Regime switching model for financial data: empirical risk analysis

Khaled Salhi 1, 2 Madalina Deaconu 2, 1 Antoine Lejay 2, 1 Nicolas Champagnat 2, 1 Nicolas Navet 3
1 Probabilités et statistiques
IECL - Institut Élie Cartan de Lorraine
2 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : This paper constructs a regime switching model for the univariate Value-at-Risk estimation. Extreme value theory (EVT) and hidden Markov models (HMM) are combined to estimate a hybrid model that takes volatility clustering into account. In the first stage, HMM is used to classify data in crisis and steady periods, while in the second stage, EVT is applied to the previously classified data to rub out the delay between regime switching and their detection. This new model is applied to prices of numerous stocks exchanged on NYSE Euronext Paris over the period 2001-2011. We focus on daily returns for which calibration has to be done on a small dataset. The relative performance of the regime switching model is benchmarked against other well-known modeling techniques, such as stable, power laws and GARCH models.The empirical results show that the regime switching model increases predictive performance of financial forecasting according to the number of violations and tail-loss tests. This suggests that the regime switching model is a robust forecasting variant of power laws model while remaining practical to implement the VaR measurement.
Type de document :
Article dans une revue
Physica A, Elsevier, 2016, 461, pp.148-157. <10.1016/j.physa.2016.05.002>
Liste complète des métadonnées

https://hal.inria.fr/hal-01095299
Contributeur : Khaled Salhi <>
Soumis le : jeudi 2 juin 2016 - 01:04:41
Dernière modification le : mercredi 20 juillet 2016 - 16:05:08
Document(s) archivé(s) le : samedi 3 septembre 2016 - 10:21:49

Fichier

estimation-power-law.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Khaled Salhi, Madalina Deaconu, Antoine Lejay, Nicolas Champagnat, Nicolas Navet. Regime switching model for financial data: empirical risk analysis. Physica A, Elsevier, 2016, 461, pp.148-157. <10.1016/j.physa.2016.05.002>. <hal-01095299v2>

Partager

Métriques

Consultations de
la notice

504

Téléchargements du document

1006