t)+1
K − c

n0(t)+1
K

ä
.

Applying the Cauchy-Schwarz inequality, we obtain

T
ΩP
α

2,1 (t) ≤ 2 ‖c∆t

∂M
‖L∞(0,T ;|.|1,∂M)

N−1∑
n=1

χn
τ (t)

∣∣cn+1
∂M

∣∣
1,∂M

,

T
ΩP
α

2,2 (t) ≤ 2 ‖c∆t

T ‖L∞(0,T ;|.|1,T )

N−1∑
n=1

χn
τ (t)

∣∣cn+1
T

∣∣
1,T

,

and T
ΩP
α

2,4 (t) ≤ 2 ‖c∆t

M
‖L∞(0,T ;‖.‖0,M)

N−1∑
n=1

χn
τ (t)

∥∥µn+1
M

∥∥
0,M

.

Using Sobolev inequality (4.3) on Γ, for any n ∈ {1, . . . , N} we have

‖cn∂M
‖L∞(Γ) ≤ C3 ‖cn∂M

‖1,∂M
,

thus using bounds on the discrete solutions (4.7) and the Cauchy-Schwarz inequality, the term

T
ΩP
α

2,3 satisfies

T
ΩP
α

2,3 (t) ≤ 2
√
MΓ max

B(0,C3M2)
|f ′s| ‖c∆t

∂M
‖L∞(0,T ;‖.‖0,∂M)

N−1∑
n=1

χn
τ (t).

Moreover, thanks to polynomial growth assumption (4.1), the Hölder inequality and Poincaré-

Sobolev inequality (4.4),

T
ΩP
α

2,5 (t) ≤2Cb

√
MΩ ‖c∆t

M
‖L∞(0,T ;‖.‖0,M)

N−1∑
n=1

χn
τ (t)

+ 2CbC
p
2 ‖c∆t

T ‖L∞(0,T ;‖.‖1,T )

N−1∑
n=1

χn
τ (t)
Ä
‖cnT ‖p−1

1,T +
∥∥cn+1

T

∥∥p−1

1,T

ä
.

Integrating the terms T
ΩP
α

2,• (t) over the time and using Lemma 4.25 and the Hölder inequality,

we obtain

∆t

∫

R

T
ΩP
α

2,1 (t) ≤ 2
√
Tτ ‖c∆t

∂M
‖L∞(0,T ;|.|1,∂M) ‖c∆t

∂M
‖L2(0,T ;|.|1,∂M) ,(4.40)

∆t

∫

R

T
ΩP
α

2,2 (t) ≤ 2
√
Tτ ‖c∆t

T ‖L∞(0,T ;|.|1,T ) ‖c∆t

T ‖L2(0,T ;|.|1,T ) ,(4.41)

∆t

∫

R

T
ΩP
α

2,3 (t) ≤ 2
√
MΓTτ max

B(0,C3M2)
|f ′s| ‖c∆t

∂M
‖L∞(0,T ;‖.‖0,∂M) ,(4.42)



28

∆t

∫

R

T
ΩP
α

2,4 (t) ≤ 2
√
Tτ ‖c∆t

M
‖L∞(0,T ;‖.‖0,M) ‖µ∆t

M
‖L2(0,T ;‖.‖0,M) ,(4.43)

and
∆t

∫

R

T
ΩP
α

2,5 (t) ≤2Cb

√
MΩTτ ‖c∆t

M
‖L∞(0,T ;‖.‖0,M)

+ 4CbC
p
2T

1
p ‖c∆t

T ‖L∞(0,T ;‖.‖1,T ) ‖c∆t

T ‖p−1
Lp(0,T ;‖.‖1,T ) .

(4.44)

Gathering the equations (4.34)-(4.44) and using bounds on the solutions (4.7) complete the

proof.

�

4.3.5. Proof of the convergence result. We are now in position to complete the proof

of Theorem 4.6. We split the proof in three steps. First, we use the previous results to prove

the existence of the limits. Then, we study the passage to the limit for the time evolution

equation (1.1a) in Ω which is easier because there are no non-linear terms. Finally, we focus

on the passage to the limit for the equation on the chemical potential (1.1b) using the equation

on Γ given by the dynamic boundary condition (1.4).

