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Finite-Time Blowup and Existence of Global

Positive Solutions of a Semi-Linear SPDE

with Fractional Noise

M. Dozzi E. T. Kolkovska J.-A. López-Mimbela

Abstract

We consider stochastic equations of the prototype

du(t, x) =
(
∆u(t, x) + γu(t, x) + u(t, x)1+β

)
dt+ κu(t, x) dBHt

on a smooth domain D ⊂ IRd, with Dirichlet boundary condition, where β > 0, γ and κ
are constants and {BHt , t ≥ 0} is a real-valued fractional Brownian motion with Hurst
index H > 1/2. By means of an associated random partial differential equation we
estimate the probability of existence of non-trivial positive global solutions.

2000 Mathematics Subject Classifications: 35R60, 60H15, 74H35

Key words and phrases: Blowup of semi-linear equations, stochastic partial differ-
ential equations, weak and mild solutions

1 Introduction and background

In a classical paper [7], Fujita proved that for a bounded smooth domain D ⊂ IRd, the
equation

∂u(t, x)

∂t
= ∆u(t, x) + u1+β(t, x), x ∈ D,

with Dirichlet boundary condition, where β > 0 is a constant, explodes in finite time for all
nonnegative initial values u(0, x) ∈ L2(D) satisfying

∫

D

u(0, x)ψ(x) dx > λ
1/β
1 . (1)

Here λ1 > 0 is the first eigenvalue of the Laplacian on D and ψ the corresponding eigenfunc-
tion normalized so that ‖ψ‖L1 = 1.
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In this paper we consider a stochastic analog of the above equation, namely we investigate
the semi-linear SPDE

du(t, x) = (∆u(t, x) + γu(t, x) +G(u(t, x))) dt+ κu(t, x) dBH
t , t > 0,

u(0, x) = f(x) = 0, x ∈ D, (2)

u(t, x) = 0, t = 0, x ∈ ∂D,

where G : IR→ IR+ is locally Lipschitz and satisfies

G(z) ≥ Cz1+β for all z > 0, (3)

C > 0, γ, β > 0 and κ are given numbers, {BH
t , t ≥ 0} is a one-dimensional fractional

Brownian motion with Hurst indexH > 1/2 on a stochastic basis (Ω,F , P ), and f : D → IR+
is of class C2 and not identically zero. We assume (3) in sections 1 to 3 only; it is replaced
by (13) in sections 4 and 5.

The results on global solutions of parabolic equations perturbed by an additive or mul-
tiplicative time or space-time fractional noise established up to now are sufficient to state
the existence and uniqueness of the variational (weak) and of the mild solution of (2) and
the equivalence of both; see Maslowski and Nualart [8], Nualart and Vuillermot [11], and
Sanz and Vuillermot [16], where the integral with respect to BH is understood in the sense
of fractional calculus (see e.g. Zähle [18], [19]). Let us recall the notions of variational and
mild solutions we are going to use here; see [11], [16]. Let α ∈ (1 − H, 1

2
), t > 0, and

let Bα,2([0, t], L2(D)) be the Banach space of all measurable mappings u : [0, t] → L2(D)
endowed with the norm ‖ · ‖α,2, defined by

‖u‖2α,2 =
(
ess sup
s∈[0,t]

‖u(s, ·)‖2
)2
+

∫ t

0

ds

(∫ s

0

dr
‖u(s, ·)− u(r, ·)‖2

(s− r)α+1

)2
<∞

where ‖ · ‖2 is the usual norm in L2(D). An L2(D)−valued random field u = {u(t, ·), t ≥ 0}
is a variational solution of (2) on the interval ]0, %[ if, a.s.,

u ∈ L2([0, t], H1(D)) ∩ Bα,2([0, t], L2(D)) (4)

for all t < % and if, for every ϕ ∈ H1(D) vanishing on ∂D,

∫

D

u(t, x)ϕ(x) dx =

∫

D

f(x)ϕ(x) dx

+

∫ t

0

∫

D

[〈∇u(s, x),∇ϕ(x)〉Rd + γu(t, x)ϕ(x) +G(u(s, x))ϕ(x)] dx ds

+ κ

∫ t

0

∫

D

u(s, x)ϕ(x) dx dBH
s P — a.s.

