Immutably Answering Why-Not Questions for Equivalent Conjunctive Queries
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

To cite this version:
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki. Immutably Answering Why-Not Questions for Equivalent Conjunctive Queries. TaPP 2014 - 6th USENIX Workshop on the Theory and Practice of Provenance, Jun 2014, Cologne, Germany. hal-01095479

HAL Id: hal-01095479
https://hal.archives-ouvertes.fr/hal-01095479
Submitted on 17 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Immutably Answering Why-Not Questions for Equivalent Conjunctive Queries

Nicole Bidoit Melanie Herschel Katerina Tzompanaki
Université Paris Sud / Inria, 91405 Orsay Cedex, France
{bidoit/herschel/tzompana}@lri.fr

Abstract
Answering Why-Not questions consists in explaining to developers of complex data transformations or manipulations why their data transformation did not produce some specific results, although they expected them to do so. Different types of explanations that serve as Why-Not answers have been proposed in the past and are either based on the available data, the query tree, or both. Solutions (partially) based on the query tree are generally more efficient and easier to interpret by developers than solutions solely based on data. However, algorithms producing such query-based explanations so far may return different results for reordered conjunctive query trees, and even worse, these results may be incomplete. Clearly, this represents a significant usability problem, as the explanations developers get may be partial and developers have to worry about the query tree representation of their query, losing the advantage of using a declarative query language. As remedy to this problem, we propose the Ted algorithm that produces the same complete query-based explanations for reordered conjunctive query trees.

Categories and Subject Descriptors H.4 [Information Systems Applications]: Miscellaneous; D.2 [Software Engineering]: Testing and Debugging

Keywords data provenance, query analysis

1. Introduction
The increasing load of data produced nowadays is coupled with an increasing need for complex data transformations that developers design to process these data in everyday tasks, such as data cleaning or data enrichment. These transformations, commonly specified declaratively, may result in unexpected outcomes. For instance, given the query and data of Fig. 1, a developer (or scientist) may wonder why planet Kepler78b is missing from the result, even though he expected or intended it to be part of it. Traditionally, he would repeatedly manually analyze the query to identify a possible reason, fix it, and test it to check whether the missing answer is now present or if other problems need to be fixed.

To help developers during query analysis and debugging, and in particular for answering why-not questions as the one used in the above example that asks why some data are not part of a result, different algorithms have recently been proposed for relational and SQL queries [2, 3, 6–8] as well as other types of queries (top-k [5], reverse skyline queries [10]). In this paper, we focus on relational queries, for which existing algorithms explain a missing-answer either based on the data (instance-based explanations), the query (query-based explanations), or both (hybrid explanations). Moreover, we focus on solutions producing query-based explanations, as these are generally more efficient while providing sufficient information for query analysis and debugging. Taking a closer look at existing methods, we notice that these return different explanations for reordered query trees. This is due to the fact that these algorithms reason at the level of query tree operators and trace data transformation for query analysis and debugging. Taking a closer look at existing methods, we notice that these return different explanations for reordered query trees. This is due to the fact that these algorithms reason at the level of query tree operators and trace data transformation for query analysis and debugging.

Example 1.1. Consider the SQL query Q and data D of Fig. 1 and assume that a developer wants an explanation for the absence of planet Kepler78b in the query result $Q(D)$, knowing that this planet does not revolve around the Sun. So here, the why-not question is “Why is tuple (Planet:Kepler78b, Star:x, $x\neq$Sun) not in $Q(D)$?”. Fig. 2 shows two possible query trees for Q. It also shows the pickle operators that Why-Not [3] (\circ) and NedExplain [2] (\ast) return as query-based explanations as well as query operators returned as part of hybrid explanations by Conseil [6] (\dagger). It is easy to see that each algorithm returns a different result for each of the two query trees, and in most cases, it is only a partial result as the true explanation of the missing answer is that both the selection is too strict for the compatible tuple (Kepler, 1.7, NULL) from table Planet and this tuple does not find any join partner in table Star.