Step 1: Existence of the limits

Using the estimate of space and time translates (see Theorems 4.20 and 4.26) and the

bounds on the discrete solutions (see Proposition 4.11), there exists M > 0 independent of

size(T ), ∆t, η and τ such that,

‖ζTα

T (c∆t

T ) (., .+ η)− ζTα

T (c∆t

T )‖2L2(R×R2) ≤M |η| (|η|+ size(T ))

and ‖ζTα

T (c∆t

T ) (.+ τ, .)− ζTα

T (c∆t

T )‖2L2(R×R2) ≤Mτ.

Moreover, Definition 4.24 of the extension operator ζTα

T and Proposition 4.21 associated with

the bounds on the discrete solutions imply

‖ζTα

T (c∆t

T )‖2L2(R×R2) ≤M.

Thus, we can apply the Kolmogorov theorem and there exists a function c̃ ∈ L2((0, T )×R
2)

such that, up to a subsequence, the following convergence holds

ζTα

T (c∆t

T ) −−−−−→
m→+∞

c̃ in L2((0, T )× R
2).

Thanks to Proposition 4.23, the subsequence
Ä
(c∆t

T )
(m)
ä
m∈N

strongly converges inL2(0, T ;L2(Ω))

towards the function c = c̃|Ω ∈ L∞(0, T,H1(Ω)) and the subsequence
Ä
(c∆t

∂M
)
(m)
ä
m∈N

strongly converges in L2(0, T ;L2(Γ)) towards cpΓ = Tr c ∈ L∞(0, T ;H1(Γ)). Further-

more, the subsequence
Ä
(∇T c∆t

T )
(m)
ä
m∈N

weakly converges towards ∇c in L2(0, T ;L2(Ω))

and
Ä
(∇∂M

Γ c∆t
∂M

)
(m)
ä
m∈N

weakly converges towards ∇ΓcpΓ in L2(0, T ;L2(Γ)).

Applying Proposition 4.13 together with Proposition 4.11, the sequence
Ä
(µ∆t

T )
(m)
ä
m∈N

weakly converges, up to a subsequence, in L2(0, T, Lq(Ω)) (q ≥ 1) towards a certain µ ∈
L2(0, T,H1(Ω)).

In the sequel, for enhanced readability, the superscript (m) will be omitted.

Step 2: Convergence for the equation (4.5)

Let φ ∈ C2,1(R × R
2) such that φ(T, .) = 0 and ∇φ · ~n = 0 on (0, T ) × Γ. Since Ω is

an open subset of R2 with a C3,1-continuous boundary, the set of such function φ is dense for

the norm L2(0, T,H1(Ω)) in the set of function φ̃ ∈ C2(R× R
2) satisfying φ̃(T, .) = 0 (see

[9]).
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Multiplying equation (3.2a) by φnK := φ(tn, xK) and summing up over the interior con-

trol volumes and the times steps, we get

(4.45)
N−1∑
n=0

∑
K∈M

φn+1
K

[
mK(c

n+1
K − cnK) + ∆tΓb

∑
σ∈Eint

K

mσ

Å
µn+1

K − µn+1
L

dK,L

ã]
= 0.

The first term reads

T1 = − ∑
K∈M

mKc
0
Kφ

1
K +

N−1∑
n=1

∑
K∈M

mKc
n
K

(
φnK − φn+1

K

)
+
∑

K∈M

mK φNK︸︷︷︸
=φ(T,xK)=0

cNK ,

and using a similar reasoning to this given for example in [14, Theorem 4.2], we can prove

(4.46) T1 −−−−−−−−−→
∆t,size(T )→0

−
∫

Ω

c0(x)φ(0, x)dx−
∫ T

0

∫

Ω

c(t, x)∂tφ(t, x)dxdt.

Reordering the summations, the second term of (4.45) can be written,

T2 = Γb

N−1∑
n=0

∆t
∑

K∈M

µn+1
K

∑
σ∈Eint

K

mσ

Å
φn+1

K − φn+1
L

dK,L

ã
.

Since ∇φ · ~n = 0 on (0, T )× Ω, for any t ∈ R the Stokes formula gives

∫

K

∆φ(t, x)dx =

∫

∂K

∇φ(t, x) · ~ndσ(x) = ∑
σ∈Eint

K

∫

σ

∇φ(t, x) · ~nKσdσ(x).

