S. Basu, R. Pollack, and M. Roy, Computing roadmaps of semi-algebraic sets on a variety, Journal of the American Mathematical Society, vol.13, issue.01, pp.55-82, 2000.
DOI : 10.1090/S0894-0347-99-00311-2

S. Basu, R. Pollack, and M. Roy, Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, vol.10, issue.46, pp.41-42, 2006.
DOI : 10.1007/978-3-662-05355-3

URL : https://hal.archives-ouvertes.fr/hal-01083587

S. Basu, R. Pollack, and M. Roy, Algorithms in real algebraic geometry, volume 10 of Algorithms and Computation in Mathematics, pp.30-31, 2011.

J. Bochnak, M. Coste, and M. Roy, Géométrie algébrique réelle (Second edition in english: Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas, pp.1987-1999, 1998.

J. Canny, The Complexity of Robot Motion Planning, 1987.

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompostion, Second GI Conference on Automata Theory and Formal Languages, pp.134-183, 1975.
DOI : 10.1007/3-540-07407-4_17

M. Coste, H. Lombardi, and M. Roy, Dynamical method in algebra: effective Nullstellens??tze, Annals of Pure and Applied Logic, vol.111, issue.3, pp.203-256, 2001.
DOI : 10.1016/S0168-0072(01)00026-4

M. Safey, E. Din, and . Schost, A Baby Steps/Giant Steps Probabilistic Algorithm for??Computing Roadmaps in Smooth Bounded Real Hypersurface, Discrete & Computational Geometry, vol.43, issue.3, pp.181-220, 2008.
DOI : 10.1007/s00454-009-9239-2

L. Gournay and J. J. Risler, Construction of roadmaps in semi-algebraic sets, Applicable Algebra in Engineering, Communication and Computing, vol.192, issue.4, pp.239-252, 1993.
DOI : 10.1007/BF01200148

D. Grigoriev and N. Vorobjov, Counting connected components of a semialgebraic set in subexponential time, Computational Complexity, vol.43, issue.2, pp.133-186, 1992.
DOI : 10.1007/BF01202001

D. Yu, J. Grigoriev, M. Heintz, P. Roy, N. N. Solernó et al., Comptage des composantes connexes d'un ensemble semi-algébrique en temps simplement exponentiel, C. R. Acad. Sci. Paris Sér. I Math, issue.13 1, pp.311879-882, 1990.

J. Heintz, M. Roy, and P. Solernò, Single Exponential Path Finding in Semi-algebraic Sets, Part II: The General Case, Algebraic geometry and its applications, pp.449-465, 1990.
DOI : 10.1007/978-1-4612-2628-4_28

J. Heintz, M. Roy, and P. Solernó, Single exponential path finding in semialgebraic sets Part I: The case of a regular bounded hypersurface, Applied algebra, algebraic algorithms and error-correcting codes, pp.180-196, 1990.
DOI : 10.1007/3-540-54195-0_50

J. Schwartz and M. Sharir, On the ???piano movers??? problem. II. General techniques for computing topological properties of real algebraic manifolds, Advances in Applied Mathematics, vol.4, issue.3, pp.298-351, 1983.
DOI : 10.1016/0196-8858(83)90014-3

N. N. Vorobjov, J. , D. Yu, and . Grigoriev, Determination of the number of connected components of a semi-algebraic set in subexponential time, Dokl. Akad. Nauk SSSR, issue.5 1, pp.3141040-1043, 1990.