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Nonlinear control of a coupled PDE/ODE system modelling

a switched power converter with a transmission line

Jamal Daafouz, Marius Tucsnak and Julie Valein∗

September 18, 2013

Abstract

We consider an infinite dimensional system modelling a boost converter connected
to a load via a transmission line. The governing equations form a system coupling the
telegraph partial differential equation with the ordinary differential equations model-
ing the converter. The coupling is given by the boundary conditions and the nonlinear
controller we introduce. We design a nonlinear saturating control law using a Lya-
punov function for the averaged model of the system. The main results give the
well-posedness and stability properties of the obtained closed loop system.

Keywords: infinite dimensional system, telegraph equations, power converters,
stabilization, coupled system.

1 Introduction and main results

Systems coupling partial and ordinary differential equations have been intensively
studied from a control theoretical view point, namely due to their applications to the
stabilization of flexible structures (we refer to Littman and Markus [10] for an early
contribution on the subject and to Weiss and Zhao [22] for a description of recent
works in the area). More recently, such systems appeared in the context of energy
management and more precisely in modeling power converters connected to transmis-
sion lines (see, for instance, Zainea, Van der Schaft and Buisson [21] and references
therein). From a mathematical view point, converters are primarily modeled by ordi-
nary differential equations where the input takes values in a discrete set (for instance
{0, 1}). This fact leads to hybrid models, in the sense that they couple continuous
and discrete dynamics [8]. To avoid this difficulty, a classical approach used in appli-
cations for many years assumes that the control law is computed using an averaging
method, so that the considered control is now with continuous values [14, 17]. Several
approaches have been proposed in the literature such as passivity based methods [19]
and sliding modes techniques [18]. Recently, hybrid approaches have been proposed for
stabilization and optimal control of these devices [7, 5, 12] or for the determination of
optimal switching instants posed as a non-smooth dynamic optimization problem [11].
We adopt below the classical ”averaging” approach, so that the controlled converter
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stitut Élie Cartan, UMR 7502, Université de Lorraine/CNRS, POB239, 54506 Vandœuvre-lès-
Nancy Cedex, France. jamal.daafouz@univ-lorraine.fr, marius.tucsnak@univ-lorraine.fr,
julie.valein@univ-lorraine.fr

1



is modeled by a system of ODE’s with a control acting on one of the coefficients. This
nonlinear and saturating control law is built using a Lyapunov function. The obtained
equations have common points with infinite dimensional bilinear control systems such
as those considered in the classical works of Ball and Slemrod [3], Ball, Marsden and
Slemrod [2] or more recently in the context of quantum control (see, for instance,
Beauchard and Mirrahimi [4] or Amini, Mirrahimi and Rouchon [1]). In this work we
take advantage of the fact that the feedback control appears in the finite dimensional
part of the system so that we are able to provide a strong stability result, even in the
case of a saturating feedback law.

The system of coupled partial and ordinary differential equations which will be
studied in the work describes the coupling of a boost converter and a transmission
line which is described in Figure 1. Moreover, to take in consideration that the phys-
ical control cannot lie outside [0, 1], we used a saturating feedback law.

Figure 1: Power converter with a transmission line

Denoting by z(t) the inductor current and by w(t) the capacitor voltage, it is well
known that the converter is described by the ordinary differential equations:

ż(t) = −ρ(t)

L
w(t) +

E

L
, (1.1)

ẇ(t) =
ρ(t)

C
z(t)− 1

C
I(0, t), (1.2)

where I(0, t) is the current at the “left end” of the transmission line, the function
ρ : [0,∞) → [0, 1] is the input, E > 0 is a constant source voltage, L > 0 is the
inductance and C > 0 is the capacitance. ρ = 0 corresponds to the switch being
closed and ρ = 1 corresponds to it being open. The averaged character of our model
(corresponding to a very high switching frequency) is expressed by the fact that the
control ρ takes values in the interval [0, 1] instead of the discrete set {0, 1} which is
generally associated to the switch configuration. Such an ”average model” is classical
in the literature and it means that the control to be designed is not the switching signal
corresponding to the position of the switch in the circuit but the so called duty cycle,
which is the average of this switching signal over a short time interval. Typically,
this time interval is the switching period. The current I and the voltage V in the
transmission line satisfy the telegraph equations

