
HAL Id: hal-01095159
https://hal.science/hal-01095159

Submitted on 22 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Executing Hierarchical Interactive Scores in ReactiveML
Jaime Arias, Myriam Desainte-Catherine, Sylvain Salvati, Camilo Rueda

To cite this version:
Jaime Arias, Myriam Desainte-Catherine, Sylvain Salvati, Camilo Rueda. Executing Hierarchical
Interactive Scores in ReactiveML. Journées d’Informatique Musicale 2014, May 2014, Bourges, France.
�hal-01095159�

https://hal.science/hal-01095159
https://hal.archives-ouvertes.fr

EXECUTING HIERARCHICAL INTERACTIVE SCORES IN
REACTIVEML

Jaime Arias, Myriam Desainte-Catherine, Sylvain Salvati
Univ. Bordeaux, LaBRI, Bordeaux, F-33000, France

CNRS, UMR 5800, Bordeaux, F-33000, France
IPB, LaBRI, Bordeaux, F-33000, France

{jaime.arias, myriam, sylvain.salvati}@labri.fr

Camilo Rueda
Departamento de Electrónica y

Ciencias de la Computación
Pontificia Universidad Javeriana

Cali, Colombia
crueda@javerianacali.edu.co

RÉSUMÉ

Le modèle des partitions interactives permet d’écrire et
d’exécuter des scénarios multimédia interactifs. Le logi-
ciel I-SCORE implémente ce modèle au moyen des Hi-
erarchical Time Stream Petri Nets (HTSPN). Cependant,
cette implémentation est très statique et l’ajout de cer-
taines fonctionnalités peut nécessiter une reconception com-
plète du réseau. Un autre problème de I-SCORE est qu’il
ne fournit pas un bon retour visuel de l’exécution d’un
scénario. Dans cet article, nous définissons et implémen-
tons un interprète de partitions interactives avec le lan-
gage de programmation synchrone REACTIVEML. Dans
ce travail, nous tirons parti de l’expressivité du modèle
réactif et de la puissance de la programmation fonction-
nelle pour obtenir un interprète plus simple et plus dy-
namique. Contrairement à l’implémentation basée sur les
réseaux de Petri, cette approche permet de définir précisé-
ment l’aspect hiérarchique et permet de prototyper facile-
ment de nouvelles fonctionnalités. Nous proposons aussi
une visualisation temps réel de l’exécution en utilisant
l’environnement INSCORE.

ABSTRACT

Interactive scores proposes a model to write and execute
interactive multimedia scores. The software I-SCORE im-
plements the above model using Hierarchical Time Stream
Petri Nets (HTSPN). However, this model is very static
and modelling new features would require a complete re-
design of the network or sometimes they cannot be ex-
pressed. Another problem of I-SCORE is that it does not
provide a good visual feedback of the execution of the
scenario. In this work, we define and implement an in-
terpreter of interactive scores using the synchronous pro-
gramming language REACTIVEML. Our work takes ad-
vantage of the expressiveness of the reactive model and
the power of functional programming to develop an in-
terpreter more dynamic and simple. Contrary to the Petri
Net model, our approach allows to model precisely the hi-
erarchical behaviour, and permits the easy prototyping of
new features. We also propose a visualization system us-
ing the environment INSCORE that provides a real-time

visualization of the execution of the score.

1. INTRODUCTION

Interactive scores [10] proposes a model to write and exe-
cute interactive scenarios composed of several multimedia
processes. In this model, the temporal organization of the
scenario is described by means of flexible and fixed tem-
poral relations among temporal objects (i.e., multimedia
processes) that are preserved during the writing and per-
formance stage.

The implementation of interactive scores in the soft-
ware I-SCORE 1 is based on Petri Nets [17]. Such im-
plementation provides an efficient and safe execution, but
implies a quite static structure. Indeed, only elements that
have been planned during the composition process can
be executed. Therefore, it is not possible to modify the
structure of the scenario during execution, for example,
dynamically add a new element that was not written be-
fore execution. In addition, modelling new features for
I-SCORE such as conditionals, loops or handling streams
would require a complete redesign of the network. There-
fore, this model is not suitable for compositional develop-
ment and integration of new features that composers in-
creasingly need to write more complex scenarios.

In this paper, we explore a new way to define and im-
plement interactive scores, aiming at a more dynamic model.
For this purpose, we use REACTIVEML [16], a program-
ming language for implementing interactive systems (e.g.,
video games and graphical user interfaces). This language
is based on the synchronous reactive model of Boussinot [8],
then it provides a global discrete model of time, clear se-
mantics, and unlike Petri nets, synchronous and determin-
istic parallel composition and features such as dynamic
creation of processes. Moreover, REACTIVEML has been
previously used in music applications [4, 5] showing to be
very expressive, efficient, capable of interacting with the
environment during the performance of complex scores,
and well suited for building prototypes easily.

The rest of the paper is organized as follows. In Section
2 we present the I-SCORE system and we briefly introduce

1 http://i-score.org

http://i-score.org

the REACTIVEML programming language. In Section 3
we describe the implementation in REACTIVEML of the
new interpreter of interactive scores. Next, in Section 4 we
present the improved visualization system in INSCORE.
Finally, in Section 5 we present related work, conclusions,
and ideas for future work.

2. PRELIMINARIES

In this section we present the I-SCORE system and the nec-
essary notions of REACTIVEML language.

2.1. I-SCORE

I-SCORE [3, 17] is a software for composing and execut-
ing interactive multimedia scenarios [2]. It consists of two
sides: authoring and performance. In the authoring side,
the composer designs the multimedia scenario while in the
performance side the performer executes the scenario with
interactive capabilities. Next, we present in more detail
both sides.