Then,

(4.47)

T2 =− Γb

∫ T

0

∫

Ω

∆φ(t, x)µ∆t

M
(t, x)dx

+ Γb

N−1∑
n=0

∆t
∑

σ=K|L∈Eint

(µn+1
K − µn+1

L )Rφ
σ,n+1

where

(4.48) Rφ
σ,n+1 =

1

mσ∆t

∫ tn+1

tn

∫

σ

∇φ(t, x) · ~nKσdσ(x)dt−
φn+1

L − φn+1
K

dK,L
.

The regularity of the function φ and the bounds on the discrete solutions imply that the sec-

ond term of (4.47) tends to 0. Moreover, µ∆t
T weakly converges (up to a subsequence) in

L2(0, T ;L2(Ω)) towards µ ∈ L2(0, T ;H1(Ω)) and ∇φ · ~n = 0 on (0, T )× Ω, thus

(4.49) T2 −−−−−−−−−→
∆t,size(T )→0

Γb

∫ T

0

∫

Ω

∇φ(t, x) · ∇µ(t, x)dxdt.

Finally, since T1+T2 = 0 the convergences (4.46) and (4.49) allow to obtain the follow-

ing equality for any φ ∈ C2,1(R× R
2) such that φ(T, .) = 0 and ∇φ · ~n = 0 on (0, T )× Γ.

(4.50)

∫ T

0

∫

Ω

(−c(t, x)∂tφ(t, x) + Γb∇φ(t, x) · ∇µ(t, x)) dxdt =
∫

Ω

c0(x)φ(0, x)dx.
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By density, we obtain the equality (4.50) for any function φ ∈ C2(R × R
2) satisfying

φ(T, .) = 0.

Step 3: Convergence for the equation (4.6)

Let φ ∈ C2(R × R
2) such that φ(T, .) = 0. First, multiplying equation (3.2b) by ∆tφn+1

K

and summing up over all interior control volume K ∈ M and over all time interval [tn, tn+1].
Secondly, multiplying equation (3.2c) by φn+1

L := φ(tn+1, xL) and summing up over all

boundary control volumes L ∈ ∂M and over all time interval. Then, summing the two

identities we get

(4.51) A∆T1 + T2 +AfbT3 +A∂tT4 +A∆Γ
T5 +AfsT6 = 0

where

T1 =
N−1∑
n=0

∆t

[
∑

K∈M

φn+1
K

(
∑

σ∈Eint
K

mσ

Å
cn+1
K − cn+1

L

dK,L

ã
+

∑
σ∈Eext

K

meL

Å
cn+1
K − cn+1

L

dK,L

ã)

+
∑

σ=L∈Eext

φn+1
L meL

cn+1
L − cn+1

K

dK,L

]
,

T2 = −
N−1∑
n=0

∆t
∑

K∈M

mKφ
n+1
K µn+1

K , T5 =
N−1∑
n=0

∆t
∑

σ=L∈Eext

φn+1
L

∑
v∈VL

Ç
cn+1
L − cn+1

L′

dL,L′

å
,

T3 =
N−1∑
n=0

∆t
∑

K∈M

mKφ
n+1
K dfb(cnK, c

n+1
K ), T6 =

N−1∑
n=0

∆t
∑

σ=L∈Eext

meL
φn+1

L dfs(cnL, c
n+1
L ),

T4 =
N−1∑
n=0

∑
σ=L∈Eext

meL
φn+1

L

(
cn+1
L − cnL

)
.

We begin by the term T1. By reordering the summations and noting that for any K ∈ M

and for any t ∈ R,
∫

K

∆φ(t, x)dx− ∑
σ∈EK

∫

σ

∇φ(t, x) · ~nKσ(x)dσ(x) = 0

we get

(4.52)

T1 =−
∫ T

0

∫

Ω

c∆t

M
∆φ(t, x)dxdt+

∫ T

0

∫

Γ

c∆t

∂M
∇φ(t, x) · ~n(x)dσ(x)dt

+
N−1∑
n=0

∆t
∑

σ=K|L∈Eint

mσ

(
cn+1
K − cn+1

L

)
Rφ

σ,n+1

+
N−1∑
n=0

∆t
∑

σ=L∈Eext

meL

(
cn+1
K − cn+1

L

)
Rφ

σ,n+1

where Rφ
σ,n+1 is defined by (4.48).