∂I

∂t
(x, t) = −L−1l

∂V

∂x
(x, t) (x ∈ (0, 1), t > 0), (1.3)

∂V

∂t
(x, t) = −C−1l

∂I

∂x
(x, t) (x ∈ (0, 1), t > 0), (1.4)

V (0, t) = w(t), V (1, t) = RLI(1, t) (t > 0). (1.5)

The system which is studied in this paper is formed by equations (1.1)-(1.5), together
with the initial conditions

z(0) = z0, w(0) = w0, (1.6)
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I(x, 0) = I0(x), V (x, 0) = V0(x) (x ∈ (0, 1)). (1.7)

Here Ll and Cl are positive constants that characterize the transmission line and RL
is the load resistance at the end of the line.

Our main result concerns the design of a feedback control for (1.1)-(1.7), which
steers the system to an admissible reference state. Recall that admissible reference
states are time independent solutions of (1.1)-(1.7). In our case, an admissible refer-
ence state is a quadruple

z∗

w∗

I∗

V ∗

 ∈ R× R× L2[0, 1]× L2[0, 1],

such that

−ρ
∗

L
w∗ +

E

L
= 0, (1.8)

ρ∗

C
z∗ − 1

C
I∗(0) = 0, (1.9)

−L−1l
∂V ∗

∂x
(x) = 0 (x ∈ (0, 1)), (1.10)

−C−1l
∂I∗

∂x
(x) = 0 (x ∈ (0, 1)), (1.11)

V ∗(0) = w∗, V ∗(1) = RLI
∗(1), (1.12)

for some ρ∗ ∈ (0, 1). It is easy to check that, given ρ∗ ∈ (0, 1) the unique solution of
(1.8)-(1.12) (thus our admissible reference state) is given by

z∗ =
E

ρ∗2RL
, w∗ =

E

ρ∗
, (1.13)

I∗(x) =
E

ρ∗RL
, V ∗(x) =

E

ρ∗
(x ∈ (0, 1)). (1.14)

The control problem we consider consists, given ρ∗ ∈ (0, 1), in finding a feedback law
for the control ρ in order to have (in an appropriate sense)

lim
t→∞


z(t)
w(t)
I(t)
V (t)

 =


z∗

w∗

I∗

V ∗

 .
In order to design this feedback law we use a simple calculation, assuming that (1.1)-
(1.7) admits smooth solutions. More precisely, we assume that z, w, I, V are smooth
enough and that they satisfy (1.1)-(1.7). Consider the “energy” function W : R×R×
L2[0, 1]× L2[0, 1]→ R, defined by

W


z
w
I(·)
V (·)

 = L|z− z∗|2 +C|w−w∗|2 +Ll‖I(·)− I∗‖2L2[0,1] +Cl‖V (·)−V ∗‖2L2[0,1]

(z, w ∈ R, I, V ∈ L2[0, 1]). (1.15)
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A simple calculation shows that

1

2

d

dt
W


z
w
I(·)
V (·)

 = Lż(t)(z(t)−z∗)+Cẇ(t)(w(t)−w∗)+Ll
∫ 1

0

∂I

∂t
(x, t)(I(x, t)−I∗) dx

+ Cl

∫ 1

0

∂V

∂t
(x, t)(V (x, t)− V ∗) dx.

Using (1.1)-(1.4), we have

1

2

d

dt
W


z
w
I(·)
V (·)

 = ρ(t)(w(t)z∗ − w∗z(t)) + E(z(t)− z∗)− I(0, t)w + I(0, t)w∗

−
∫ 1

0

(
∂V

∂x
(x, t)I(x, t) +

∂I

∂x
(x, t)V

)
dx+ I∗

∫ 1

0

∂V

∂x
(x, t) dx+ V ∗

∫ 1

0

∂I

∂x
(x, t) dx.

With integrations by parts and (1.5), we obtain

1

2

d

dt
W


z
w
I(·)
V (·)

 = ρ(t)(w(t)z∗ − z(t)w∗) + E(z(t)− z∗) + I(0, t)(w∗ − V ∗)

−RL |I(1, t)|2 + I(1, t)(RLI
∗ + V ∗)− I∗w(t).