for all t ∈ [0, %[. The requirement for u to belong to the Bα,2 spaces implies that the
integral with respect to BH exists as a generalized Stieltjes integral in the sense of [19], see
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Proposition 1 in [11]. Let {St, t = 0} be the semigroup of d-dimensional Brownian motion
with variance parameter 2, killed at the boundary of D. An L2(D)−valued random field
u = {u(t, ·), t = 0} is a mild solution of (2) on the interval ]0, τ [ if (4) holds a.s. for all t < τ
and if

u(t, x) = Stf(x) +

∫ t

0

[γSt−r(u(r, ·))(x) + St−r(G(u(r, ·))(x)] dr + κSt−r(u(r, ·))(x) dBH
r

P -a.s. and x-a.e. in D

for all t ∈]0, τ [ (see e.g. [14], Chapter IV). Let us remark that the proof of the uniqueness of
the mild solution and the equivalence of the variational and the mild solutions are carried
out in [16] under the conditions H ∈ (4d+1

4d+2
, 1) and α ∈ (1−H, 1

4d+2
), and for the more general

case where BH is a space-dependent fractional Brownian motion. For an approach based on
stochastic integrals in the Wick sense we refer to [12]. The positivity of the solution of (2)
will be addressed in the next section.

Our aim in this communication is to study the blowup behaviour of u by means of the
random partial differential equation of section 2 (see (6) below). The case of H = 1/2, in
which {BH

t } is a standard one-dimensional Brownian motion, was investigated in [4]. There
we obtained estimates of the probability of blowup and conditions for the existence of a
global solutions of (2) with H = 1/2 and γ = 0. Following closely the approach in [4], here
we are going to derive the same kind of bounds for the positive solutions of Equation (2),
in the case H > 1/2 and with a constant drift in the non-random linear part. Moreover, we
obtain useful lower and upper bounds τ ∗, τ

∗ for the explosion time % of (2). We remark that
both, the estimates we obtain and the distributions of the random times τ ∗, τ

∗, are given in
terms of exponential functionals of BH of the form

∫ t

0

e(−λ1+γ)βs+κβB
H
s ds and

∫
∞

0

e(−λ1+γ)βs+κβB
H
s ds. (5)

When H = 1/2 the distribution of the integrals above can be obtained, respectively, from
Dufresne’s and Yor’s formuale [5, 17]. However, to our knowledge such precise results are not
presently available for H 6= 1/2. It remains a challenge to obtain more accurate information
on the explosion times of (2).

We describe in sections 3 and 4 the blowup behaviour of the solution v of this random
partial differential equation in terms of the first eigenvalue and the first eigenfunction of
the Laplace operator on D. This is done by solving explicitly a stochastic equation in the
time variable which is obtained from the weak form of (6). The solution of this differential
equation can be written in terms of integrals of the exponential of fractional Brownian motion
with drift. Near the end of the paper, sufficient conditions for v to be a global solution are
given in terms of the semigroup of the Laplace operator using recent sharp results on its
transition density. These conditions show in particular that the initial condition f has to be
small enough in order to avoid for a given G the blowup of v, as well as a sufficiently small
|γ| and a sufficiently big β. The results presented here can be used to investigate the blowup
behaviour of u for non-linearities satisfying (3) or (13).
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2 Weak solutions of a random PDE

In this section we investigate the random partial differential equation

∂v

∂t
(t, x) = ∆v(t, x) + γv(t, x) + e−κB

H
t G(eκB

H
t v(t, x)), t > 0, x ∈ D,

v(0, x) = f(x), x ∈ D, (6)

v(t, x) = 0, x ∈ ∂D.

