OptiDis: Toward fast anisotropic dislocation dynamics based on Stroh formalism
Pierre Blanchard, Arnaud Etcheverry, Olivier Coulaud, Laurent Dupuy, Marc Blétry

To cite this version:

Pierre Blanchard, Arnaud Etcheverry, Olivier Coulaud, Laurent Dupuy, Marc Blétry. OptiDis: Toward fast anisotropic dislocation dynamics based on Stroh formalism. International Workshop on dislocation dynamics simulations, Dec 2014, Saclay, France. <hal-01095322>
OptiDis: Toward fast anisotropic DD based on Stroh formalism.

Pierre Blanchard 1 - Arnaud Etcheverry 1 - Olivier Coulaud 1 - Laurent Dupuy 2 - Marc Blétry 2

1: HiPACS team project, Inria Bordeaux - Sud-Ouest, 200, rue Vieille Tour 33405 Toulouse Cedex France  
2: Service de Recherches Métallurgiques Appliquées, CEA-Saclay, 91291 Gif-sur-Yvette, France

ABSTRACT

Dislocation Dynamics (DD) simulations in the hypothesis of isotropic elasticity have proved great reliability to predict the plastic behaviour of crystalline materials. However it is often the case at high temperature (for instance in irradiated BCC iron) that the structural properties of a material will be better described using full anisotropic treatment of the elastic interaction between dislocations. The computational cost of the internal elastic forces is by far the most resources consuming step in DD simulations, which is even more true for anisotropic elasticity in the absence of explicit Green’s function.

L. Dupuy, J. Soulacroix and M. Fivel showed that the approaches summarized in Yin [6] can be accelerated using spherical harmonics expansions of the Stroh matrices. This feature was implemented in the DD code OptiDis in order to power the anisotropic forces computation. Here we recall the formulism and we discuss optimizations, performances as well as motivations for future developments.

ANISOTROPIC MODEL

The stress field created by a dislocation loop (l, t') at field point x is given by Mura’s formula [4]

\[ \sigma_{ij}(x) = \epsilon_{ijkl}G_{ij}(x,x') \delta_{kl} \]

(1)

The nodal force \( f_{ij} \) acting at the extremities of a finite dislocation line (l, t) is obtained by integration of the Peach-Koehler force \( \left( \sigma_{ij}(x) \cdot x \right) \) over the target line, i.e.

\[ f_{ij}(l,t) = \int_{l,t} \epsilon_{ijkl}G_{ij}(x,x') \delta_{kl} \, dx \]

(2)

where \( G_{ij}(x,x') \) are linear shape functions. The cost of updating the nodal forces at each time step is quadratic and involves the evaluation of 2 line integrals, therefore it is usually the bottleneck of DD simulations. Moreover there does not exist an analytic closed form for the anisotropic elastic Green’s function \( G \). Recently Aubry et al. [2] used an integral representation of \( G \) and developed a fast method in order to evaluate the double line integral semi-analytically. On the other hand, past works [6] showed that the anisotropic stress field can be efficiently described using the Stroh axiomic formulism with (2) the Willis-Steads-Lothe formula for the finite line.

\[ u_{ij}(x) = \frac{1}{16\pi\mu} \left( \mu B_{ijkl} + \eta \epsilon_{ijkl} - \mu \epsilon_{ijkl} - \eta B_{ijkl} \right) \int_{l,t} \frac{G_{ij}(x,x') \delta_{kl}}{r} \, dx \]

(3)

where Stroh matrices \( Q \) and \( B \) [5] only depend on \( C_{ijkl} \) and \( \eta \). They are computed from the eigenvectors of a \( 6 \times 6 \) matrix \( N \) depending on \( \eta \) and \( r \) where \( (dW)_{ijk} = \epsilon_{ijkl} B_{ijkl} \). The notations are recalled fig 1 and the stress field reads

\[ \sigma_{ij}(x,x') = C_{ijkl} \epsilon_{ijkl}(x,x') \]

The singularity in the limit \( r \rightarrow 0 \) is currently handled using a simple cutoff parameter like the one defined in [6].

Anisotropy ratio

The degree of anisotropy is quantified by the ratio \( A = 2\epsilon_{ijkl}C_{ijkl} = 2\xi \). For the BCC \( \alpha - Fe \), this ratio goes from \( A = 0.23 \) to \( A_{2123} = 7.1 \).

Spherically Harmonic Analysis

Stroh matrices only depend on the orientation of the source, i.e. \( X = X(\theta, \phi) \) (see fig 2) hence they can be expanded into spherical harmonics.

\[ X(\theta, \phi) \approx \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} X_{\ell m}(\theta, \phi) Y_{\ell m}(\theta, \phi) \]

(4)

where \( Y_{\ell m}(\theta, \phi) \) denotes the well known spherical harmonics and

\[ x_{\ell m} = \int_0^{2\pi} \int_0^\pi X(\theta, \phi) Y_{\ell m}^*(\theta, \phi) \cos \theta \, d\theta \, d\phi \]

(5)

are the coefficients of the expansion.

Giving that Stroh matrices are real valued the expansion reduces to

\[ X = \sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} x_{\ell m} Y_{\ell m} \]

(6)

On the other hand depending on the symmetries of \( X \) in \( \theta \) or \( \phi \) some coefficients of the expansions are known to be null (potentially a lot). Once implemented these simplifications lead to a significant acceleration of the method (see fig 4).

Implementation and performances

Our experimentations were performed on the core program OptiDis whose data structure relies heavily on the open source ScaLAPACK library [1]. The latter also provides the generic Fast Mupolyke algorithms. OptiDis is a parallel version of NumaDis, it implements almost all functionalities of NumaDis while providing a hybrid OpenMP/MPI paradigm and a cache-conscious data structure.

Ongoing

- Optimized expansion for hexagonal crystallographies

Perspectives

- Implementation of the farfield (either iso- or anisotropic)
- Efficient analytic integration of the expansion over the target segments
- Derivation of a consistent non-singular theory for the Stroh approach

REFERENCES


Funding

This work was supported by the French ANR grants ANR-10-COSI-0011 and the associate team FastLA.

In collaboration with CEA- Saclay.