Using the regularity of the function φ and the bounds on the discrete solutions the two last

terms of the right hand side of (4.52) tend to 0. Furthermore, c∆t
M

converges inL2(0, T ;L2(Ω))
towards c ∈ L2(0, T ;H1(Ω)) and c∆t

∂M
converges towards cpΓ in L2(0, T ;L2(Γ)), so

(4.53) T1 −−−−−−−−−→
∆t,size(T )→0

∫ T

0

∫

Ω

∇c(t, x) · ∇φ(t, x)dxdt.

Let us now turn to the term T2,

T2 = −
∫ T

0

∫

Ω

φ(t, x)µ∆t

M
dxdt+

N−1∑
n=0

∆t
∑

K∈M

mKµ
n+1
K Rφ

K,n
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where

(4.54) Rφ
K,n =

1

∆tmK

∫ tn+1

tn

∫

K

φ(t, x)dxdt− φ(tn+1, xK).

Since µ∆t
M

weakly converges in L2(0, T ;L2(Ω)) towards µ and noting that the second term

of the right hand side of T2 tends to 0, we get

(4.55) T2 −−−−−−−−−→
∆t,size(T )→0

−
∫ T

0

∫

Ω

φ(t, x)µ(t, x)dxdt.

Considering now the term T3. Recalling that for any x ∈ R, dfb(x, x) = f ′b(x) thus

T3 =
N−1∑
n=0

∆t
∑

K∈M

mKφ
n+1
K

(
dfb(cnK, c

n+1
K )− dfb(cn+1

K , cn+1
K )

)

+
N−1∑
n=0

∆t
∑

K∈M

mKφ
n+1
K f ′b(c

n+1
K ).

Then, the first term in the right hand side of T3 satisfies

|T3,1| ≤ C̃b

N−1∑
n=0

∆t
∑

K∈M

mK

∣∣φn+1
K

∣∣ ∣∣cn+1
K − cnK

∣∣ Ä1 + |cnK|p−2
+
∣∣cn+1

K

∣∣p−2
ä

because the assumption (4.1) gives

∣∣∣dfb(a, b)− dfb(a, a)
∣∣∣ ≤
Ç

sup
s∈[0,1]

∣∣∣D
(
dfb(a, ·)

)
(sa+ (1− s)b)

∣∣∣
å
|b− a|

≤ Cb

Ç
1 + |a|p−2 + sup

s∈[0,1]

|sa+ (1− s)b|p−2

å
|b− a|

≤ C̃b

(
1 + |a|p−2 + |b|p−2

)
|b− a|.

Hence, thanks to the Hölder inequality, we get

|T3,1| ≤ C̃b

N−1∑
n=0

∆t
∥∥φn+1

M

∥∥
0,p,M

∥∥cn+1
M

− cn
M

∥∥
0,p,M

∥∥∥1 + |cn
M
|p−2

+
∣∣cn+1

M

∣∣p−2
∥∥∥
0, p

p−2 ,M
,

thus thanks to Poincaré-Sobolev inequality (4.4) and bounds on the solutions (4.7) the term

T3,1 tends to 0 when the time step tends to 0.

With regard to the second term in the right hand side of T3, we have

T3,2 =

∫ T

0

∫

Ω

φ(t, x)f ′b(c
∆t

M
)dxdt−

N−1∑
n=0

∆t
∑

K∈M

mKf
′
b(c

n+1
K )Rφ

K,n

where Rφ
K,n is defined by the relation (4.54).

We begin with the first term in the right hand side of T3,2.

On one hand, for any r ≥ 1, thanks to Poincaré-Sobolev inequality (4.4) and bounds on the

solutions (4.7), we have

‖c∆t

M
‖2L2(0,T ;‖.‖0,r,M) ≤ C2

2 ‖c∆t

T ‖2L2(0,T ;‖.‖1,T ) ≤ C2
2TM

2
1 .