This equation is understood trajectorywise and classical results for partial differential equa-
tions of parabolic type apply to show existence and uniqueness of a solution v(t, x) up to
eventual blowup (see e.g. Friedman [6] Chapter 7, Theorem 9). Moreover,

v(t, x) = eγtStf(x) +

∫ t

0

eγ(t−s)St−s

(
e−κB

H
s G(eκB

H
s v(s, x)

)
ds, (7)

and therefore v(t, x) ≥ eγtStf(x) ≥ 0.

Proposition 1 Let u be a weak solution of (2). Then the function v defined by

v(t, x) = e−κB
H
t u(t, x), t ≥ 0, x ∈ D,

solves (6).

Remark 2 Proposition 1 implies in particular that Eq. (2) possesses a strong local solution
u(t, x). Moreover, u(t, x) ≥ 0 due to (7).

Proof. By Itô’s formula for BH (see e.g. [10], Lemma 2.7.1)

e−κB
H
t = 1− κ

∫ t

0

e−κB
H
s dBH

s .

We notice that the last integral can be defined as a Riemann-Stieltjes integral. Let us write
u(t, ϕ) ≡

∫
D
u(t, x)ϕ(x) dx. Then the weak solution of (2) can be written as

u(t, ϕ) = u(0, ϕ) +

∫ t

0

u(s,∆ϕ) ds+

∫ t

0

[γu(s, ϕ) +G(u)(s, ϕ)] ds+ κ

∫ t

0

u(s, ϕ) dBH
s .

By applying the integration by parts formula, which is a special case of the 2-dimensional
Itô’s formula (see [10], p. 184), we get

v(t, ϕ) :=

∫

D

v(t, x)ϕ(x) dx

= v(0, ϕ) +

∫ t

0

e−κB
H
s du(s, ϕ) +

∫ t

0

u(s, ϕ)
(
−κe−κBHs dBH

s

)
.
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Therefore,

v(t, ϕ) = v(0, ϕ) +

∫ t

0

e−κB
H
s [u(s,∆ϕ) + γu(s, ϕ) +G(u)(s, ϕ)] ds+ κ

∫ t

0

e−κB
H
s u(s, ϕ) dBH

s

−κ
∫ t

0

e−κB
H
s u(s, ϕ) dBH

s

= v(0, ϕ) +

∫ t

0

[
v(s,∆ϕ) + γv(s, ϕ) + e−κB

H
s G(eκB

H
· v)(s, ϕ)

]
ds.

Moreover, by self-adjointness of the Laplacian, and the fact that ϕ(x) = 0 for x ∈ ∂D,

v(s,∆ϕ) =

∫

D

v(s, x)∆ϕ(x) dx =

∫

D

∆v(s, x)ϕ(x) dx = ∆v(s, ϕ).

�

In what follows % denotes the blowup time of Eq. (6). Due to Proposition 1 and to the
a.s. continuity of BH

. , % is also the explosion time of Eq. (2).

3 An upper bound for %

Without loss of generality, let us assume that C = 1 in (3). Let ψ be the eigenfunction
corresponding to the first eigenvalue λ1 of the Laplacian onD, normalized by

∫
D
ψ(x) dx = 1.

It is well-known that ψ is strictly positive on D. Due to Proposition 1 we have that

v(t, ψ) = v(0, ψ) +

∫ t

0

[v(s,∆ψ) + γv(s, ψ)] ds+

∫ t

0

e−κB
H
s G(eκB

H
. v)(s, ψ) ds.

Moreover,

v(s,∆ψ) = −λ1v(s, ψ),
and, due to (3),

∫

D

e−κB
H
s G(eκB

H
s v(s, x))ψ(x) dx ≥ eκβB

H
s

∫

D

v(s, x)1+βψ(x) dx.