![Figure 1. Example query and data](image1)

![Figure 2. Reordered query trees for the SQL of Fig. 1 and identified algorithms’ results (Why-Not \circ, NedExplain \ast, Conseil \dagger)](image2)
To more accurately answer Why-Not questions, we propose the Ted algorithm that identifies all the picky operators of a relational query and explains how they prevent the generation of the desired answer. The proposed explanations take the form of a polynomial, similarly to provenance semi-rings for how-provenance [4] that explains data that exists in a query result. The main asset of this algorithm is that the computed set of query-based explanations (i.e., the Why-Not answer) is independent from the query tree representation and is thus not only correct, but also complete w.r.t. the provided definitions. This paper sets the theoretical foundation for computing query-based explanations that are invariant for reordered query trees for conjunctive queries (Sec. 2). We then present Ted, a first algorithm computing such explanations and discuss preliminary experiments (Sec. 3). Sec. 4 concludes and discusses future work.

2. Polynomial-Based Why-Not answers

We assume that the reader is familiar with the relational model and tableau theory [1]. Here, we briefly revisit necessary notions of previously defined Why-Not questions in Sec. 2.1. Sec. 2.2 reviews and extends what has been called compatible data in previous works. Finally, we define the Why-Not answer in Sec. 2.3.

To better illustrate the different aspects of our solution, we resort to a more complex example than the one introduced earlier.

Example 2.1. Assume a database schema S_Q consisting of the relations R, S and T and the database instance I in Fig. 3(a). We use a unique annotation Id to identify a tuple of I. Further consider the relational query in Fig. 3(b). The query result includes the tuple $\{R.B:5, S.C:9, T.D:4\}$.

2.1 The Why-Not Question

Given a query Q over a database schema S_Q and an input instance I, a developer formulates a Why-Not question as a predicate P that is a disjunction of conditional tuples (c-tuples) [9]. A full definition is available in [2]. Next, we will concentrate on conjunctive queries only and predicates composed of a single c-tuple. The proposed method trivially extends to unions of conjunctive queries and a general predicate P, but we omit a discussion for space constraints.

A c-tuple t_c has the form $(t_c, cond)$, where t_c is a tuple with attribute values being variables and $cond=\land_{i=1}^{n} pred_i$ is a conjunction of atomic conditions s.t. each $pred_i$ is a comparison between a variable and a constant, or a comparison between two variables. In the following, we will denote the condition associated with a c-tuple t_c as $t_c.cond$ and the set of variables referred to in t_c as $var(t_c)$.

Special attention has to be given to the condition associated with the c-tuple t_c. More specifically, we distinguish here between simple and complex conditions.

Notation 2.1. (Simple/Complex condition/c-tuple)

An atomic condition $pred_i$ in a condition $cond$ is simple if it compares (a) a variable with a constant or (b) two variables referring to source attributes of the same relation. Otherwise, it is a complex atomic condition. We qualify cond as complex if it includes at least one complex atomic condition, and simple otherwise. Finally, a c-tuple is simple if its condition cond is simple, and complex otherwise.

Example 2.2. Given the scenario of Ex. 2.1, we wonder why there is not a result tuple, s.t. the value of $R.B$ is smaller than the one of $T.D$ and on the same time the value of $S.C$ smaller or equal to 9. This Why-Not question is expressed by $t_c=((R.B:x, T.D:y, S.C:z), (x<y \land z\leq 9))$. In $t_c.cond$, $z<9$ is a simple condition whereas $x < y$ is a complex condition, because the variables x and y refer to different relations (R and T, respectively). Consequently, t_c is a complex c-tuple.

2.2 Compatible Data

Intuitively, compatible data designates any source tuples that could have provided data to form the missing answer modelled by t_c. The first step towards answering the Why-Not question consists in identifying these source tuples and more specifically their combinations that form the missing answer in the absence of restrictions in Q. In a second step, discussed in the next section, we will identify query conditions (query operators) that prune these tuple combinations.