Then, c∆t
M

weakly converges (up to a subsequence) towards a certain c̃ in L2(0, T ;Lr(Ω)).
But, we know that c∆t

M
strongly converges in L2(0, T ;L2(Ω)) towards c ∈ L2(0, T ;H1(Ω)).
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Thus, c̃ = c and c∆t
M

weakly converges (up to a subsequence) in L2(0, T ;Lr(Ω)) towards c.
On the other hand, for any uM ∈ R

M and for any s ∈]0, 1] the Hölder inequality gives

‖u‖
Lr(Ω)

≤ ‖u‖s
Lp(Ω)

‖u‖1−s
Lq(Ω)

with
1

r
=
s

p
+

1− s

q
,

and with p = 2, for any t ∈ R we have

‖c∆t

M
(t, ·)− c(t, ·)‖

Lr(Ω)
≤ ‖c∆t

M
(t, ·)− c(t, ·)‖s

L2(Ω)
‖c∆t

M
(t, ·)− c(t, ·)‖1−s

Lq(Ω)

and thus,

‖c∆t

M
− c‖2L2(0,T ;Lr(Ω)) ≤ ‖c∆t

M
− c‖2sL2(0,T ;L2(Ω)) ‖c∆t

M
− c‖2(1−s)

L2(0,T ;Lq(Ω))
.

Since, c∆t
M

strongly converges in L2(0, T ;L2(Ω)) towards c, we have

‖c∆t

M
− c‖2L2(0,T ;Lr(Ω)) −−−−−−−−−→

∆t,size(T )→0
0

and thus together with the weak convergence of c∆t
M

in L2(0, T ;Lr(Ω)), we conclude that c∆t
M

strongly converges in L2(0, T ;Lr(Ω)) towards c. Thus, up to a subsequence we have

(4.56)

®
c∆t

M
(t, x) → c(t, x) a.e in (0, T )× Ω,

|c∆t

M
(t, x)| ≤ S(t, x) a.e. in (0, T )× Ω with S ∈ L2(0, T ;Lr(Ω)).

Then, thanks to polynomial growth assumption (1.6),

|f ′b (c∆t

M
(t, x))φ(t, x)| ≤ Cb

(
1 + |S(t, x)|p−1

)
|φ(t, x)| ∈ L1(0, T ; Ω).

Thus, using the dominated convergence theorem and relation (4.56), we obtain

∫ T

0

∫

Ω

f ′b (c
∆t

M
(t, x))φ(t, x)dxdt −−−−−−−−−→

∆t,size(T )→0

∫ T

0

∫

Ω

f ′b (c(t, x))φ(t, x)dxdt.

Owing to polynomial growth assumption (1.6), Sobolev-Poincaré inequality (4.4) and bounds

on the solutions (4.7), the second term in the right hand side of T3,2 tends to 0, thus

(4.57) T3 −−−−−−−−−→
∆t,size(T )→0

∫ T

0

∫

Ω

f ′b (c(t, x))φ(t, x)dxdt.

Let us now study the convergence of the term T4.

T4 = − ∑
L∈∂M

meL
c0Lφ

1
L +

N−1∑
n=1

∑
L∈∂M

meL
cnL
(
φnL − φn+1

L

)
+

∑
L∈∂M

meL
φNL︸︷︷︸

φ(T,xL)=0

cNL .

As for the term T1 in the step 2, we use a similar reasoning to this given in [14, Theorem 4.2]

to obtain,

(4.58) T4 −−−−−−−−−→
∆t,size(T )→0

−
∫ T

0

∫

Γ

cpΓ(t, x)∂tφ(t, x)dσ(x)dt−
∫

Γ

Tr c0(x)φ(0, x)dσ(x).

Now, we focus on the term T5. Reordering the terms and noting that for any L ∈ ∂M,

∫

L

∆Γφ(t, x)dσ(x) =
∑

v∈VL

∇Γφ(t,v) · ~τ v,L, ∀t ∈ R;
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where ~τ
v,L = nvL~τ is the unit tangent vector going from L to L

′; we have

T5 = −
∫ T

0

∫

Γ

c∆t

∂M
∆Γφ(t, x)dσ(x)dt+

N−1∑
n=0

∆t
∑

v=L|L′∈V

(
cn+1
L − cn+1

L′

)
Rφ

v,n+1

where,

Rφ
v,n+1 =

1

∆t

∫ tn+1

tn

Ç
∇Γφ(t,v)nvL − φn+1

L′ − φn+1
L

dL,L′

å
dt.