By Jensen’s inequality

∫

D

v(s, x)1+βψ(x) dx ≥
[∫

D

v(s, x)ψ(x) dx

]1+β
= v(s, ψ)1+β,

and therefore

d

dt
v(t, ψ) ≥ (−λ1 + γ)v(t, ψ) + eκβB

H
t v(t, ψ)1+β. (*)
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Hence v(t, ψ) ≥ I(t) for all t ≥ 0, where I(·) solves

d

dt
I(t) = (−λ1 + γ)I(t) + eκβB

H
s I(t)1+β , I(0) = v(0, ψ),

and is given by

I(t) = e(−λ1+γ)t
[
v(0, ψ)−β − β

∫ t

0

e(−λ1+γ)βs+κβB
H
s ds

]− 1
β

, 0 ≤ t < τ ∗,

with

τ ∗ := inf

{
t ≥ 0

∣∣∣∣ e
(−λ1+γ)βs+κβBHs ds ≥ 1

β
v(0, ψ)−β

}
. (8)

It follows that I exhibits finite time blowup on the event [τ ∗ <∞]. Due to I 5 v(·, ψ), τ ∗ is
an upper bound for the blowup time of v(·, ψ). Since by assumption

∫
D
ψ(x) dx = 1, v(t, x)

cannot be bounded on [τ ∗ < ∞]. Hence τ ∗ is also an upper bound for the blowup times of
v and u.

We subsume the above argumentation into the following corollary.

Corollary 3 The function v(t, ψ) =
∫
D
v(t, x)ψ(x) dx explodes in finite time on the event

[τ ∗ <∞], hence u(t, x) = eκB
H
t v(t, x) also explodes in finite time if τ ∗ <∞, and the blowup

times of u and v are the same.

Remark 4 Notice that, from (8),

P [τ ∗ = +∞] = P

[∫ t

0

e(−λ1+γ)βs+κβB
H
s ds <

1

β
v(0, ψ)−β for all t > 0

]

= P

[∫
∞

0

e(−λ1+γ)βs+κβB
H
s ds 5

1

β
v(0, ψ)−β

]
. (9)

Assume now that γ > λ1, and recall the law of the iterated logarithm for BH (ref: Arc) :

lim inf
t→+∞

BH
t

tH
√
log log t

= −1, lim sup
t→+∞

BH
t

tH
√
log log t

= +1.

It follows that the integral in eqref diverges. Therefore P [τ ∗ = +∞] = 0 and any nontrivial
positive solution of Eq. (2) explodes in finite time a.s.. If γ < λ1 this is not true anymore,
and it would be interesting to estimate this probability. As mentioned in the introduction,
the law of these integrals is known only in the case H = 1

2
, i.e. for Brownian motion. After

the following remark we consider this case in more detail.

Remark 5 By putting κ = γ = 0 we get v = u and, moreover, in (9) we obtain that

P [τ ∗ = +∞] = 0 or 1 according to
∫
D
f(x)ψ(x) dx > λ

1/β
1 or

∫
D
f(x)ψ(x) dx ≤ λ

1/β
1 , which

is a probabilistic counterpart to condition (1).
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For H = 1
2
Itô’s formula contains a second order term and the associated random PDE

therefore reads (we write W instead of B1/2)

∂v

∂t
(t, x) = ∆v(t, x) + (γ − κ2

2
)v(t, x) + e−κWtG(eκWtv(t, x)), t > 0, x ∈ D,

v(0, x) = f(x), x ∈ D, (10)

v(t, x) = 0, x ∈ ∂D.