2.1.1. Authoring side

In interactive scores [10], multimedia elements are tem-
poral structures represented as boxes. These boxes can be
either simple or complex. A simple box represents a mul-
timedia process that will be executed by an external appli-
cation such as PURE DATA 2 or MAX/MSP 3 . I-SCORE
controls such applications by means of OSC 4 messages.
On the other hand, a complex box allows to gather and
execute a set of boxes making possible the design of large
and complex scenarios. However, this box does not exe-
cute a multimedia process.

The temporal organization of the score is partially de-
fined by temporal relations. They indicate a precedence
relation between boxes using Allen’s relations [1], as well
as a delay between them. A temporal relation can be ei-
ther rigid or flexible. In a rigid relation, the duration of
the delay is fixed whereas in a flexible relation, the dura-
tion is partially defined by an interval of time (i.e., it has a
minimum and a maximum duration).

The composer can add interaction points to boxes. They
allow to modify the preceding relations (i.e., start date)
and the duration (i.e., end date) of boxes during the exe-
cution. In the case of a complex box, an interaction point
stops abruptly the box with its children. It is important to
know that the temporal organization of the score is pre-
served during composition and performance. Therefore,
the performer can interpret the same score in different
ways within the constraints of the composer. In I-SCORE,
an interaction point is triggered by sending the OSC mes-
sage defined by the composer. Additionally, all preceding
relations of a box with an interaction point are flexible,
otherwise they are rigid.

2 http://puredata.info
3 http://cycling74.com/products/max/
4 http://opensoundcontrol.org/introduction-osc

In Figure 1 we illustrate an interactive scenario with all
its temporal relations. Here, the horizontal axis represents
time and the vertical axis has no meaning. Additionally,
the start and end of boxes are partially defined by tempo-
ral relations that are represented as solid (rigid relation)
and dashed (flexible relation) arrows. Moreover, tabs rep-
resent the interactions points of boxes.

2

4

3

5

1

6

0

r2

r1 r3

r4

r5

r6

r7

Figure 1. Example of an interactive scenario.

2.1.2. Performance side

In order to execute the scenario designed in the previ-
ous side, I-SCORE translates the score into a Hierarchical
Time Stream Petri Net (HTSPN) [19]. The Petri net model
allows to trigger the interactive events, and also it denotes
and preserves the temporal organization of the score dur-
ing the execution. The reader may refer to [17] for further
information on generating the HTSPN structure from the
score. The following example illustrates the execution of
a scenario.

Example 1. Consider the interactive score in Figure 1
with the following configuration :

• Box 1 starts 3 seconds after the start of the scenario.
Its duration is 4 seconds.

• Box 2 starts 1 second after the start of the scenario.
Its duration is 5 seconds.

• Box 6 starts immediately (i.e., 0 seconds) after the
end of the box 2. Its duration is 15 seconds.

• Box 3 is a complex box with two children; the box
4 and 5. The start of the box is defined by the flex-
ible relations r3 and r4 whose durations are [1,4]
and [3,8], respectively. Therefore, at any instant
in which the above relations are satisfied, the box
may be started by triggering the interaction point.
In Section 3 we elaborate more on the semantics of
temporal relations and interaction points.

• The duration of the box 3 is the interval [2,∞], then
the box may be stopped after 2 seconds of its start-
ing by triggering the interaction point.

http://puredata.info
http://cycling74.com/products/max/
http://opensoundcontrol.org/introduction-osc

• Box 4 starts 2 seconds after the start of its parent
(i.e., box 3). Its duration is the interval [3,6], then
the box may be stopped after 3 seconds of its start-
ing by triggering the interaction point. It is impor-
tant to know that the box will stop when it reaches
its maximum duration (i.e., 6 seconds) if the inter-
action point is not triggered before.

• Box 5 starts 3 seconds after the start of the box 3.
Its duration is 1 second.

• The scenario finishes when the box 6 finishes and 4
seconds have elapsed after the end of the box 3.

Following [17], we translated the score into its equiva-
lent HTSPN structure (Figure 2). For the sake of simplic-
ity, we do not show the time interval on the arcs. Note that
transitions with double stroke are those with an interaction
point.

start(0)

start(1)

start(2) end(2)

end(1)

start(3)

start(6) end(6)

start(4)

start(5)

end(4)

end(5)

end(3)

end(0)

Figure 2. HTSPN structure of the scenario specified in
Example 1.

We show in Figure 4 an execution of the above scenario
where only the interaction point of the box 3 is triggered.
All other intervals reach their maximum duration. Note
that box 3 must be stopped, otherwise it will never end
because it has an infinite duration. merge(r3,r4) repre-
sents the interval of time in which the box 3 may start. In
this interval, the relations r3 and r4 are satisfied. As can
be seen, the interaction point is not triggered, then the box
starts when the interval reachs its maximum duration. We
can conclude that this scenario finishes in 27 seconds only
if the interaction point at the end of the box 3 is triggered
at 23 seconds.

2.2. REACTIVEML

REACTIVEML [16] is a synchronous reactive program-
ming language designed to implement interactive systems
such as graphical user interfaces and video games. It is
based on the reactive model of Boussinot [8] and it is
built as an extension of the functional programming lan-
guage OCAML 5 . Therefore, it combines the power of
functional programming with the expressiveness of syn-
chronous paradigm [6].