Using the regularity of the function φ and bounds on the solutions (4.7) the second term of

the right hand side of T5 tends to 0. Then, since c∆t
∂M

converges in L2(0, T ;L2(Γ)) towards

cpΓ ∈ L2(0, T ;H1(Γ)), we finally obtain

(4.59) T5 −−−−−−−−−→
∆t,size(T )→0

∫ T

0

∫

Γ

∇ΓcpΓ(t, x) · ∇Γφ(t, x)dσ(x)dt.

To finish, as regards the term T6, a similar reasoning that for the term T3 implies

(4.60) T6 −−−−−−−−−→
∆t,size(T )→0

∫ T

0

∫

Γ

f ′s (cpΓ(t, x))φ(t, x)dσ(x)dt.

Gathering the relation (4.51) and the convergences (4.53), (4.55), (4.57), (4.58), (4.59)

and (4.60), we conclude the proof.

5. Numerical experiments. In this section, we present some numerical experiments.

In order to validate the scheme, we first give numerical error estimates. Then, we present

qualitative results to compare the scheme (3.2) with another scheme used in the literature.

In all tests below, in order to ensure orthogonality conditions for the mesh T , we take a

Delaunay triangulation of the domain Ω and for any K ∈ M, xK is the circumcenter of K and

for any L ∈ ∂M, yL is the middle of the chord eL. We choose the bulk potential equal to the

double-well function fb(c) = c2(1 − c)2 and the corresponding semi-implicit discretization

is given by

dfb(x, y) = fb

(x+ y

2

)
− 1

2
(1− x− y)(x− y)2.

Moreover, let us remark that at each time step, we have to use a Newton method (because of

non-linear terms). However, its convergence is achieved in a few inner iterations.

5.1. Numerical error estimates. In this subsection, we compare the discrete solution

obtained with the finite-volume scheme with the exact solution. However, there is no explicit

non trivial solution, thus we have to modify the Cahn-Hilliard equation (1.7). Indeed, we

have to build an exact solution and to add a source term gb in equation (1.1a), another one gs
in equation (1.4) and the chemical potential µ have to satisfy a non homogeneous Neumann

boundary condition.

The domain Ω is the unit circle, thus we can easily obtain the exact coordinates of the centers

xL. For a fixed time tn > 0, for any K ∈ M (respectively for any L ∈ ∂M) we can

compare the exact solution c(tn, xK) (respectively c(tn, xL)) with the approximate solution

cnK (respectively cnL). We choose the exact solution c(t, (x, y)) = 1
2 (1 + tanh(5(x + t)) and

we plot, at time T = N∆t = 0.5, the following norms

∥∥eT
M

∥∥
L2(Ω)

‖cT
M
‖
L2(Ω)

,

∥∥eT∂M

∥∥
L2(Γ)

‖cT∂M
‖

L2(Γ)

,

∣∣eTT
∣∣
1,T

|cTT |1,T
and

∣∣eT∂M

∣∣
1,∂M

|cT∂M
|1,∂M

,
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where eTT = (eT
M
, eT∂M

) and cTT = (cT
M
, cT∂M

) with

eT
M

=
(
c(T, xK)− cNK

)
K∈M

, eT∂M
=
(
c(T, xL)− cNL

)
L∈∂M

and cT
M

= (c(T, xK))K∈M
, cT∂M

= (c(T, xL))L∈∂M
.

Then, we plot (see Fig. 5.1 and 5.2) these relative errors

• when the mesh size size(T ) going to 0 and fixed time step;

• when the time step ∆t tends to 0 and fixed mesh size.

We choose the following parameters: ε = 0.5, Γb = σb = 0.1 for the bulk and Γs = 10,

σs = 5 for the surface and fb(c) = fs(c) = c2(1− c)2 for the Cahn-Hilliard potentials.
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Fig. 5.1: Relative errors in L2-norms

As expected, in each case, we observe the first order convergence in time above a certain

threshold which depends on the mesh size (see Fig. 5.1b, 5.1d, 5.2b and 5.2d). As regards the

space convergence, above a certain threshold depending on the time step we observe:

• The second order convergence in discrete L2-norm both in Ω and on Γ (see Fig. 5.1a

et 5.1c). This super-convergence phenomenon is not surprising because it is also
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Fig. 5.2: Relative errors in H1-discrete seminorms

known for the Laplace problem. From a theoretical point of view this second order

convergence remains an open problem.