Then (1.13)-(1.14) give, for every t > 0,

d

dt
W


z
w
I(·)
V (·)

 = −2RL|I(1, t)− I∗|2 + 2(ρ∗ − ρ(t))(w∗z(t)− w(t)z∗). (1.16)

We emphasize that, at this stage, formula (1.16) is not rigourously proved. We also
remark that if there are no disturbances acting on our system then we could choose
a constant ρ = ρ∗ that leads to the desired equilibrium output voltage w = E

ρ∗ ,

according to (1.13). Indeed, for a constant ρ the system would become linear and
stable. However, in applications, there are always disturbances added to the input
voltage E and the load current I, and maintaining a desired w in spite of these
disturbances is a difficult problem discussed in many references (see, for instance, [16]).
The difficulty stems from the fact that the zero dynamics of the system is unstable.
This is why we propose below a nonlinear control which offers the guarantees of the
closed loop solution, namely robustness with respect to disturbances and parameter
uncertainties. Moreover, formula (1.16) suggests that the nonlinear control below
accelerates the decay of W .

According to (1.16), since we need ρ(t) ∈ [0, 1], a natural candidate for the feedback
law is given by

ρ(t) :=


ρ∗ + w∗z(t)− z∗w(t) if ρ∗ + w∗z(t)− z∗w(t) ∈ [0, 1]

0 if ρ∗ + w∗z(t)− z∗w(t) < 0

1 if ρ∗ + w∗z(t)− z∗w(t) > 1.

(1.17)

With the above choice for ρ, formula (1.16) implies that W is a Lyapunov function
for (1.1)-(1.7).
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The main results in this work concern the closed loop problem formed by (1.1)-(1.7)
and (1.17). We obtain in this way a stability problem for a system coupling ODE’s
and PDE’s with the dissipation acting via one of the coefficients in the ODE part. In
this case of purely PDE systems this kind of stability question has been investigated,
in particular, in [3, 13, 20].

Our first main result asserts that the closed loop problem obtained by taking ρ as
in (1.17) is well-posed and satisfies an energy balance.

Theorem 1.1. For every z0, w0 ∈ R and I0, V0 ∈ L2[0, 1] there exists a unique
solution of (1.1)-(1.7), with ρ given by (1.17). Moreover, if z∗, w∗, I∗ and V ∗ are
given by (1.13) and (1.14) and W is defined by (1.15), this solution satisfies, for t > 0,

W


z
w
I(·)
V (·)

+ 2RL

∫ t

0

|I(1, σ)− I∗|2 dσ

− 2

∫ t

0

(ρ∗ − ρ(σ))(w∗z(σ)− w(σ)z∗) dσ = W


z0
w0

I0(·)
V0(·)

 . (1.18)

Remark 1.2. Theorem 1.1 implies that I(1, ·) belongs to L2([0,∞)). This can be seen
as a ”hidden” regularity property, in the sense of Lions [9].

Finally we show that under the action of the feedback law (1.17) the state of the
system converges to the admissible reference state.

Theorem 1.3. Under the assumptions of Theorem 1.1, the solution of (1.1)-(1.7),
with ρ given by (1.17) and with z0, w0 ∈ R, I0, V0 ∈ H1(0, 1) with V0(0) = w0,
V0(1) = RLI0(1), satisfies

lim
t→∞

z(t) = z∗, lim
t→∞

w(t) = w∗.

and
lim
t→∞

I(t) = I∗, lim
t→∞

V (t) = V ∗,

in L2[0, 1].

The outline of this paper is as follows. In Section 2, we prove the main well-
posedness result. The stability result is proved in Section 3.

2 Well-posedness

We first introduce some notation. Set

Z =


z
w
I
V

 , Z0 =


z0
w0

I0
V0


and consider the Hilbert space X defined by

X = R× R× L2[0, 1]× L2[0, 1].

We endow X with the norm (equivalent to the usual one)

‖Z‖2 = L|z|2 + C|w|2 + Ll‖I‖2L2[0,1] + Cl‖V ‖2L2[0,1].
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We define the operators A : D(A)→ X and P : X → X by

AZ =


0

− I(0)C
− 1
Ll

dV
dx

− 1
Cl

dI
dx

 , PZ =


−wL
z
C
0
0

 ,
with

D(A) =
{
Z ∈ X | I, V ∈ H1(0, 1), V (0) = w, V (1) = RLI(1)

}
, (2.1)

where H1(0, 1) stands, as usual practice, for the space of absolutely continuous func-
tions on the interval (0, 1) whose derivative is in L2[0, 1].