We get again a differential inequality for v(t, ψ), and the blowup time of the associated
differential equation for I is

˜
τ
∗

= inf

{
t ≥ 0

∫ t

0

e−(λ1+κ
2/2−γ)βs+κβWs ds ≥ 1

β
v(0, ψ)−β

}
. (**)

Now

P [
˜
τ
∗

= +∞] = P

[∫
∞

0

e−(λ1+κ
2/2−γ)βs+κβWs ds 5

1

β
v(0, ψ)−β

]

= P

[∫
∞

0

e2
ˆ
βW

(µ)
s ds 5

1

β
v(0, ψ)−β

]
, (11)

where W
(µ)
s := µs +Ws, µ := −(λ1 − γ + κ2/2)/κ, and β̂ := κβ/2. Setting µ̂ = µ/β̂ we

get by performing the time change s 7−→ s(β̂)2,

P [
˜
τ
∗

= +∞] = P

[
4

κ2β2

∫
∞

0

exp(2W (µ̂)
s ) ds 5

1

β
v(0, ψ)−β

]
. (12)

If
ˆ
µ = −(λ1 − γ + κ2/2)/κβ > 0, it follows again that P [

˜
τ
∗

= +∞] = 0 and any nontrivial
positive solution of Eq. (2) with BH replaced by W explodes in finite time a.s., see also [9],

Proposition 6.4, or [15], Section 2. If
ˆ
µ < 0, it follows from [17] (Chapter 6, Corollary 1.2)

that ∫
∞

0

exp(2W (µ̂)
s ) ds =

1

2Z−µ̂

in distribution, where Z−µ̂ is a random variable with law Γ(−µ̂), i.e. P (Z−µ̂ ∈ dy) =
1

Γ(−µ̂)
e−yy−µ̂−1dy. We get therefore (see also formula 1.10.4(1) in [3])

P [
˜
τ
∗

= +∞] =
∫ 1

β
v(0,ψ)−β

0

h(y)dy,

where

h(y) =
(κ2β2y/2)(2(λ1−γ)+κ

2)/κ2β

yΓ((2(λ1 − γ) + κ2)/(κ2β))
exp

(
− 2

κ2β2y

)
.

In this way we have proved the following
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Proposition. The probability that the solution of (2) (ref: ) with BH replaced by W
blows up in finite time is lower bounded by

∫ +∞
1
β
v(0,ψ)−β

h(y) dy.

We end this section by reviewing another method to find upper estimates of the blowup

time of the solution of (2). In cite: BDS it is shown that the formula (**) for
˜
τ
∗

can also
be found by replacing the random differential inequality (*) by a stochastic differential
inequality, whose associated equality can be solved explicitely. A comparison theorem for
stochastic differential inequalities is needed for this, and since no such theorem seems to
be known at present for inequalities with fractional Brownian motion, we have to restrict
ourselves to Brownian motion where these theorems are classical.

Proceeding with the variational solution in section 1 in the same way as with the random
PDE ref : Eq3 at the beginning of this section, we get the following stochastic differential
inequality

u(t, ψ) = u(0, ψ) +

∫ t

0

[(γ − λ1)u(s, ψ) + u(s, ψ)
1+β] ds+ κ

∫ t

0

u(s, ψ) dWs.

The corresponding stochastic differential equation

Xt = u(0, ψ) +

∫ t

0

[(γ − λ1)Xs +X
1+β
s ] ds+ κ

∫ t

0

Xs dWs

can be solved explicitely. In fact, by the ansatz Yt = h(Xt) and by Itô’s formula, we then
get

Yt = Y0 +

∫ t

0

[h′(Ys)((γ − λ1)Ys + Y
1+β
s ) +

κ2

2
h′′(Ys)Y

2
s ] ds+ κ

∫ t

0

h′(Ys)Ys dWs.

The function h can now be chosen in such a way that Y satisfies the linear stochastic
differential equation

Yt = Y0 +

∫ t

0

(a+ bYs)ds+

∫ t

0

(c+ dYs)dWs.

for suitable constants a, b, c, d ∈ R. In fact, a comparison of the martingale parts of
both representations of Y gives a differential equation for h whose solution is given by
h(Yt) = kY

d/κ
t − c

d
for any constant k ∈ R. By comparing the finite variation parts of the

representations of Y we get

kd

κ
Y
d/κ+β
t +

kd

κ
(γ − λ1)Y

d/κ
t +

1

2
kd(d− κ)Y

d/κ
t = a+ bkY

d/κ
t − bc

d
.