• When the mesh size is refined, a first order convergence in discrete H1-norm in Ω
(see Fig. 5.2a) which is the expected result.

• A second order convergence in discrete H1-norm on Γ (see Fig. 5.2c). We expect a

first order convergence but we observe this super-convergence because of the partic-

ular geometry of the boundary mesh.

5.2. Spinodal decomposition. In this subsection, we observe the influence of the dy-

namic boundary conditions on the phase separation dynamics. The results below are obtained

with a smooth curved domain without particular geometry with a mesh size size(T ) ∼ 0.065
and a fixed random initial concentration with a fluctuation between 0.49 and 0.51. Let us

remark that for all the test cases below, the initial data is exactly the same.

5.2.1. Influence of the surface diffusion term. We begin by observing the influence

of the Laplace-Beltrami operator on the phase separation dynamics. To this end, we choose
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the following fixed parameters: Γb = 0.15, σb = 0.006, ε = 0.07 and Γs = 10 and we vary

the surface capillarity coefficient σs = 0 or σs = 5. To compare the results we also consider

the case where the order parameter satisfies the homogeneous Neumann boundary condition.

Let us notice that in the previous analysis we always assume that σs > 0 and thus from a

theoretical point of view the case σs = 0 has not been dealt with. We choose a constant time

step ∆t = 10−3 and we plot:

• The solution at the time t = 0.09 in Ω for the three different boundary conditions.

The pure phase c = 1 appears in red, the pure phase c = 0 in blue and the homoge-

neous concentration c = 0.5 is in white.

• The trace of the solution at the same time in function of the curvilinear abscissa by

starting from a given point of Γ and running along the boundary in the anticlockwise.

(a) Neumann B.C., Solution in Ω

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Curvilinear abscissa

T
ra

ce
o
f

th
e

so
lu

ti
o
n

(b) Neumann B.C., Trace of the solution

(c) σs = 0, Solution in Ω
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(d) σs = 0, Trace of the solution

(e) σs = 5, Solution in Ω
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(f) σs = 5, Trace of the solution

Fig. 5.3: Solution at time t = 0.09

We observe that several behaviours appear:

• the phase separation is faster with the dynamic boundary conditions than with the

Neumann boundary conditions;

• particular structures whose length scale depends on σs: these structure are larger

than those which appear in the bulk when σs > 0 and shorter than those when

σs = 0 (which is in accordance with [12]);

• when σs = 0 the trace of the solution quickly oscillates between the values 0 and 1
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(approximatively) while for σs = 5 the value of the trace is much more regular since

larger scale structures appear.

• we see emerging patterns which are organized parallel to the boundary.

5.2.2. Preferential attraction by the wall. Here, we consider the case where the physi-

cal properties of the wall are such that one of the two components is attracted preferentially by

the wall. To model this phenomenon, we consider the surface potential fs(c) =
gs
2 c

2− hs+gs
2 c

with gs > 0, thus

• when hs = 0 the minimum of fs is in c = 1
2 thus the wall has the same behaviour

with respect to the two components;

• when hs > 0 the minimum of fs is in c = hs+gs
2gs

> 1
2 thus the wall attracts

preferentially the phase c = 1;

• conversely when hs < 0 the minimum of fs is in c = hs+gs
2gs

< 1
2 thus the wall

attracts preferentially the phase c = 0.

Let us notice that the semi-implicit discretization of this surface potential is written

dfs(x, y) = f ′s

(x+ y

2

)
.

We choose the following fixed parameters: Γb = 0.3, σb = 0.008, ε = 0.1, σs = 0.1,

Γs = 10 and gs = 1 and we vary the coefficient hs. These results are given at time t = 0.25
with a time step ∆t = 10−3.

(a) hs = 0
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(b) hs = 0

(c) hs = 0.2
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(d) hs = 0.2

Fig. 5.4: Influence of the parameter hs

The parallel structures that we observe when hs = 0 (see Fig.5.4a) are similar to those

observed in [6, 16] and the alternation between the phases confirms that the wall does not

prefer one of the two components. On the other hand, in Fig. 5.4c the wall exerts a preferential

attraction on the phase c = 1 (in red) that is in accordance with the choice of hs > 0.

