P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints Ark, Mat, vol.22, pp.153-173, 1984.

M. F. Bidaut-véron, R. Borghol, and L. Véron, Boundary Harnack Inequality and a Priori Estimates of Singular Solutions of Quasilinear Elliptic Equations, Calculus of Variations and Partial Differential Equations, vol.62, issue.2, pp.159-177, 2006.
DOI : 10.1007/s00526-006-0003-7

M. F. Bidaut-véron, G. Huidobro, M. Véron, and L. , Local and global properties of solutions of quasilinear Hamilton???Jacobi equations, Journal of Functional Analysis, vol.267, issue.9, pp.3294-3331, 2014.
DOI : 10.1016/j.jfa.2014.07.003

L. Boccardo, F. Murat, and J. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola. Norm. Sup. Pisa, vol.11, issue.2, pp.213-235, 1984.

R. Borghol and L. Véron, Boundary singularities of solutions of N-harmonic equations with absorption, Journal of Functional Analysis, vol.241, issue.2, pp.611-637, 2006.
DOI : 10.1016/j.jfa.2006.06.015

URL : https://hal.archives-ouvertes.fr/hal-00281624

A. Friedman and L. Véron, Singular solutions of some quasilinear elliptic equations, Archive for Rational Mechanics and Analysis, vol.96, issue.4, pp.258-287, 1986.
DOI : 10.1007/BF00251804

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften 224, 1983.

I. N. Kroll, The behaviour of the solutions of a certain quasilinear equation near zero cusps of the boundary, Proc. Steklov Inst. Math, vol.125, pp.140-146, 1973.

S. Kichenassamy and L. Véron, Singular solutions of thep-laplace equation, Mathematische Annalen, vol.7, issue.4, pp.599-615, 1986.
DOI : 10.1007/BF01459140

G. Lieberman, The natural generalizationj of the natural conditions of ladyzhenskaya and ural??tseva for elliptic equations, Communications in Partial Differential Equations, vol.20, issue.4, pp.311-361, 1991.
DOI : 10.1080/03605309108820761

N. Phuoc, T. Véron, and L. , Boundary singularities of solutions to elliptic viscous Hamilton???Jacobi equations, Journal of Functional Analysis, vol.263, issue.6, pp.1487-1538, 2012.
DOI : 10.1016/j.jfa.2012.05.019

URL : https://hal.archives-ouvertes.fr/hal-00623037

A. Porretta and L. Véron, Separable p-harmonic functions in a cone and related quasilinear equations on manifolds, Journal of the European Mathematical Society, vol.11, pp.1285-1305, 2009.
DOI : 10.4171/JEMS/182

URL : https://hal.archives-ouvertes.fr/hal-00282528

P. Pucci, S. Serrin, and H. Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities, Journal de Math??matiques Pures et Appliqu??es, vol.78, issue.8, pp.769-789, 1999.
DOI : 10.1016/S0021-7824(99)00030-6

P. Tolksdorf, On The Dirichletproblem for Quasilinear Equations, Communications in Partial Differential Equations, vol.111, issue.7, pp.773-817, 1983.
DOI : 10.1080/03605308308820285

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations, vol.51, issue.1, pp.126-150, 1984.
DOI : 10.1016/0022-0396(84)90105-0

N. Trudinger, On harnack type inequalities and their application to quasilinear elliptic equations, Communications on Pure and Applied Mathematics, vol.24, issue.4, pp.721-747, 1967.
DOI : 10.1002/cpa.3160200406