The reactive synchronous model provides the notion of
a global logical time. Then, time is viewed as a sequence

5 http://ocaml.org

of logical instants. Additionally, parallel processes are ex-
ecuted synchronously (lock step) and they communicate
with each other in zero time. This communication is made
by broadcasting signals that are characterized by a status
defined at every logical instance: present or absent. In
contrast to ESTEREL [7], the reaction to absence of sig-
nals is delayed, then the programs are causal by construc-
tion (i.e., a signal cannot be present and absent during the
same instant). Moreover, the reactive model provides dy-
namic features such as dynamic creation of processes. In-
deed, REACTIVEML provides a toplevel [15] to dynami-
cally write, load and execute programs.

In REACTIVEML, regular OCAML functions are in-
stantaneous (i.e., the output is returned in the same in-
stant) whereas processes (process keyword) can be exe-
cuted through several instants. Next, we use the program
shown in Figure 3 to describe the basic expressions of RE-
ACTIVEML.

1 let process killable_p p s =
2 do
3 run p
4 until s done
5

6 let process wait tic dur =
7 for i=1 to dur do await tic done
8

9 let process emit_tic period tic =
10 let start = Unix.gettimeofday () in
11 let next = ref (start +. period) in
12 loop
13 let current = Unix.gettimeofday() in
14 if (current >= !next) then begin
15 emit tic ();
16 next := !next +. period
17 end;
18 pause
19 end

Figure 3. Example of REACTIVEML language.

Two expressions can be evaluated in sequence (e1;e2)
or in parallel (e1||e2). In REACTIVEML is possible to
write higher order processes like the process killable_p
(line 1) which takes two arguments: a process p and a

signal s. This process executes p until s is present. The
expression run executes a process (line 3). There are two
important control structures: the construction do e until
s to interrupt the execution of e when the signal s is

present, and the construction do e when s to suspend the
execution of e when the signal s is absent.

Signals can be emitted (emit), and awaited (await).
For instance, the process wait (line 6) takes two argu-
ments: a signal tic and an integer dur. The purpose of
this process is similar to a timer; it waits for the signal
tic to be emitted a number dur of times. The expression
await swaits for s to be emitted and it finishes in the next
instant whereas the expression await immediate s waits
for s to be emitted and it terminates instantaneously. An
important characteristic of the REACTIVEML implemen-
tation is the absence of busy waiting: nothing is computed
when no signal is present. The process emit_tic (line 9)
takes two arguments: a float period and a signal tic. It
works like a clock; it gets the current time by using the

http://ocaml.org

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r1

r2

Box 1

Box 2

Box 6

min max

r4

r3
min max

maxmin

merge (r3,r4)

r5

r6

Box 5

Box 4
min max

Box 3
min

r7

24 25 26 27 28

Figure 4. Execution of Example 1 where only the interaction point of the box 3 is triggered.

function Unix.gettimeofday from the Unix module, and
emits the signal tic (line 15) whenever the period of time
expires (line 14). The pause (line 18) keyword awaits for
the next instant. The construction loop e end iterates in-
finitely e.

REACTIVEML also provides valued signals. They can
be emitted (emit s value) and awaited to get the associ-
ated value (await s (pattern)in expression). Differ-
ent values can be emitted during an instant (multi-emission).
In this case, it is necessary to define how the emitted val-
ues will be combined during the same instant (signal
name default value gather function in expression).
The value obtained is available at the following instant in
order to avoid causality problems. For example, the pro-
cess add (Figure 5) declares the local signal num (line 2)
with an initial value 0 and a function which adds two in-
tegers. The process gen (line 3) generates a set of values
that are emitted through the signal num at the same instant.
The process print (line 6) awaits for the signal num, and
then it prints the value in n. Note that n contains the sum
of all values generated by the process gen.

1 let process add max =
2 signal num default 0 gather fun x y -> x+y in
3 let process gen =
4 (for i=1 to max do emit num i done)
5 in
6 let process print =
7 await num (n) in
8 print_endline (string_of_int n)
9 in
10 run gen || run print

Figure 5. Example of multi-emission of signals.

3. SYNCHRONOUS MODEL OF INTERACTIVE
SCORES

In this section, we present a new execution model of in-
teractive scores using the reactive programming language
REACTIVEML. The implementation of the interpreter is
divided into two main modules: Time and Motor. The
module Time interfaces the abstract time relative to the

tempo (in beats) and the physical time (in ms). This mod-
ule is based on the work of Baudart et al. [4, 5]. The mod-
ule Motor interprets the interactive score and interacts with
the environment by listening external events and trigger-
ing external multimedia processes. The implementation
fulfills the operational semantics of interactive scores [10].
In the following, we describe the above modules.

3.1. Modelling Time

REACTIVEML, like other synchronous languages, pro-
vides the notion of a global logical time. Then, time is
viewed as a sequence of logical instants. The process
emit_tic (Figure 3), explained in Section 2.2, is the in-
terface between the physical time and the logical time. Its
purpose is to generate the clock of the system by emitting
a signal in a periodic time. Therefore, from this signal of
clock, we can define a process to express delays by wait-
ing a specific number of ticks (process wait in Figure 3).

3.2. Execution of Interactive Scores

Interactive scores [10] are basically composed of: boxes
that represent multimedia processes; temporal relations
that define the temporal organization of the score (i.e.,
the start and the end of boxes); and interaction points that
transform a static score into dynamic by allowing the per-
former to modify the temporal relations during the execu-
tion. In the following, we present the implementation of
the above elements in REACTIVEML.

3.2.1. Temporal relations

Temporal relations partially define the temporal organiza-
tion of the scenario. They represent delays that allow to
specify the start and the duration of boxes. Relations can
be either rigid or flexible. In a rigid relation, the duration
of the delay is fixed whereas in a flexible relation, the du-
ration of the delay is partially defined by an interval of
time. This interval can be modified by triggering an inter-
action point during the execution.