6. Conclusion. We proposed here a finite-volume scheme for the Cahn-Hilliard equa-

tion with dynamic boundary conditions in a smooth domain.
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At the theoretical level, we are able to show the convergence of the discrete solution

towards a weak solution of the continuous problem (and thus, in particular, the existence of

this solution). For this purpose, we give a new space translation estimates which gives a limit

in L∞(0, T,H1(Ω)) whose trace is in L∞(0, T,H1(Γ)).
At the numerical level, the method allows an easy implementation for the coupling be-

tween the equation in the domain and whose on its boundary even with a curved geometry for

the domain. We have also presented numerical error estimates which allow us to validate the

scheme and simulations which illustrate the different properties of the Cahn-Hilliard model

with dynamic boundary conditions depending on physical properties of the system.

In [5] we give a more complex method called DDFV method to solve this problem

which enables us to use more general meshes without orthogonality condition as for exam-

ple non-conforming mesh. We also propose an original DDFV scheme to study the Cahn-

Hilliard/Stokes phase field model.

REFERENCES

[1] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-Lions-type elliptic

problems on general 2D meshes. Numer. Methods Partial Differential Equations, 23(1):145–195, 2007.

[2] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and F. Filbet. On discrete functional inequalities for some

finite volume schemes. to appear, http://hal.archives-ouvertes.fr/hal-00672591.

[3] P. Bousquet, F. Boyer, and F. Nabet. On a functional inequality arising in the analysis of finite volume

methods. in preparation, 2014.

[4] F. Boyer and S. Minjeaud. Numerical schemes for a three component Cahn-Hilliard model. ESAIM Math.

Model. Numer. Anal., 45(4):697–738, 2011.

[5] F. Boyer and F. Nabet. A DDFV method for a Cahn-Hilliard-Stokes phase field model. in preparation, 2014.

[6] L. Cherfils, M. Petcu, and M. Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic

boundary conditions. Discrete Contin. Dyn. Syst., 27(4):1511–1533, 2010.

[7] R. Chill, E. Fašangová, and J. Prüss. Convergence to steady state of solutions of the Cahn-Hilliard and

Caginalp equations with dynamic boundary conditions. Math. Nachr., 279(13-14):1448–1462, 2006.

[8] K. Deimling. Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.

[9] J. Droniou. A density result in Sobolev spaces. J. Math. Pures Appl. (9), 81(7):697–714, 2002.

[10] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of Numerical Analysis, 7:713–

1018, 2000.

[11] R. Eymard and T. Gallouët. H-convergence and numerical schemes for elliptic problems. SIAM J. OF NUM.

ANAL, pages 539–562, 2002.

[12] H.P. Fischer, P. Maass, and W. Dieterich. Novel surface modes in spinodal decomposition. Phys. Rev. Lett.,

79:893–896, Aug 1997.

[13] H.P. Fischer, P. Maass, and W. Dieterich. Diverging time and length scales of spinodal decomposition modes

in thin films. EPL (Europhysics Letters), 42(1):49–54, 1998.

[14] T. Gallouët, R. Herbin, A. Larcher, and J.-C. Latché. Analysis of a fractional-step scheme for the p1 radiative

diffusion model. to appear, http://hal.archives-ouvertes.fr/hal-00477086.

[15] G. Gilardi, A. Miranville, and G. Schimperna. On the Cahn-Hilliard equation with irregular potentials and

dynamic boundary conditions. Commun. Pure Appl. Anal., 8(3):881–912, 2009.

[16] R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, and W. Dieterich. Phase separa-

tion in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions.

j-COMP-PHYS-COMM, 133:139–157, Jan 2001.

[17] A. Miranville and S. Zelik. Exponential attractors for the Cahn-Hilliard equation with dynamic boundary

conditions. Math. Methods Appl. Sci., 28(6):709–735, 2005.

[18] J. Prüss, R. Racke, and S. Zheng. Maximal regularity and asymptotic behavior of solutions for the Cahn-

Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl. (4), 185(4):627–648, 2006.

[19] R. Racke and S. Zheng. The Cahn-Hilliard equation with dynamic boundary conditions. Adv. Differential

Equations, 8(1):83–110, 2003.

[20] H. Wu and S. Zheng. Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary

conditions. J. Differential Equations, 204(2):511–531, 2004.

http://hal.archives-ouvertes.fr/hal-00672591
http://hal.archives-ouvertes.fr/hal-00477086

