OptiDis: Toward fast anisotropic dislocation dynamics based on Stroh formalism
Pierre Blanchard, Arnaud Etcheverry, Olivier Coulaud, Laurent Dupuy, Marc Blétry

To cite this version:
Pierre Blanchard, Arnaud Etcheverry, Olivier Coulaud, Laurent Dupuy, Marc Blétry. OptiDis: Toward fast anisotropic dislocation dynamics based on Stroh formalism. International Workshop on dislocation dynamics simulations, Dec 2014, Saclay, France. hal-01095322
OptiDis: Toward fast anisotropic DD based on Stroh formalism.

Pierre Blanchard 1 - Arnaud Etcheverry 1 - Olivier Coulau 1 - Laurent Dupuy 2 - Marc Blétry 2

1: HiePACS team project, Inria Bordeaux - Sud-Ouest, 200, rue Vieille Tour 33405 Talence Cedex France
2: Service de Recherches Métallurgiques Appliquées, CEA-Saclay, 91291 Gif-sur-Yvette, France

ABSTRACT

Dislocation Dynamics (DD) simulations in the hypothesis of isotropic elasticity have proved great reliability in predicting the plastic behaviour of crystalline materials. However it is often the case at high temperature (for instance in irradiated BCC iron) that the structural properties of a material will be better described using full anisotropic treatment of the elastic interaction between dislocations.

The computational cost of updating the nodal forces at each time step is $\pi d \varepsilon$ where d is the degree of anisotropy.

On the other hand, past works showed that the anisotropic stress field can be efficiently described using the Stroh axitic formalism.

Willis-Stedls-Lothe

\[\sigma_{ij} = \frac{1}{V_d} \int_0^V (\mathbf{C}_{\text{Stroh}} \mathbf{x})_{ij} \, dV \]

where Stroh matrices Q and N only depend on C_{ijkl} and ε. They are computed from the eigenvectors of a 6×6 matrix N depending on (ν, κ) and (α, β) where $(\alpha, \beta) = (\varepsilon_{ijkl} A_{ijkl})$. The notations are recalled fig 1 and the stress field reads

\[\sigma_{ij}(x, t, b) = C_{ijkl} (\mathbf{C}_{\text{Stroh}} \mathbf{x})_{ij} \]

in the collinear case ($\phi = 0$) the expression is slightly more complicated but can be condensed as follows

\[\sigma_{ij}(x, t, b) = \frac{2}{3} C_{ijkl} (\mathbf{C}_{\text{Stroh}} \mathbf{x})_{ij} \]

The singularity in the limit $r \to 0$ is currently handled using a simple cutoff parameter like the one defined in [6].

Anisotropy ratio

The degree of anisotropy is quantified by the ratio $A = 2C_{ijkl}(C_{11} - C_{12})$. For the BCC $\alpha - FI$, this ratio goes from $A_{di} = 2.3 \mathrm{to} 4.1\pi A_{\text{sym}} = 7.1$.

OptiDis code: Ongoing developments

- Implementation of the farfield (either iso- or anisotropic)
- Efficient analytic integration of the expansion over the target segments
- Derivation of a consistent non-singular theory for the Stroh approach

PERSPECTIVES

- Development of the program OptiDis
- Implementation of the fast multipole method
- Effective computation of forces on dislocation segments in anisotropic elasticity

FUNDINGS

This work was supported by the French ANR grants ANR-10-COSI-0011 and the associate team FastLIA.

In collaboration with CEA Saclay

REFERENCES

[1] ScalFMm: software library to simulate large scale n-body interactions using the fast multipole method, developed B hyperc team, Inria Bordeaux.