We have the following lemma.

Lemma 2.1. The operator A is m-dissipative.

Proof. We first note that for every Z ∈ D(A) we have

〈AZ,Z〉 = −I(0)w −
∫ 1

0

(
dV

dx
I +

dI

dx
V

)
dx.

Using next the boundary condition (1.5) it easily follows

〈AZ,Z〉 = −RL |I(1)|2 6 0, (2.2)

so that A is dissipative.
According to classical results, to show the m-dissipativity of A it suffices to check

that λI − A is onto for some λ > 0. Therefore, given (f1, f2, g1, g2)t ∈ X, we want to
prove the existence of Z = (z, w, I, V )t ∈ D(A) such that

(λI −A)


z
w
I
V

 =


f1
f2
g1
g2

 .
The above system writes 

λz = f1
λw + I(0)

C = f2
λI + 1

Ll

dV
dx = g1

λV + 1
Cl

dI
dx = g2,

(2.3)

which leads to

z =
f1
λ
, (2.4)

w =
1

λ

(
f2 −

I(0)

C

)
. (2.5)

We have to solve the differential equations

λI +
1

Ll

dV

dx
= g1,

λV +
1

Cl

dI

dx
= g2,

with the conditions V (0) = w and V (1) = RLI(1). Differentiating the first equation,
substituting dI

dx from the second one and using the fact that

I =
1

λ
(g1 −

1

Ll

dV

dx
) (2.6)
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lead to 
λ2V − 1

ClLl

d2V
dx2 = λg2 − 1

Cl

dg1
dx ∈ H

−1(0, 1)

V (0)− 1
Llλ2C

dV
dx (0) = 1

λ

(
f2 − g1(0)

Cλ

)
V (1) + RL

λLl

dV
dx (1) = RL

λ g1(1),

.

It is not difficult to check that the above system admits a unique solution V ∈ H1(0, 1).
Then we define I by (2.6) and w, z by (2.5) and (2.4). Setting Z = (z, w, I, V )t, we
see that Z ∈ D(A) is solution of (2.3), which finishes the proof of this lemma.

Let F ∈ X be defined by

F =


E
L
0
0
0

 ,
where E and L are the constants introduced in (1.1).

With the above notation, equations (1.1)-(1.7) can be rewritten as a bilinear control
system of the form

Ż(t) = AZ(t) + ρ(t)PZ(t) + F. (2.7)

To study the existence and uniqueness of the closed loop problem, with ρ given by
(1.17), we first give the following local in time existence result:

Proposition 2.2. Let R > 0. Then there exists Tmax > 0, depending only on R, such
that, for every Z0 ∈ D(A) such that ‖Z0‖ 6 R and every T ∈ [0, Tmax), there exists a
unique strong solution

Z ∈ C([0, T ],D(A)) ∩ C1([0, T ], X)

of (2.7) with ρ(t) given by (1.17).
On the other hand, for every Z0 ∈ X such that ‖Z0‖ 6 R and every T ∈ [0, Tmax),

there exists a unique mild solution Z ∈ C([0, T ], X) of (2.7) with ρ(t) given by (1.17).
Moreover, if z∗, w∗, I∗ and V ∗ are given by (1.13), (1.14) and W is defined by (1.15),
this solution satisfies

W (Z(t)) + 2RL

∫ t

0

|I(1, σ)− I∗|2 dσ

− 2

∫ t

0

(ρ∗ − ρ(σ))(w∗z(σ)− w(σ)z∗) dσ = W (Z0) (t ∈ [0, T ]). (2.8)

Proof. For every

Z =


z
w
I
V

 ∈ X,
we denote

F(Z) = K(Z)PZ,

where

K(Z) =


ρ∗ + w∗z(t)− z∗w(t) if ρ∗ + w∗z(t)− z∗w(t) ∈ [0, 1]

0 if ρ∗ + w∗z(t)− z∗w(t) < 0

1 if ρ∗ + w∗z(t)− z∗w(t) > 1.