Hence, we define two types of intervals in order to rep-
resent temporal relations. The fixed interval represents a
rigid relation and the interactive interval represents a flex-
ible relation with an attached interaction point (Figure 6).
The interaction point allows to stop the interval during the
defined interval of time (i.e., between the minimum and
the maximum duration) by triggering a specific event.

time

fixed interval

interactive interval

duration

minimum duration
maximum duration

interaction point
enabled

Figure 6. Fixed and flexible intervals.

In REACTIVEML, we represent a fixed interval as a tu-
ple (d,s) where the signal s is emitted when the duration
d has elapsed. On the other hand, the interactive interval
is defined as a tuple (min,max,ip) where min and max are
fixed intervals that represent the minimum and maximum
duration of the interval, and ip is its interaction point. It
should be noted that the duration of a flexible interval can
be either finite or infinite.

Interaction points are represented as OSC messages
that are sent from the environment and transmitted through
a signal. An OSC message is represented as a tuple (t,
a) where t is the address and a is the list of arguments
with their type. For example, (‘/light/1’, [String ‘
luminosity’; Int32 90]).

Hence, we define a temporal relation between two boxes
as a tuple (from,to,intrvl) where from and to are the
identifiers of the boxes involved in the relation, and intrvl
is the interval that defines the delay between them.

3.2.2. Boxes

Boxes can be either simple or complex. A simple box rep-
resents a multimedia process that is executed by an exter-
nal application. For this reason, the interpreter only sends
OSC messages in order to control its start and end. On
the other hand, a complex box gather and execute a set of
boxes with their own temporal organization. Recall that
the duration of a box is defined by an interval. Then, it
can be either fixed or interactive. In the rest of the paper,
we call rigid boxes as process boxes and complex boxes
as hierarchical boxes.

A process box is defined as a tuple (id,intrvl,s_msg
,e_msg) where: id is the identifier of the box; intrvl is
the interval that defines its duration; s_msg and e_msg are
the OSC messages to start and stop the external process,
respectively. We define a hierarchical box as a tuple (id,
b_list, r_list, intrvl) where: id is the identifier of

the box; b_list is the list of its children; r_list is the list
of the relations; and intrvl is the interval that defines its

duration. The following example illustrates the represen-
tation of boxes and relations in REACTIVEML.

Example 2. Consider the hierarchical box shown in Fig-
ure 7a. This box, identified with the number 2, has a pro-
cess box as child and an interaction point at the end. The
duration of the hierarchical box is the interval [2,∞]. The
process box, identified with the number 1, starts 2 seconds
after the starting of its parent and its duration is 2 seconds.

We show the specification in REACTIVEML of Exam-
ple 2 in Figure 7b.

1

2

r1 r2

(a) Graphical representation.

1 signal pb1_s, hb1_s, hb2_s, r1_s, r2_s;
2 let ip = ("/stop",[Int32 3]);
3 let start_m = ("/box/1",[String "start"]);
4 let stop_m = ("/box/1",[String "stop"]);
5 let r1 = Fixed (Finite 2, r1_s);
6 let r2 = Fixed (Finite 0, r2_s);
7 let p_box = Process (1, Fixed (Finite 2, pb1_s), start_m,

stop_m);
8 let h_box = Hierarchical (2, [p_box], [(2,1,r1);(1,2,r2)

], Interactive ((Finite 2, hb1_s), (Infinite, hb2_s)
, ip))

(b) Specification in REACTIVEML.

Figure 7. Specification of a hierarchical box in REAC-
TIVEML.

Firstly, we define the signals that will be emitted when
the intervals reach their durations (line 1), the OSC mes-
sage of the interaction point (line 2), and the OSC mes-
sages to start (line 3) and stop (line 4) the external mul-
timedia process. Then, we define the interval r1 (line 5)
that determines the start of the process box (i.e., box 1). It
is important to note that we need to specify both the type
of the interval (i.e., Fixed or Interactive) and the dura-
tion (i.e., Finite or Infinite). Since the parent of the box
1 has an interaction point, the duration of the interval r2 is
not relevant, therefore we define its duration as 0 seconds
(line 6). Next, we define the process box p_box (line 7)
with a fixed duration of 2 seconds and the messages de-
fined previously. Finally, we define the hierarchical box
with its child p_box, its internal relations r1 and r2, and
its duration. Note that the duration of box 2 is defined
by means of an interactive interval because it has an in-
teraction point at the end. As in the definition intervals,
we need to specify the type of the box (i.e., Process or
Hierarchical).

The execution of a box is performed by a REACTIVEML
process (Figure 8). It first waits for the preceding intervals
of the box are satisfied (line 3). Then, it executes the box
depending of its type (line 4). Finally, once the box has
finished, it launches its succeeding intervals (line 5). The
above processes must be killed if the parent of the box is

stopped. In the following we describe the processes that
decode each type of box.

1 let rec process run_generic box w_rels s_rels stop_f
id_box =

2 (* .. *)
3 run (killable_p (wait_intervals w_rels id_box)

stop_f);
4 run (run_box box);
5 run (killable_p (run_intervals s_rels) stop_f)

Figure 8. Process that executes a box.

A process box, implemented in the process run_p_box
(Figure 9), first gets its identifier (ident), the interval that
defines its duration (interval), and the OSC messages
to start (start_m) and stop (end_m) the external process
(line 2). Then, it starts the external process by sending the
corresponding OSC message (line 4). Next, it runs the
interval of its duration (line 5) and waits until it ends (line
6). Finally, once the box stops, it immediately sends the
corresponding OSC message to stop the external process
(line 7). The box and its external process finish suddenly
if the signal stop_f is emitted (do/until construction) by
its parent.