Example 2.3. Continuing Ex. 2.2, $t_c.cond$ implies that the missing-answer is based on a source tuple $t_S\in I_S$, a source tuple $t_T\in I_T$ and a source tuple $t_d\in I_D$ for which $t_S(R.B)<t_T(T.D)$ and $t_d(S.C)\leq 9$ holds. Due to the complex condition, t_S and t_T need to be chosen in correlation with one another, whereas t_d is independent from all others. We obtain $(1d_1,1d_9), (1d_1,1d_{10})$ and $(1d_2,1d_{10})$ as compatible tuple concatenation for correlated (t_S,t_T), while for t_d each one of the tuples in S, i.e., $1d_5, \ldots, 1d_8$ comprises a compatible tuple concatenation.

Previous approaches [2, 3] consider all compatible tuples independently from each other, e.g., they consider both $1d_1$ and $1d_2$ as compatible for t_c. However, $1d_2$ should lose this property when $1d_1$ is chosen for t_T, a fact previously ignored. Therefore, in this paper, we introduce the compatibility of a tuple concatenation rather than compatibility on isolated tuples. According to our definition, each concatenated compatible tuple (cc-tuple) would have resulted in the missing-answer if it was not pruned by some query operators.

Tableau skeleton.

We first define a tableau skeleton T_{S_Q}, which is a set of variable tuples, one for each relation schema in S_Q, such that a variable is not used twice in T_{S_Q}. The relations in S_Q are also used to identify the rows of T_{S_Q}, as shown in Tab. 1.

<table>
<thead>
<tr>
<th>$R.A$</th>
<th>$R.B$</th>
<th>$T.C$</th>
<th>$T.D$</th>
<th>$T.E$</th>
<th>$S.B$</th>
<th>$S.C$</th>
<th>$S.D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_6</td>
<td>x_7</td>
<td>x_8</td>
</tr>
</tbody>
</table>

Table 1. Tableau skeleton T_{S_Q}

Mappings. Our subsequent definitions require the mapping functions described and illustrated in Tab. 2. Note that $h_{var(t_c)}$ is used to rename the variables $var(t_c)$ of t_c into variables in T_{S_Q}. Both functions h_A and $h_{var(t_c)}$ are extended to apply on the tableau and the c-tuple conditions respectively. Finally, f naturally extends to concatenated tuples, e.g., $f(1d_1,1d_9) = (R.A:1, R.B:3, S.B:3, S.C:4, S.D:5)$.

\[I_{R.B} \] denotes the instance of relation R and $f(A)$ denotes the attribute value of tuple t on the qualified attribute A.

1. Indeed S_Q is the query schema of Q as defined in [2], which implies that each relation schema in S_Q occurs only once in Q.

2. We also use $var(\cdot)$ to retrieve the set of variables from other structures, e.g., $var(t_c.cond)$ returns the variables for which constraints are specified.

Fig. 3. Sample instance (a) and query (b)
Example 2.6. First, focus on τ_1 and the first row R of Tab. 4. The atomic condition $x_1=1$ in cond$_{R_1}$ contradicts the atomic condition $x_1>3$ of cond$_{Q_R}$. Thus, we say that $x_1>3$ is a picky condition. The atomic conditions on x_2 in cond$_{R_1}$ and cond$_{Q_R}$ are simultaneously satisfied, as $x_2=3 \land x_1=3 \land x_2=x_6$ is true.

In the same way, we identify in the rest of the rows the picky atomic conditions and eventually obtain the set of picky atomic conditions w.r.t. τ_1: $\{x_1>3, x_7>8, x_1=x_6\}$. Associating these conditions to their respective query operators (see Fig. 3), we obtain the set of picky operators $\{op_2, op_4, op_5\}$.