Note that, since the map Z 7→ w∗z− z∗w is Lipschitz in X, it is not difficult to prove
that K is also a Lipschitz map. Therefore, we can deduce that the map F : X → X
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is Lipschitz continuous on bounded subsets of X in the sense that for every M > 0
and for every Z1, Z2 ∈ BM = {Z ∈ X ; ‖Z‖ 6M}, we have

‖F(Z1)−F(Z2)‖ 6 CM ‖Z1 − Z2‖ .

Using Proposition 4.3.9 from Cazenave and Haraux [6] we obtain the uniqueness and
existence of a strong solution of (2.7), i.e., the first conclusion of the proposition.

Moreover, the obtained solution is smooth enough to validate the calculations done
to obtain (1.16), so that

W (Z(t)) + 2RL

∫ t

0

|I(1, σ)− I∗|2 dσ

− 2

∫ t

0

(ρ∗ − ρ(σ))(w∗z(σ)− w(σ)z∗) dσ = W (Z0) (t ∈ [0, T ]). (2.9)

By density, if Z0 ∈ X, there exists Z0n ∈ D(A) such that Z0n → Z0 in X. Denote
by Zn the solution of {

Żn(t) = AZn(t) + ρn(t)PZn(t) + F
Zn(0) = Z0n,

where

ρn(t) =


ρ∗ + w∗zn(t)− z∗wn(t) if ρ∗ + w∗zn(t)− z∗wn(t) ∈ [0, 1]

0 if ρ∗ + w∗zn(t)− z∗wn(t) < 0

1 if ρ∗ + w∗zn(t)− z∗wn(t) > 1.

Applying (2.9), we have

W (Zn(t)) + 2RL

∫ t

0

|In(1, σ)− I∗|2 dσ

− 2

∫ t

0

(ρ∗ − ρn(σ))(w∗zn(σ)− wn(σ)z∗) dσ = W (Z0n) (t ∈ [0, T ], n ∈ N∗).

(2.10)

Therefore, there exists KT > 0 such that

‖Zn(t)‖ 6 KT (t ∈ [0, T ], n ∈ N∗). (2.11)

Denote

Zmn = Zn − Zm =


zn − zm
wn − wm
In − Im
Vn − Vm

 (m,n ∈ N).

Then {
Żmn(t) = AZmn(t) + ρn(t)PZmn(t) + (ρn(t)− ρm(t))PZm(t),
Zmn(0) = Z0n − Z0m.

(2.12)

Since A is dissipative and 〈PZ,Z〉 = 0 for every Z ∈ X, it is not difficult to prove
that the solution of (2.12) satisfies

‖Zmn(t)‖2 6 ‖Z0n − Z0m‖2 + 2

∫ t

0

(ρn(s)− ρm(s)) 〈PZm(s), Zmn(s)〉 ds.
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We deduce from (2.11) that

‖Zmn(t)‖2 6 ‖Z0n − Z0m‖2 +M

∫ t

0

|ρn(s)− ρm(s)| ‖Zmn(s)‖ ds,

where M > 0. As ρn(t) = K(Zn(t)) and as K is a Lipschitz map, we have

‖Zmn(t)‖2 6 ‖Z0n − Z0m‖2 +M

∫ t

0

‖Zmn(s)‖2 ds.

Gronwall’s lemma implies that

‖Zmn(t)‖2 6 eMT ‖Z0n − Z0m‖2 .

This implies, using (2.12), that the sequence (Zmn) converges to zero in C([0, T ], X)
when m, n → ∞. We have thus shown that (Zn) converges strongly in C([0, T ], X)
to Z, which is the solution of (2.7) with ρ given by (1.17) and with initial data Z0.

Moreover, using (2.10), there exists C > 0 such that∫ T

0

|In(1, σ)|2 dσ 6 C (n ∈ N∗),

and then (In(1, ·))n is bounded in L2(0, T ). Consequently, up to the extraction of a
subsequence, In(1, ·) converges weakly to I(1, ·) in L2(0, T ). Then, it suffices to pass
to the limit in (2.10) to obtain (2.8).

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. According to Proposition 2.2, the global existence follows from
the fact that ‖Z(t)‖ does not blow up in finite time. This fact is a direct consequence
of (2.8). Moreover, we deduce (1.18) from (2.8).

3 Stabilization result with the saturating feedback

In this section we show that equations (1.1)-(1.7) with ρ given by (1.17) define a
strongly stable system.