1 let process run_p_box p_box =
2 let (ident, interval,star_m,end_m) = p_box in
3 do
4 emit output (star_m);
5 (run (run_intervals [interval]) ||
6 run (wait_intervals [interval] ident));
7 emit output (end_m);
8 until stop_f -> emit output (end_m) done

Figure 9. Process that executes a process box.

On the other hand, a hierarchical box is executed by
the process run_h_box (Figure 10). It first gets the param-
eters of the box (line 2): its identifier (ident); its chil-
dren (boxes); the temporal relations of the sub-scenario
(relations); and the interval that defines its duration (interval
). Then, it executes in parallel: a monitor that emits the
signal stop_box_hwhen the parent of the box finishes sud-
denly (line 5); the interval that defines its duration (line 7);
a monitor that emits the signal stop_box_h when the box
stops because of an interaction point (line 12); the rela-
tions that describe the temporal organization of the sub-
scenario (line 15); a monitor that waits for the relations
defining its end (line 16); and its children with their pre-
ceding and succeeding intervals (line 18). Hence, the hi-
erarchical box and its children will finish abruptly when
the signals stop_box_h or stop_f are emitted. Otherwise,
the hierarchical box will finish when its duration and all
internal relations have finished.

3.2.3. Synchronization

Boxes can have one or more preceding and succeeding re-
lations. In I-SCORE, all preceding relations of a box with
an interaction point are flexible (interactive intervals). Oth-
erwise, all are rigid (fixed intervals). In the first case, the

1 let process run_h_box h_box =
2 let (ident, boxes, relations , interval) = h_box in
3 signal stop_box_h in
4 signal kill_m in
5 do (await immediate stop_f; emit stop_box_h) until

kill_m done ||
6 (((do
7 run (run_intervals [interval]) ||
8 (run (wait_intervals [interval] ident);
9 begin
10 match interval with
11 | Fixed _ -> ()
12 | Interactive _ -> emit stop_box_h
13 end
14) ||
15 run (run_intervals (get_intervals ident relations

From)) ||
16 run (wait_intervals (get_intervals ident relations

To) ident)
17 until stop_box_h done); emit stop_box_h) ||
18 run (run_boxes_par boxes relations stop_box_h));

emit kill_m

Figure 10. Process that executes a hierarchical box.

box will start when one of its preceding relations has fin-
ished, and the interaction point will be enabled when they
have reached their minimum duration (Figure 11b). In the
second case, the box will start when all its preceding rela-
tions have finished (Figure 11a). As noted, we can merge
a set of intervals into one that follows the behaviour de-
scribed above. Next, we describe the processes to handle
intervals.

time

fixed interval 1
fixed interval 2

merge fixed (1,2)

(a) Fixed intervals.

interactive interval 1

interactive interval 2

merge interactive (1,2)

min max

min max

min max

interaction point
enabled

time

(b) Interactive intervals.

Figure 11. Merging a set of intervals.

The process run_intervals (Figure 12) runs in parallel
a list of intervals (line 3). Each interval emits a specific
signal when it reaches its duration (line 7). In the case of
an interactive interval, a different signal will be emitted
when it reaches its minimum and maximum duration (line
12 and 14). Following the semantics described above, if
a box has several preceding intervals, it will start when
one of them finishes (do/until construction). We use the
process iterator Rml_list.par_iter to execute in parallel
a list of processes.

The process wait_intervals (Figure 13) waits for a
set of intervals are satisfied. Then, in the case that all in-
tervals are fixed, it waits until all intervals end (line 5 and
7). Otherwise, it first waits until all reach their minimum
duration (line 5), and then it begins to listen the external
events (line 13) until one interval reaches its maximum du-
ration (do/until construction) or the event associated to
the interaction point is triggered (line 14). The emission
of the signal max_s also will stop all intervals.

1 let process run_intervals inter_l =
2 (* .. *)
3 run (Rml_list.par_iter
4 (proc i ->
5 match i with
6 | Fixed (d,s) ->
7 run (handle_duration d s)
8 | Interactive (min,max,_) ->
9 let (min_d,min_s) = min in
10 let (max_d,max_s) = max in
11 begin
12 run (handle_duration min_d min_s);
13 do
14 run (handle_duration max_d max_s)
15 until max_s done;
16 end
17) inter_l)

Figure 12. Process that runs a set of intervals.

1 let process wait_intervals inter_l id_box =
2 (* .. *)
3 if (List.length inter_l > 0) then
4 begin
5 run (sync_minimum inter_l);
6 match (List.hd inter_l) with
7 | Fixed (_) -> ()
8 | Interactive (_,max,ip) ->
9 let (_,max_s) = max in
10 begin
11 do
12 loop
13 await input (ip_e) in
14 (if (checkIP ip ip_e) then emit max_s);
15 pause
16 end
17 until max_s done
18 end
19 end

Figure 13. Process that waits for a set of intervals.

3.3. Running an Example

In the following, we present two different executions of
the scenario specified in Example 1 (Section 2.1) using
our interpreter. In both executions the period of the clock
was one second. We used PURE DATA to run the multime-
dia processes and trigger the interaction points by sending
OSC messages.

In the first execution we only triggered at 23 seconds
the interaction point at the start of the box 3. Comparing
the log of execution (Figure 14) with the execution shown
in Figure 4, we observe our implementation follows cor-
rectly the operational semantics of interactive scores. Re-
call that Figure 4 illustrates the execution of Example 1
under the same conditions.