Notation 2.2. (Picky operators w.r.t. τ). We define the set of picky conditions τ as \(PC_{\tau} = \{c | c \in \text{cond}_R \text{ and } c \not\in \tau\}\). Each atomic condition c is associated with a query operator op_{c}. In Q, and we define the set of picky operators w.r.t. τ as \(PO_{\tau} = \{op_{c} \mid op_{c} \text{ associated with some } c \in PC_{\tau}\}\).

The complete Why-Not answer includes an explanation for the pruning of each cc-tuple $\tau \in CC(T_{t_1}, I)$ and takes the form of a polynomial of query operators.

Definition 2.2. (Why-Not answer w.r.t. t_1.). Given query Q over a database schema S_Q, the instance I over S_Q, and the compatibility tableau T_{t_1} associated with the Why-Not question t_1, we define the Why-Not answer w.r.t. t_1 as \(\sum_{\tau \in CC(T_{t_1}, I)} \prod_{op_{c} \in PO_{\tau}} op_{c}\).

We justifying modeling each PO_{τ} with a product by the fact that in order for a τ ‘survive’ up to the query result, every single query operator w.r.t. τ must be ‘repaired’. The sum of the products of each $\tau \in CC(T_{t_1}, I)$ stems from the fact that, if any addend is ‘correctly repaired’, the associated τ will return the missing answer.

Example 2.7. In Ex. 2.6 we found that \(\{op_2, op_4, op_5\}\) are the picky operators for τ_1, which results in the addend $op_2 * op_4 * op_5$. Applying the same for all 12 cc-tuples in our example, we obtain the final result $op_2 * op_4 * op_3 + 3 * op_2 * op_5 + 3 * op_4 * op_5 * op_4 * op_5 + op_2 * op_3 + 2 * op_2 * op_4 + 2 * op_2 * op_3 * op_5$.

3. The Ted Algorithm

Alg. 1 presents the Ted algorithm that computes the Why-Not answer defined in Sec. 2 for a conjunctive query Q. Ted trivially extends to unions of conjunctive queries and a Why-Not question in form of a disjunction of c-tuples (Sec. 2.1), however, details are omitted due to space constraints.

Ted starts by a preprocessing phase, that consists in creating the tableau skeleton T_{S_Q} and the tableau T_{t_1} (lines 2 and 3). Then, it determines the set of cc-tuples $CC(T_{t_1}, I)$ in line 5 before it computes the Why-Not answer (lines 6 – 8). As the computation of the Why-Not answer directly follows from the definitions of Sec. 2.3, we focus our discussion computing $CC(T_{t_1}, I)$.

To compute the set of all cc-tuples, we could form the cross product of all relations of T_{t_1} (e.g., $R \times T \times S$) and then verify whether each resulting concatenated tuple $(I(d_1d_2d_3r))$ satisfies the condition t_1 cond. However, this will result in checking the same conditions numerous times, e.g., the condition $x_7 \leq 0$ will not be checked once for every tuple in relation S, but as many times as there are tuples in the cross product. To improve efficiency, we divide the problem into independent subproblems based on a partitioning of the rows in T_{t_1}.

Table 2. Mapping functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{\cdot} : A \rightarrow var(T_{S_Q})$</td>
<td>Notation for the mapping between attribute names and variables in T_{S_Q}.</td>
<td>$h_{\cdot}(R.A) = x_1$</td>
</tr>
<tr>
<td>$h_{\cdot} : R \rightarrow var(T_{S_Q})$</td>
<td>$h_{\cdot}(R.A) = x_1$</td>
<td>$h_{\cdot}(x_1) = R.A$</td>
</tr>
<tr>
<td>$h_{\cdot} : \var{t_1} \rightarrow var(T_{S_Q})$</td>
<td>Map variables of t_1 to variables of T_{S_Q} associated to the same relation attribute.</td>
<td>$h_{\cdot}(t_1(x) = x_2$</td>
</tr>
<tr>
<td>$f : ID \rightarrow \mathcal{I}$</td>
<td>Maps a tuple annotation to the actual tuple.</td>
<td>$f(I(d_1)) = (R.A : 1, R.B : 4)$</td>
</tr>
</tbody>
</table>