To state properly our stability result, we introduce a semigroup (S(t))t>0 of non-
linear operators by setting, for each t > 0, S(t)Z0 = Z(t) where Z is the solution of
(2.7) and ρ is given by the feedback law (1.17). To prove Theorem 1.3 we need the
following lemma.

Lemma 3.1. For every T > 0, if Z0n → Z∞ in X, then S(t)Z0n → S(t)Z∞ in
C([0, T ], X).

Proof. Assume that Z0n → Z∞ in X. Denote by Zn the solution of{
Żn(t) = AZn(t) + ρn(t)PZn(t) + F
Zn(0) = Z0n,

where

ρn(t) =


ρ∗ + w∗zn(t)− z∗wn(t) if ρ∗ + w∗zn(t)− z∗wn(t) ∈ [0, 1]

0 if ρ∗ + w∗zn(t)− z∗wn(t) < 0

1 if ρ∗ + w∗zn(t)− z∗wn(t) > 1.

By (2.8), there exists KT > 0 such that

‖Zn(t)‖ 6 KT (t ∈ [0, T ], n ∈ N∗).

Using the same ideas as in the proof of Proposition 2.2, we can show that (Zn) con-
verges strongly in C([0, T ], X) to Z, which is the solution of (2.7) with ρ given by
(1.17) and with initial data Z0.
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For a solution Z ∈ C([0,+∞), X) of (1.1)-(1.7), we introduce the Lyapunov func-
tion, which can be seen as a perturbation of the one introduced in (1.15).

Eγ(t) =
1

2
‖Z(t)− Z∗‖2 + γ

∫ 1

0

x(I(x, t)− I∗)(V ∗ − V (x, t)) dx

=
1

2
W (Z(t)) + γ

∫ 1

0

x(I(x, t)− I∗)(V ∗ − V (x, t)) dx,

where γ > 0 is a parameter that will be fixed small enough later on. The introduction
of this type of Lyapunov functions goes back to Morawetz [15] in the study of the
wave equation in exterior domains.

We first notice that W (Z(·)) and Eγ are equivalent. More precisely, for γ small
enough (γ < min(Ll, Cl)), there exist two positive constants c1 and c2 such that

c1W (Z(t)) 6 Eγ(t) 6 c2W (Z(t)). (3.1)

We have the following lemma:

Lemma 3.2. Let γ > 0 be small enough. Then there exists a positive constant δ,
depending only on γ, such that for every Z0 ∈ D(A), the solution Z of (1.1)-(1.7)
satisfies

Eγ(0)− Eγ(τ) > δ

∫ τ

0

(
‖V (·, t)− V ∗‖2L2[0,1] + ‖I(·, t)− I∗‖2L2[0,1]

)
dt (τ > 0).

(3.2)

Proof. Using (1.18) it follows that the solution Z of (1.1)-(1.7) satisfies, for all t > 0,

1

2

d

dt
Eγ(t) = −RL|I(1, t)− I∗|2 − |w∗z(t)− z∗w(t)|2 + γ

d

dt

∫ 1

0

x(I − I∗)(V ∗ − V ) dx.

Integrating by parts and using (1.3)-(1.4), we obtain that

d

dt

∫ 1

0

x(I − I∗)(V ∗ − V ) dx =

∫ 1

0

x
∂I

∂t
(V ∗ − V ) dx−

∫ 1

0

x(I − I∗)∂V
∂t

dx

= − 1

Ll

∫ 1

0

x
∂V

∂x
(V ∗ − V ) dx+

1

Cl

∫ 1

0

x(I − I∗)∂I
∂x

dx

= − 1

2Ll

∫ 1

0

|V − V ∗|2 dx− 1

2Cl

∫ 1

0

|I − I∗|2 dx

+
1

2Ll
|V (1, t)− V ∗|2 +

1

2Cl
|I(1, t)− I∗|2 .

The last two formulas, combined with the facts that V (1, t) = RLI(1, t) and V ∗ =
RLI

∗, yield

1

2

d

dt
Eγ(t) = − 1

2Ll

∫ 1

0

|V − V ∗|2 dx− 1

2Cl

∫ 1

0

|I − I∗|2 dx

−
(
RL −

γ

2Cl
− γR2

L

2Ll

)
|I(1, t)− I∗|2 − |w∗z(t)− z∗w(t)|2 .