On the other hand, in the second execution we started
and stopped the box 3 at 10 and 17 seconds, respectively.
We illustrate the execution of Example 1 under the above
conditions in Figure 16. Note that the box 3 started early
because the interaction point was triggered at 10 seconds.
Furthermore, the children of the box 3 were stopped abruptly
at 17 seconds because the parent was stopped by the inter-
action point. Comparing the log of execution (Figure 15)
with the execution shown in Figure 16, we observe our
implementation follows correctly the operational seman-
tics of interactive scores.

Simulation log ...
==================

clock 0 -> (scenario started), (h_box 0 started).
clock 1 -> (p_box 2 started).
clock 2 -> .
clock 3 -> (p_box 1 started).
clock 4, 5 -> .
clock 6 -> (p_box 2 finished), (p_box 6 started).
clock 7 -> (p_box 1 finished).
clock 8 -> .
clock 9 -> (start listening ip 1).
clock 10, 11 -> .
clock 12 -> (stop listening ip 2), (h_box 3 started).
clock 13 -> .
clock 14 -> (p_box 4 started), (start listening ip 2).
clock 15 -> (p_box 5 started).
clock 16 -> (p_box 5 finished).
clock 17 -> (start listening ip 3).
clock 18, 19 -> .
clock 20 -> (stop listening ip 3), (p_box 4 finished).
clock 21 -> (p_box 6 finished).
clock 22 -> .
clock 23 -> (event ip 2 triggered), (stop listening ip

2), (h_box 3 finished).
clock 24, 25 26 -> .
clock 27 -> (h_box 0 finished), (scenario finished).

Figure 14. Execution log of Example 1 where only the
interaction point at the start of the box 3 was triggered.

Simulation log ...
==================

clock 0 -> (scenario started), (h_box 0 started).
clock 1 -> (p_box 2 started).
clock 2 -> .
clock 3 -> (p_box 1 started).
clock 4, 5 -> .
clock 6 -> (p_box 2 finished), (p_box 6 started).
clock 7 -> (p_box 1 finished).
clock 8 -> .
clock 9 -> (start listening ip 1).
clock 10 -> (event ip 1 triggered), (stop listening ip

1), (h_box 3 started).
clock 11 -> .
clock 12 -> (p_box 4 started), (start listening ip 2).
clock 13 -> (p_box 5 started).
clock 14 -> (p_box 5 finished).
clock 15 -> (start listening ip 3).
clock 16 -> .
clock 17 -> (event ip 2 triggered), (stop listening ip

2), (p_box 4 finished), (h_box 3 finished).
clock 18, 19, 20 -> .
clock 21 -> (p_box 6 finished), (h_box 0 finished), (

scenario finished).

Figure 15. Execution log of Example 1 where both inter-
action points of the box 3 were triggered.

It is important to remark that unlike the Petri Net model
presented in [2], our model allows to represent precisely
the hierarchical behaviour of boxes. As can be seen in
Figure 2, the hierarchical box represented by the transi-
tions start(3) and end(3) only models the gathering of a
set of boxes, but it does not model the forced stopping of
its children due to an interaction point.

4. IMPROVING THE VISUALIZATION WITH
INSCORE

Currently, the graphical interface of I-SCORE does not sup-
port a good feedback in real-time of the dynamic execu-

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r1

r2

Box 1

Box 2

Box 6

min max

r3
min max

maxmin

r5

r6

Box 5

Box 4
min max

Box 3
min

r7

24 25 26 27 28

r4

merge (r3,r4)

Figure 16. Execution of Example 1 where both interaction points of the box 3 are triggered.

tion of the scenario. In this section, we attempt to over-
come this limitation by implementing a graphical inter-
face that changes depending on the events emitted during
the execution of a score.

Our approach consists in developing a visualization sys-
tem in INSCORE [11] that behaves like a synchronous ob-
server [13] of our interpreter (i.e., a process that listens
the inputs and outputs of other process without altering its
behaviour). INSCORE is a software for designing inter-
active and augmented scores. Here, scores are composed
of heterogeneous graphic objects such as symbolic music
notation, text, images, videos and files with a graphic and
temporal dimension. Moreover, this tool integrates a mes-
sage driven system that uses the OSC protocol in order to
interact with any OSC application or device. Therefore,
the graphical interface can dynamically transform depend-
ing on the messages.

Roughly, in our graphical interface (Figure 17) events
can be triggered by clicking on the box. Single-click trig-
gers the interaction point at the start of the box whereas
double-click triggers the interaction point at the end. The
performer knows that an interaction point can be triggered
when the border of the box is either dashed (the interac-
tion point at the start) or dotted (the interaction point at the
end). A REACTIVEML process listens the events emitted
by the interpreter and changes the organization and size
of boxes in the graphical interface depending on them.
Moreover, boxes change their colour when they are ex-
ecuting. The interface also shows the current time in the
upper right of the scenario and indicates the current posi-
tion of the execution with a vertical line.

4.1. Implementation

In the following we describe the implementation of the
process box. This process listens the events emitted by
the interpreter and dynamically transforms the graphical
interface depending on them.

Roughly speaking, the process sends OSC messages to
INSCORE according to both the events emitted by the in-
terpreter and the current time of execution. For instance,

Figure 17. Graphical interface in INSCORE.

a box is moved to the right of the x-axis if the interpreter
has not emitted its start event and its start date has elapsed.
Additionally, we take advantage of the interaction capa-
bilities of INSCORE to trigger the interaction points of
the boxes directly from the graphical interface. Next, we
describe in more detail the process box (Figure 18).