Table 3. Tableau T_{t_1} for our running example

<table>
<thead>
<tr>
<th>Part</th>
<th>R A R B T C T D T E S B S C S D</th>
<th>cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>$x_1, x_2, x_3, x_4, x_5, x_6, x_7$</td>
<td>$x_2 < x_4 \land x_5 \geq 9$</td>
</tr>
</tbody>
</table>

Table 4. Tableau T_1

<table>
<thead>
<tr>
<th>R.A R.B T.C T.D T.E S.B S.C S.D</th>
<th>cond$_{R_1}$</th>
<th>cond$_{Q_R}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1, x_2, x_3, x_4, x_5, x_6, x_7$</td>
<td>$x_1 = 1 \land x_3 = 3$</td>
<td>$x_1 > 3 \land x_2 = x_6$</td>
</tr>
<tr>
<td>x_3, x_4, x_5</td>
<td>$x_1 = 1 \land x_4 = 4 \land x_6 = 8$</td>
<td>$x_1 = x_4 \land x_6 \geq 3$</td>
</tr>
<tr>
<td>x_6, x_7</td>
<td>$x_2 = x_6 \land x_3 = x_8 \land x_7 > 8$</td>
<td>$x_2 = x_6 \land x_3 = x_8 \land x_7 > 8$</td>
</tr>
</tbody>
</table>
Algorithm 1: Ted algorithm

```
Input: \( S_Q \), \( Q \), \( I \), \( t_c \).
Output: Answer, the polynomial built of the picky operators
1 Polynomial \( \text{Answer} = 0 \).
2 Initialize tableau skeleton \( T_{S_Q} \).
3 Tableau \( T_{t_c} \leftarrow \text{createT}_{t_c}(S_Q, h_{\text{start}(t_c)}(t_c)) \).
4 Set \( P = \text{partitioning}(T_{t_c}) \).
5 Set \( C \leftarrow \text{CompatibleFinder}(P, T) \).
6 for \( (\tau, \text{cc-tuple in } C) \) do
7 \( \text{PO}_\tau = 1 \); initialization of the product of picky operators for \( \tau \).
8 for \( (x, \text{variable in } S_Q) \) do
9 \( c_x \leftarrow \text{single atomic condition on } x \) imposed by \( \tau \).
10 \( C_Q \leftarrow \text{conditions on } x \) imposed by \( Q \).
11 for \( (c, \text{atomic condition in } C_Q) \) do
12 \( c_x' \leftarrow \text{true} \).
13 if \( c \) is a complex condition then
14 \( x' \leftarrow \text{variable compared to } x \) in \( c_x \).
15 \( c_x' \leftarrow \text{single atomic condition on } x' \) imposed by \( \tau \).
16 if \( c \in \tau \land c_x' \land \text{ then } \)
17 \( \text{PO}_\tau \leftarrow \text{PO}_\tau \cdot \text{getOperatorForCond}(c); \)
18 \( \text{Answer} \leftarrow \text{Answer} + \text{PO}_\tau \).
19 return \( \text{Answer} \).
```

Definition 3.1. (Valid partitioning of \(T_{t_c} \)). Assume a partitioning of \(T_{S_Q} \) into \(k \) partitions \(P_{\text{Part1}}, \ldots, P_{\text{Part}_k} \). This partitioning is valid for \(T_{t_c} \) if each \(P_{\text{Part}_i} \) is minimal w.r.t. the property: \(\forall R \in T_{S_Q} \) if \(R \in P_{\text{Part}_i} \) and \(R' \in T_{S_Q} \), s.t. \(\var{R, \text{cond}} \cap \var{R', \text{cond}} \neq \emptyset \) then \(R' \in P_{\text{Part}_i} \). Each partition \(P_{\text{Part}_i} \) generates a compatibility tableau \(\{S_{P_{\text{Part}_i}}, \text{cond} \} \), where \(S_i \) is the restriction of \(S_t \) and \(\text{cond} \), the restriction of \(\text{cond} \) over \(P_{\text{Part}_i} \).