Consequently, for every γ such that

0 < γ < min

 RL
1

2CL
+

R2
L

2Ll

, Ll, Cl

 ,

there exists δ > 0, depending only on γ, such that

d

dt
Eγ(t) 6 −δ

(
‖V (·, t)− V ∗‖2L2[0,1] + ‖I(·, t)− I∗‖2L2[0,1]

)
,

which implies (3.2).
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Lemma 3.3. For every Z0 ∈ D(A), the solution Z of (1.1)-(1.7) satisfies

lim
t→+∞

I(·, t) = I∗ and lim
t→+∞

V (·, t) = V ∗ in L2[0, 1]. (3.3)

Proof. We first note, using (3.1) and Lemma 3.2, that the map

t 7→ Ll ‖I(·, t)− I∗‖2L2[0,1] + Cl ‖V (·, t)− V ∗‖2L2[0,1] (3.4)

is in ∈ L1[0,∞). To prove (3.3), we use a contradiction argument. We assume that

Ll ‖I(·, t)− I∗‖2L2[0,1] + Cl ‖V (·, t)− V ∗‖2L2[0,1] do not tend to zero. Therefore, there

exists ε > 0 and a positive increasing sequence (tn)n with tn → +∞ such that

Ll ‖I(·, tn)− I∗‖2L2[0,1] + Cl ‖V (·, tn)− V ∗‖2L2[0,1] > ε. (3.5)

Using the fact that Z ∈ C([0,+∞), X) and the fact that the map in (3.4) is in L1[0,∞)
it follows that there exists a finite set F , such that

∀n ∈ N∗ \ F, ∃αn ∈]0, tn − tn−1[,

Ll ‖I(·, tn − αn)− I∗‖2L2[0,1] + Cl ‖V (·, tn − αn)− V ∗‖2L2[0,1] =
ε

2
. (3.6)

We set
δn = min {αn ∈]0, tn − tn−1[; αn satisfies (3.6)} (n ∈ N∗). (3.7)

Using again the fact that the map in (3.4) lies in L1[0;∞) and (3.7), together with
the fact that Z ∈ C([0,+∞), X), we have∑

n∈N∗\F

δn < +∞.

It follows that δn → 0. Using (1.18) and (1.17), we have

W (Z(tn − δn)) >W (Z(tn)) (n ∈ N∗),

and then, using (3.5) and (3.6), we obtain

ε

2
+L |z(tn − δn)− z∗|2+C |w(tn − δn)− w∗|2 > ε+L |z(tn)− z∗|2+C |w(tn)− w∗|2 ,

which implies

L |z(tn − δn)− z∗|2 + C |w(tn − δn)− w∗|2 − L |z(tn)− z∗|2

− C |w(tn)− w∗|2 >
ε

2
. (3.8)

To obtain the contradiction it suffices to show that ż and ẇ are bounded in C[0,∞).
Indeed, since δn → 0, this would contradict (3.8).

To show that ż and ẇ are bounded in [0,∞) we first note that, by (1.18), z and
w are bounded in [0,∞). Therefore, using (1.1)-(1.2) and the fact that ρ(t) ∈ [0, 1], it
is sufficient to show that I(0, .) is bounded in [0,∞). Checking this fact is the most
difficult part of the proof, which is described below.

We can easily verify that I+
√

Cl

Ll
V is constant along the characteristic t =

√
ClLlx

and that I −
√

Cl

Ll
V is constant along the characteristic t = −

√
ClLlx. Consequently

for every t >
√
ClLl, we have I(0, t) +

√
Cl

Ll
V (0, t) = I(1,

√
ClLl + t) +

√
Cl

Ll
V (1,

√
ClLl + t)

I(0, t)−
√

Cl

Ll
V (0, t) = I(1,−

√
ClLl + t)−

√
Cl

Ll
V (1,−

√
ClLl + t).
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Using (1.5), for every t >
√
ClLl, we have I(0, t) +
√

Cl

Ll
w(t) =

(
1 +RL

√
Cl

Ll

)
I(1, t+

√
ClLl)

I(0, t)−
√

Cl

Ll
w(t) =

(
1−RL

√
Cl

Ll

)
I(1, t−

√
ClLl).