We choose d = −βκ, c = 0, b = β( (1+β)κ
2

2
− γ + λ1), a = −kβ and get Yt = X−β

t . With the
explicit formula for the solution of the linear equation for Y we get

8



Xt = Y
−1/β
t = [u(0, ψ)−βY 0

t − βY 1
t ]
−1/β, (***)

where

Y 0
t = exp[(λ1 + κ

2/2− γ)βt− κβWt], Y 1
t = Y 0

t

∫ t

0

exp[−(λ1 + κ2/2− γ)βs+ κβWs]ds.

It can easily be seen that (***) yields the same formula for the blowup time of X as (**)
for I.

4 A lower bound for %

We consider again equation (6), but we assume that κ 6= 0 and that G : IR+ → IR+ satisfies
G(0) = 0, G(z)/z is increasing and

G(z) ≤ Λz1+β for all z > 0, (13)

where Λ and β are certain positive numbers. Let {St, t ≥ 0} again denote the semigroup of
d-dimensional Brownian motion killed at the boundary of D. Recall the integral form (7) of
Equation (6). We define

F (t) =

(
1− Λβ

∫ t

0

eκβB
H
r ‖eγrSrf‖β∞ dr

)− 1
β

, 0 ≤ t < τ ∗, (14)

where

τ ∗ = inf

{
t > 0 :

∫ t

0

eκβB
H
r ‖eγrSrf‖β∞ dr ≥ (Λβ)−1

}
. (15)

Hence F (0) = 1 and
dF

dt
(t) = ΛeκβB

H
t ‖eγtStf‖β∞F 1+β(t),

which implies

F (t) = 1 + Λ

∫ t

0

eκβB
H
r ‖eγrSrf‖β∞F 1+β(r) dr.

Let

R(V )(t, x) := eγtStf(x) +

∫ t

0

e−κB
H
r eγ(t−r)St−r

(
G(eκB

H
r Vr(·))

)
(x) dr, x ∈ D, t ≥ 0,

where (t, x) 7→ Vt(x) is any nonnegative continuous function such that Vt(·) ∈ C0(D), t ≥ 0,
and

Vt(x) ≤ eγtStf(x)F (t), 0 ≤ t < τ ∗, x ∈ D. (16)
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Then eγtStf(x) ≤ R(V )(t, x) and

R(V )(t, x)

= eγtStf(x) +

∫ t

0

e−κB
H
r eγ(t−r)St−r

(
G(eκB

H
r Vr(·))

Vr(·)
Vr(·)

)
(x) dr

≤ eγtStf(x) +

∫ t

0

e−κB
H
r eγ(t−r)St−r

(
G(eκB

H
r F (r)‖eγrSrf‖∞)

F (r)‖eγrSrf‖∞
Vr(·)

)
(x) dr

≤ eγtStf(x) + Λ

∫ t

0

eκβB
H
r F 1+β(r)‖eγrSrf‖β∞eγ(t−r)St−r(eγrSrf)(x) dr

= eγtStf(x)

[
1 + Λ

∫ t

0

eκβB
H
r F 1+β(r)‖eγrSrf‖β∞ dr

]
= eγtStf(x)F (t), (17)

where to obtain the first inequality we used (16) and the fact that G(z)/z is increasing, and
to obtain the second inequality we used (13). Consequently,

eγtStf(x) ≤ R(V )(t, x) ≤ eγtStf(x)F (t), 0 ≤ t < τ ∗, x ∈ D.

Let
v0t (x) := eγtStf(x) and vn+1t (x) = R(vn)(t, x), n = 0, 1, 2, . . . .

