Tracking in Presence of Total Occlusion and Size Variation using Mean Shift and Kalman Filter

Abstract : The classical mean shift algorithm for tracking in perfectly arranged conditions constitutes a good object tracking method. However, in the real environment it presents some limitations, especially under the presence of noise, objects with varying size, or occlusions. In order to deal with these problems, this paper proposes a reliable object tracking algorithm using mean shift and the Kalman filter, which was added to the traditional algorithm as a predictor when no reliable model of the object being tracked is found. Experimental work demonstrates that the proposed mean shift Kalman filter algorithm improves the tracking performance of the classical algorithms in complicated real scenarios. The results involve the tracking of an object in a gray level and in a color sequence, with varying size and in presence of total occlusion.
Type de document :
Communication dans un congrès
2011 IEEE/SICE International Symposium on System Integration, Dec 2011, Kyoto, Japan
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00749631
Contributeur : Oscar Efrain Ramos Ponce <>
Soumis le : jeudi 8 novembre 2012 - 10:41:14
Dernière modification le : mercredi 11 janvier 2017 - 01:04:24
Document(s) archivé(s) le : samedi 9 février 2013 - 03:41:51

Fichier

trackingKalman2011.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00749631, version 1

Citation

Oscar Efrain Ramos Ponce, Mohammad Ali Mirzaei, Frédéric Merienne. Tracking in Presence of Total Occlusion and Size Variation using Mean Shift and Kalman Filter. 2011 IEEE/SICE International Symposium on System Integration, Dec 2011, Kyoto, Japan. <hal-00749631>

Partager

Métriques

Consultations de
la notice

253

Téléchargements du document

362