Example 3.1. Tab. 3 shows the two partitions of the valid partitioning that we obtain in our running example.

It is easy to prove that the valid partitioning of \(T_{t_c} \) is unique and that the following lemma holds.

Lemma 3.1. Let \(\{P_{\text{Part}_1}, \ldots, P_{\text{Part}_k} \} \) be the valid partitioning of \(T_{t_c} \) and \(I \) be a well-determined database instance. Then, \(\text{CCT}(T_{t_c}, I) = \prod_{i = 1}^{k} \text{CCT}(P_{\text{Part}_i}, I|P_{\text{Part}_i}) \).

Using the above lemma, Ted first determines the set of concatenated tuples for each partition and then forms the cross product of the tuples of each partition in order to obtain \(\text{CCT}(T_{t_c}, I) \).

Complexity analysis. The three main phases of Ted are the partitioning phase, the computation of concatenated compatible tuples, and the computation of the Why-Not answer. The respective worst case complexities add up to \(O(|S_Q| + \prod_{R \in S_Q} |I|R| + \prod_{R \in S_Q} (|I|R| \cdot |S_Q| \cdot |Q|)) \). Assuming that the number of tuples \(|I|R| \) of a relation \(R \) is typically much larger than the size of the schema or query (i.e., \(|I|R| \gg |S_Q| \) and \(|I|R| \gg |Q| \)), this simplifies to \(O(\prod_{R \in S_Q} |I|R|) \) or \(O(N^k) \), where \(k \) is the number of relations and \(N \) the maximum size of a relation instance.

Implementation and evaluation. We implemented Ted in Java 1.6 and ran it over several benchmark queries we defined over three different datasets (the same as in [2]). Due to space constraints and the obvious efficiency issue entailed by Ted’s complexity, we only very briefly show one case for each dataset.

Tab. 5 reports Ted’s Why-Not answer polynomial and the picky operators identified by NedExplain [2] and Why-Not [3]. These use cases clearly demonstrate that Ted returns complete Why-Not answer as opposed to NedExplain and Why-Not, that both in general return subsets of the operators referred to in the polynomial Ted returns. This comes at no surprise, as NedExplain and Why-Not base their procedures on a specific query plan in which they trace compatible data until up to the point (query operator) where they disappear. Being query plan independent, Ted produces the complete set of picky operators for all reordered query plans.

Concentrating on the Why-Not answer polynomials, we see that they bear more information than what previous algorithms return. Indeed, they not only tell us why \(t_c \) is missing, but also all the different ways it was pruned from the result. For example, in Crime7, we conclude that the majority of cc-tuples do not satisfy the conditions of the \(op_4 \) or \(op_8 \), but we also see 9 cc-tuples that are only pruned by \(op_9 \). This information is interesting for subsequent processing (manual or automatic), e.g., we can deduce that the least “invasive” repair of the query touches \(op_9 \).

4. Outlook and Future Work

Ted is an algorithm that returns query-based-explanations for a Why-Not question over a conjunctive query. Opposed to previous work, it is the first algorithm that is guaranteed to return the same explanations, no matter the considered query plan representation. Another novelty is to represent the Why-Not answer as a polynomial. This polynomial has the benefit of being an elegant formalism that can subsequently be used for further processing, e.g., for ranking the importance of “misbehaving” query operators in the query, for actually computing query rewritings that automatically fix the problem, estimating the minimum number of side-effects of a rewriting, etc. These are interesting problems we plan to address in the future. However, before developing solutions to these interesting problems, we will tackle the problem of efficiency. Besides parallel computations, we may for instance reduce the overall complexity by only selecting a “representative” sample of cc-tuples and compute an approximate result (within certain error bounds).

References