Using induction, one can easily prove that the sequence {vn} is increasing, and therefore the
limit

vt(x) = lim
n→∞

v
(n)
t (x)

exists for all x ∈ D and all 0 ≤ t < τ ∗. The monotone convergence theorem implies

vt(x) = Rvt(x) for x ∈ D and 0 ≤ t < τ ∗,

i.e. the function vt(x) solves (7) on [0, τ ∗)×D. Moreover, because of (17) and (14),

vt(x) ≤
eγtStf(x)(

1− Λβ
∫ t
0
eκβBHr ‖eγrSrf‖β∞ dr

)1/β < ∞

as long as ∫ t

0

eκβB
H
r ‖eγrSrf‖β∞ dr < (Λβ)−1.

In this way we have proved the following proposition.

Proposition 6 The blowup time of (7) is bounded from below by the random variable τ ∗
defined in (15).
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5 Non explosion of v

An immediate consequence of the discussion in the preceding section is the following result.

Theorem 7 Assume that f satisfies

Λβ

∫
∞

0

eκβB
H
r ‖eγrSrf‖β∞ dr < 1. (18)

Then Equation (6) admits a global solution v(t, x) that satisfies

0 ≤ v(t, x) ≤ e−γtStf(x)
(
1− Λβ

∫ t
0
eκβBHr ‖eγrSrf‖β∞ dr

) 1
β

, t ≥ 0. (19)

When the boundary of D is sufficiently smooth, it is possible to derive a sufficient con-
dition for (18) in terms of the transition kernels {pt(x, y), t > 0} of {St, t ≥ 0} and the first
eigenvalue λ1 and corresponding eigenfunction ψ. We recall the following sharp bounds for
{pt(x, y), t > 0}, which we borrowed from Ouhabaz and Wang [13].

Theorem 8 Let ψ > 0 be the first Dirichlet eigenfunction on a connected bounded C1,α-
domain in IRd, where α > 0 and d ≥ 1, and let pt(x, y) be the corresponding Dirichlet heat
kernel. There exists a constant c > 0 such that, for any t > 0,

max

{
1,
1

c
t−(d+2)/2

}
≤ eλ1t sup

x,y

pt(x, y)

ψ(x)ψ(y)
≤ 1 + c(1 ∧ t)−(d+2)/2e−(λ2−λ1)t,

where λ2 > λ1 are the first two Dirichlet eigenvalues. This estimate is sharp for both short
and long times.

The above theorem is useful in verifying condition (18). Let the domain D satisfy the
assumptions in Theorem 8, and let the initial value f ≥ 0 be chosen so that

f(y) ≤ KSηψ(y), y ∈ D, (20)

where η ≥ 1 is fixed and K > 0 is a sufficiently small constant to be specified later on.
Arguing as in [4] we obtain that condition (18) is satisfied provided that

Λβ

[
K(1 + c)e−λ1η

(
sup
x∈D

ψ(x)

)2 ∫

D

ψ(y) dy

]β ∫
∞

0

dr eκβB
H
r +(−λ1+γ)βr < 1,

or ∫
∞

0

dr eκβWr+(−λ1+γ)βr <
eλ1βη

Λβ

[
K(1 + c)

(
sup
x∈D

ψ(x)

)2 ∫

D

ψ(y) dy

]β , (21)

which holds if K in (20) is sufficiently small. In this way we get the following

11



Theorem 9 Let G satisfy (13), and let D be a connected, bounded C1,α-domain in Rd, where
α > 0. If (20) and (21) hold for some η > 0 and K > 0, then the solution of Equation (7)
is global.

Remark 10 The integral on the left side of (21) coincides with the corresponding integral
in Section 3. If G(z) = Λz1+β, the results of this section can be applied also to the solution
u of equation (2) because v(t, x) = e−κB

H
t u(t, x), t ≥ 0, x ∈ D.
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