We set

f(t) = I(0, t)−
√
Cl
Ll
V (0, t) = I(0, t)−

√
Cl
Ll
w(t) (t > 0),

and

α =
1−RL

√
Cl

Ll

1 +RL

√
Cl

Ll

∈]− 1, 1[.

It is not difficult to check (by induction over p) that for every p ∈ N∗ and every
t ∈ [2p

√
ClLl, (2p+ 1)

√
ClLl] we have

f(t) = 2

√
Cl
Ll

p−1∑
k=1

(
αkw(t− 2k

√
ClLl)

)
+

√
Cl
Ll
αpw(t−2p

√
ClLl)+α

pI(0, t−2p
√
ClLl),

whereas f is given for every t ∈ [(2p+ 1)
√
ClLl, (2p+ 2)

√
ClLl], with p ∈ N, by

f(t) = 2

√
Cl
Ll

p∑
k=1

(
αkw(t− 2k

√
ClLl)

)
+

(
1−RL

√
Cl

Ll

)p+1

(
1 +RL

√
Cl

Ll

)p I(1, t− (2p+ 1)
√
ClLl).

Moreover, we know by (1.18), that w is bounded on [0,∞). Consequently, since
|α| < 1, f is bounded on [0,∞) so that we have indeed shown that I(0, ·) is bounded
on [0,∞). As mentioned above, this concludes the proof of our lemma.

We are now in position to prove the main theorem of this paper.

Proof of Theorem 1.3. We assume that Z is the solution of (1.1)-(1.7) with initial
state Z0 ∈ D(A) and ρ given by (1.17). By (1.18) we have

W (Z(t)) 6W (Z0) (t > 0),

so that there exists C > 0 such that

‖Z(t)‖ 6 C (t > 0).

Therefore there exist a sequence tn → +∞ and Z∞ ∈ X such that Z(tn) = S(tn)Z0 →
Z∞ in X weakly. The aim is to show that Z∞ = Z∗.

We note Z∞ = (z∞, w∞, I∞, V∞)T . By Lemma 3.3, Z(tn) = S(tn)Z0 → Z∞ in
X (strongly) with

I∞ = I∗, V∞ = V ∗,

and using (1.5), together with (1.13) and (1.14), we have

w∞ = w∗.

It remains to prove that z∞ = z∗.
To accomplish this goal we first denote

g(Z(t)) = |ρ∗ − ρ(t)| |w∗z(t)− z∗w(t)| (t > 0). (3.9)
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Using (1.18), we have ∫ t

0

g(Z(σ)) dσ 6W (Z0) (t > 0).

so that g ∈ L1[0,∞). Let T > 0. Using the fact that Z(τ + tn) = S(τ + tn)Z0 =
S(τ)S(tn)Z0, we have

0 = lim
n→∞

∫ T+tn

tn

g(Z(t))dt = lim
n→∞

∫ T

0

g(S(τ)S(tn)Z0)dτ.

Using Lemma 3.1, we obtain that

0 = lim
n→∞

∫ T+tn

tn

g(Z(s))ds =

∫ T

0

g(S(τ)Z∞)dτ > 0.

Consequently, we have ∫ T

0

g(S(τ)Z∞)dτ = 0.

We set Z̃(τ) = S(τ)Z∞ = (z̃(τ), w̃(τ), Ĩ(τ, ·), Ṽ (τ, ·))T . We deduce from Lemma 3.3,

(1.5) and the fact that S(τ + tn)Z0 = S(τ)S(tn)Z0 → S(τ)Z∞ = Z̃(τ) in C([0, T ], X)
(see Lemma 3.1), that

w̃(τ) = w∗, Ĩ(τ, ·) = I∗, Ṽ (τ, ·) = V ∗ (τ ∈ [0, T ]).

Moreover, using (3.9), we have

|ρ∗ − ρ̃(t)| |w∗z̃(t)− z∗w̃(t)| = 0 (t ∈ [0, T ]). (3.10)

Since, going back to (1.17), we see that w∗z̃(t) − z∗w̃(t) = 0 whenever ρ̃(t) = ρ∗, it
follows that

z̃(t) =
z∗w̃(t)

w∗
= z∗ (t ∈ [0, T ]). (3.11)

Therefore Z(τ+ tn) = S(τ)S(tn)Z0 → S(τ)Z∞ = Z∗ for every τ > 0, which concludes
the proof.
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