OptiDis: A parallel Fast Multipole Dislocation Dynamics code
Pierre Blanchard, Arnaud Etcheverry, Olivier Coulaud, Laurent Dupuy, Marc Bletry, Eric Darve

To cite this version:
Pierre Blanchard, Arnaud Etcheverry, Olivier Coulaud, Laurent Dupuy, Marc Bletry, et al.. OptiDis: A parallel Fast Multipole Dislocation Dynamics code. 7th International Conference on Multiscale Materials Modeling, Oct 2014, Berkeley, United States. <hal-01095274>

HAL Id: hal-01095274
https://hal.archives-ouvertes.fr/hal-01095274
Submitted on 17 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
OptiDis: A parallel Fast Multipole Dislocation Dynamics code

Pierre Blanchard 1 - Arnaud Etcheverry 1 - Olivier Coulaud 1 - Laurent Dupuy 2 - Marc Blétry 2 - Eric Darve 3

[1]: HiePACS team project, Inria Bordeaux - Sud-Ouest, 200, rue Vieille Tour 33405 Talence Cedex France | [2]: Service de Recherches Métallurgiques Appliquées, CEA-Saclay, 91291 Gif-sur-Yvette, France | [3]: Mechanical Engineering, Stanford University, CA, USA

ABSTRACT

Among all the steps involved in DD simulations, the computation of the internal elastic forces and energy are by far the most resources consuming. However, since these are long-ranged and fast decreasing interactions, hierarchical algorithms like the Fast Multipole Method (FMM) are well suited for their fast evaluation. The relatively low accuracy required for the interaction forces between dislocations brought us to develop a more efficient approximation method for the farfield. On the other hand, the nearfield interactions are still evaluated analytically, which required a rather performant implementation (AVX, GPU...).

Regarding parallelism, our code benefits from a hybrid OpenMP/MPI paradigm and a cache-conscious data structure. Finally, an accurate handling of topological elements intersecting the structure of the octree was considered. The latter feature implied careful modifications of the P2M/L2P operators in order to deal with shared memory model of parallelism.

MODEL

The motion of dislocations is ruled by a prescribed mobility law (e.g. viscous glide) depending on the internal (i.e. created by dislocations themselves) and external (i.e. applied by user) contributions on the nodal forces. The isotropic elastic stress field created by a dislocation loop (\overline{y},t) at point x in space is given by Mura’s formula [4]

$$\sigma(x) = \frac{1}{2} (A_{ij}(x) + A_{ji}(x)) + \frac{3}{2} B_{ij}(x) A_{ji}(x)$$

where (μ,ν) are the Lamé coefficients and $(A_{ij}(x) = \int_{C(x)} R_{ij}(y \cdot y) \gamma_{ij}(y) dy, B_{ij}(x) = \int_{C(x)} R_{ij}(y \cdot y) \gamma_{ij}(y) dy)$.

Figure 1: Tree structure with operators.

Both stress and energy expansions share the same M2L operators R_{ij} but the extra derivation involved in the stress field is applied to the interpolator. This results in a slightly lower accuracy but less M2L operations to be performed (see figure 2).

IMPLEMENTATION AND PERFORMANCES

Our experiments were performed on the core program OptiDis whose data structure relies heavily on the open source ScalIIFM library [1]. The latter also provides the generic Fast Multipole algorithms. OptiDis implemented an exact discretization of P2M/L2P matrices involving exact integration over segments as well as analytic expressions for nearfield taken from Arsanis et al [2].

The farfield approximation consists of 3 steps: P2P Analytical evaluation of the nearfield. P2M/L2P Integration of polynomial interpolators on all leaf cells returns expansion.

$$M_{ij} = \int_{\gamma} S_{ij}(y) dy$$

M2L/L2L Transfer expansions between levels. M2L Transfer expansions between cells in interaction by applying

$$E_{ij} = R_{ij} \beta_{ij}$$

The scheme remains stable and sufficiently accurate in the scope of DD simulations (min. accuracy on force computation $\approx 10^{-3}$), while dramatically decreasing the computational cost of the M2L, namely $O(\gamma^3)$ for the M2L step. Then a new interpolation scheme based on an equispaced grid (Lagrange) was considered. In this approach, R_{ij} is Toeplitz since $R_{ij} = R(\gamma - y)$.

As illustrated below, R_{ij} can be seen as a convolution and applied in Fourier space with a linear cost.

$$E(\gamma^1, \gamma^2) - E(\gamma^1, \gamma^2) = \frac{2\pi}{L} \int_{C(x)} R (\gamma^1 \cdot \gamma^2) dy \cdot dy$$

The cost of updating the nodal forces (and the energy) at each time step is quadratic and involves the evaluation of 2 line integrals, therefore it is the bottleneck of DD simulations.

A NEW FFT-ACCELERATED FMM

Fast Multipole DD

The idea of the FMM is to balance the computational cost of near and farfield interactions by approximating the farfield and rely on a tree structure (see figure 1) to perform all computations. In our case we consider the interaction potential $R(x,y) = (\overline{R}(x,y) \cdot y)_{x,y}$ and apply the interpolation formula

$$R(x,y) \approx \sum_{\gamma \in S} S_{\gamma}(x) R(\gamma, y) S_{\gamma}(y)$$

where S_{γ} and y_{γ} denote 2 sets of interpolation nodes in 2 well separated clusters containing x and y. S denotes a polynomial interpolator (either Lagrange or Chebyshev).

The scheme remains stable and sufficiently accurate in the scope of DD simulations (min. accuracy on force computation $\approx 10^{-3}$), while dramatically decreasing the computational cost of the M2L, namely $O(\gamma^3/\log \gamma)$. Let $\gamma \to 5$ then in double precision the memory required for the M2L equals

$$\sum_{\gamma \in S} \left| S_{\gamma}(x) R(\gamma, y) S_{\gamma}(y) \right| \approx 316 \times (2 \times 5 - 1)^2 \times (2 \times 8) \times 3 \approx 25 \text{ MBbytes}$$

The scheme remains stable and sufficiently accurate in the scope of DD simulations (min. accuracy on force computation $\approx 10^{-3}$), while dramatically decreasing the computational cost of the M2L, namely $O(\gamma^3/\log \gamma)$. Let $\gamma \to 5$ then in double precision the memory required for the M2L equals

$$\sum_{\gamma \in S} \left| S_{\gamma}(x) R(\gamma, y) S_{\gamma}(y) \right| \approx 316 \times (2 \times 5 - 1)^2 \times (2 \times 8) \times 3 \approx 25 \text{ MBbytes}$$

REFERENCES

[1] Scalfmm: software library to simulate large scale n-body interactions using the fast multipole method. developed @ hiepacs team, inria bordeaux.

FUNDINGS

This work was supported by the French ANR grants ANR-10-COSI-0011 and the associate team FastLA.

In collaboration with CEA Saclay

More videos & info →