First, it draws the box in INSCORE by means of the
function draw_box (line 2). This function also assigns IN-
SCORE events to boxes in order to trigger their interaction
points. Next, it verifies at each tick of clock if the box
needs to move to the right of the x-axis (line 8) because it
has not started and its start date has elapsed (i.e., the start
date of the box is delayed). In the case of a hierarchical
box, the children move along with the parent (line 10).
Additionally, it checks if the interaction point at the start
of the box is enabled. If that is true, the box changes its
border to dashed (line 16).

Once the box starts (i.e., the interpreter emitted the start
event of the box), it changes its colour (line 20) and returns
to its original border (line 21). Then, the process verifies if
the box started before its start date (line 22). In that case,
the box is moved to the current position in the execution of
the score (line 24). Next, the process tests at each tick of
clock if the width of the box needs to be lengthened (line

33) because it has not stopped and its end date has elapsed
(i.e., the end date of the box is delayed). In addition, it
examines if the interaction point at the end of the box is
enabled. If that is true, the box changes its border to dotted
(line 39).

Once the box stops (i.e., the interpreter emitted the stop
event of the box), it returns to its original colour (line 43)
and border (line 44). Finally, the process verifies if the
box stopped before its end date (line 46). In that case, the
box is resized to the current position in the execution of
the score (line 47). The box with identifier 0 is not resized
because we do not want to resize the scenario.

1 let process box b =
2 draw_box id_b (!width *. dx) (get_x !pos_x) pos_y

height ip_start ip_end;
3

4 (* waiting the start *)
5 do
6 loop
7 await immediate clock;
8 if (!pos_x < current) then begin
9 pos_x := !pos_x +. 1.0;
10 List.iter
11 (fun i -> move_box i dx; emit dx_s.(i) 1.0)
12 (id_b::children)
13 end;
14 pause
15 end ||
16 (await immediate start_ip.(id_b); change_border

id_b "dash")
17 until start_s.(id_b) done;
18

19 (* box started *)
20 change_color id_b r g b ;
21 change_border id_b "solid";
22 if (!pos_x > current) then begin
23 let new_x = current -. !pos_x in
24 List.iter
25 (fun i -> move_box i (new_x *. dx); emit dx_s.(i

) new_x)
26 (id_b::children)
27 end;
28

29 (* waiting the end *)
30 do
31 loop
32 await immediate clock;
33 if (current >= (!pos_x +. !width)) then begin
34 width := !width +. 1.0;
35 resize_box id_b (!width *. dx)
36 end;
37 pause
38 end ||
39 (await immediate start_ip.(id_b); change_border

id_b "dot")
40 until end_s.(id_b) done;
41

42 (* box stopped *)
43 change_color id_b 238 238 238 ;
44 change_border id_b "solid";
45 let new_dy = (current -. !pos_x) in
46 width := if new_dy > 0.0 then new_dy else 0.0;
47 if (id_b <> 0) then resize_box id_b (!width *. dx);

Figure 18. Process that encodes the behaviour of a box in
the graphical interface.

Hence, each box shown in the graphical interface (i.e.,
INSCORE score) represents a process box that is running
concurrently and interacting with other boxes of the graph-
ical interface. Therefore, our visualization system allows
performers to observe the current state of the execution of
the score.

5. CONCLUDING REMARKS

In this work, we presented a synchronous interpreter of
multimedia interactive scores. It was implemented in the
synchronous programming language REACTIVEML [16].
We showed that the implementation is simple and small
thanks to the synchronous model and high-order program-
ming provided by REACTIVEML. Contrary to the Petri
Net model presented in [17], our approach allows to model
precisely the hierarchical behaviour of boxes.

We explored the use of INSCORE to develop a graphi-
cal interface that provides a real-time visualization of the
execution of the score. In this sense, it improves the cur-
rent graphical interface of I-SCORE. We took advantage
of the OSC protocol to communicate our interpreter with
external applications such as PURE DATA and INSCORE.

We believe that our implementation provides many ad-
vantages for the composition and execution of interac-
tive scores. For instance, as shown in [5], we can pro-
totype new features easily and execute living code using
the toplevel of REACTIVEML [15]. Moreover, our ap-
proach would allow to execute dynamic processes unlike
Petri Nets.

Related work. The work in [4, 5] embeds the ANTES-
FOCO language [9] and presents how to program mixed
music in REACTIVEML. ANTESFOCO is a score follow-
ing system that synchronizes in real-time electronic music
scores with a live musician. The approach defines a syn-
chronous semantics of the core language of ANTESFOCO,
and then it is implemented in REACTIVEML. Therefore,
composers can prototype new constructs and take advan-
tage of the expressiveness of synchronous model and the
power of functional programming. For example, recur-
sion, high order programming, type induction, among oth-
ers.

Future work. Multimedia interactive scores have a
wide range of applications such as video games and mu-
seum installations. Therefore, in some cases, it is highly
necessary to use conditions and loops in order to model
the dynamics of the score easier and correctly. However,
these constructions are not supported by the current model
of I-SCORE. For this reason, we plan to take advantage of
the features of REACTIVEML to prototype these new con-
structions.

Nowadays, composers have increasingly needed to ma-
nipulate streams in their multimedia scenarios. Then, we
plan to examine the data-flow programming language LU-
CID SYNCHRONE [18] in order to handle streams in real-
time. This programming language combines the synchronous
model of LUSTRE [12] with the features of ML languages.
In addition, we plan to perform tests to verify that the new
solutions are more efficient than the current implementa-
tions.

We intend to increase the usability of our interpreter by
developing a compiler that translates automatically sce-
narios designed in I-SCORE into the syntax of the inter-
preter. Additionally, we plan to improve the graphical in-
terface in INSCORE in order to provide an environment

where the user can directly design and visualize the exe-
cution of a scenario.

Finally, we intend to verify properties of scenarios [14].
For instance, we are interested in knowing the maximum
number of processes that can be executed in parallel dur-
ing all possible executions of the scenario.

Acknowledgements. We thank the anonymous review-
ers for their detailed comments that helped us to improve
this paper. Also, we would like to thank Louis Mandel for
his valuable remarks about the implementation. This work
has been supported by the OSSIA (ANR-12-CORD-0024)
project and SCRIME 6 .

6. REFERENCES

[1] Allen, J., « Maintaining knowledge about temporal
intervals », Communications of the ACM, ACM, vol.
26 (11), New York, NY, USA, 1983, p. 832–843.

[2] Allombert, A., « Aspects temporels d’un système de
partitions musicales interactives pour la composition
et l’exécution », Ph.D. Thesis, Bordeaux, France,
2009.

[3] Allombert, A., Desainte-Catherine, M., and As-
sayag, G., « Iscore: A system for writing interac-
tion », Proceedings of the Third International Con-
ference on Digital Interactive Media in Entertain-
ment and Arts, ACM, New York, NY, USA, 2008, p.
360–367.

[4] Baudart, G., Jacquemard, F., Mandel, L., and Pouzet,
M., « A synchronous embedding of Antescofo, a
domain-specific language for interactive mixed mu-
sic », Proceedings of the Thirteen International Con-
ference on Embedded Software, Montreal, Canada,
2013.

[5] Baudart, G., Mandel, L., and Pouzet, M., « Program-
ming mixed music in ReactiveML », Proceedings of
the First ACM SIGPLAN Workshop on Functional
Art, Music, Modeling, Boston, USA, 2013.

[6] Benveniste, A., Caspi, P., Edwards, S., Halbwachs,
N., Le Guernic, P., and De Simone, R., « The syn-
chronous languages 12 years later », Proceedings of
the IEEE, IEEE, vol. 91 (1), 2003, p. 64–83.

[7] Berry, G., and Gonthier, G., « The Esterel syn-
chronous programming language, design, semantics,
implementation », Science of Computer Program-
ming, Elsevier, vol. 19 (2), Amsterdam, The Nether-
lands, 1992, p. 87–152.

[8] Boussinot, F., and De Simone, R., « The SL syn-
chronous language », IEEE Transactions on Soft-
ware Engineering, IEEE Press, vol. 22 (4), Piscat-
away, USA, 1996, p. 256–266.

6 http://scrime.labri.fr

[9] Cont, A., « ANTESCOFO: Anticipatory synchro-
nization and control of interactive parameters in
computer music », Proceedings of International
Computer Music Conference, Belfast, Ireland, 2008.

[10] Desainte-Catherine, M., Allombert, A., and As-
sayag, G., « Towards a hybrid temporal paradigm
for musical composition and performance: The case
of musical interpretation », Computer Music Jour-
nal, MIT Press, vol. 37 (2), Cambridge, MA, USA,
2013, p. 61–72.

[11] Fober, D., Orlarey, Y., and Letz, S., « An environ-
ment for the design of live music scores », Proceed-
ings of the Linux Audio Conference, CCRMA, Stan-
ford University, California, US, 2012, p. 47–54.

[12] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud,
D., « The synchronous dataflow programming lan-
guage LUSTRE », Proceedings of the IEEE, IEEE,
vol. 79 (9), 1991, p. 1305—1320.

[13] Halbwachs, N., Lagnier, F., and Raymond, P., « Syn-
chronous observers and the verification of reactive
systems », Proceedings of the Third International
Conference on Methodology and Software Technol-
ogy, Springer-Verlag, London, UK, 1994, p. 83–96.

[14] Halbwachs, N., and Raymond, P., « Validation of
synchronous reactive systems: From formal verifica-
tion to automatic testing », Proceedings of the Fifth
Asian Computing Science Conference on Advances
in Computing Science, Springer-Verlag, 1999, p. 1–
12.

[15] Mandel, L., and Plateau, F., « Interactive program-
ming of reactive systems », Electronic Notes in The-
oretical Computer Science, Elsevier, vol. 238 (1),
Amsterdam, The Netherlands, 2009, p. 21–36.

[16] Mandel, L., and Pouzet, M., « ReactiveML, a reac-
tive extension to ML », Proceedings of the Seventh
ACM SIGPLAN International Symposium on Princi-
ples and Practice of Declarative Programming, Lis-
bon, Portugal, 2005.

[17] Marczak, R., Desainte-Catherine, M., and Al-
lombert, A., « Real-time temporal control of musical
processes », The Third International Conferences on
Advances in Multimedia, Budapest, Hungary, 2011,
p. 12–17.

[18] Pouzet, M., « Lucid Synchrone, version 3. Tu-
torial and reference manual », http://www.
di.ens.fr/~pouzet/lucid-synchrone/
lucid-synchrone-3.0-manual.pdf .

[19] Sénac, P., De Saqui-Sannes, P., and Willrich, R., «
Hierarchical Time Stream Petri Net: A model for
hypermedia systems », Proceedings of the Sixteenth
International Conference on Application and Theory
of Petri Nets, Springer, Turin, Italy, 1995, p. 451–
470.

http://scrime.labri.fr
http://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
http://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
http://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf

	 Introduction
	 Preliminaries
	 I-score
	 Authoring side
	 Performance side

	 ReactiveML

	 Synchronous Model of Interactive Scores
	 Modelling Time
	 Execution of Interactive Scores
	 Temporal relations
	 Boxes
	 Synchronization

	 Running an Example

	 Improving the visualization with INScore
	 Implementation

	 Concluding Remarks
	 References

