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Abstract

This paper presents an approach of model-based
diagnosis for the health monitoring of hybrid sys-
tems. These systems have both continuous and
discrete dynamics. Modified Particle Petri Nets,
initially defined in the context of hybrid systems
mission monitoring, are extended to estimate the
health state of hybrid systems. This formalism
takes into account both uncertainties about the
system knowledge and about diagnosis results. A
generation of a diagnoser is proposed to track on-
line the system health state under uncertainties by
using particle filter. An academic example is used
all along the article to illustrate the major con-
cepts.

1 Introduction

Systems have become so complex that it is often impossible
for humans to capture and explain their behaviors as a
whole, especially when they are exposed to failures. It
is therefore necessary to develop tools that can support
operator tasks but that also reduce the global costs due to
unavailability and repair actions. An efficient diagnosis
technique has to be adopted to detect and isolate faults
leading to failures.

Recent industrial systems exhibit an increasing complex-
ity of dynamics that are both continuous and discrete. It has
become difficult to ignore the fact that most systems are hy-
brid [1]. In previous works [2], we extended the diagnosis
approach proposed in [3] in order to integrate diagnosis and
prognosis for hybrid systems. The approach uses hybrid
automata and stochastic models for the system degradation.
The main drawback of this approach is that the discrete
event system oriented diagnosis framework explodes in
number of states and it does not seem the best suited for
the incorporation of the highly probabilistic prognosis task.
The goal of this paper is to use a new formalism, based on
Modified Particle Petri Nets (MPPN) ([4]), both to specify
the system behavior in all its complexity, that is hybrid but
also uncertain, and to track system current health state with
a diagnoser-like representation.

The paper is organized as follows. Section 2 presents re-
lated work on diagnoser specification based on Petri Nets
formalism in the special case of hybrid systems under un-
certainties. Section 3 recalls the MPPN framework. Sec-

tion 4 presents how MPPN is applied to health monitoring.
Section 5 explains the generation of a behavioral diagnoser
using the MPPN formalism. Some conclusions and future
work are discussed in the final section.

2 Related work

The diagnoser approach was introduced by [5]. The
diagnoser is basically a monitor that is able to process
any possible observable event on the system. It consists
in recording these observations and providing the set of
possible faults whose occurrence is consistent with this
observation.
Some approaches, like [6][7][8], extend the diagnoser
introduced by [5] to DES modelled by Petri nets. [7]

proposes a distributed version of the diagnoser in "Petri net
diagnosers". In [8], the authors study the diagnosability
of a system, inspired by the diagnosability approach for
finite state automata proposed by Sampath [5]. They build
the Modified Basis Reachability Graph in order to build
the reachability diagnoser that is represented as a graph.
However, none of these approaches does take into account
continuous aspects, nor uncertainties in the system.
Some works try to take into account uncertain-
ties [9][10][11]. [9] uses partially observed Petri nets.
Partially observed Petri net are transformed into an equiva-
lent labelled Petri net and an online monitor has been built
to diagnose faults and provide beliefs (degree of confi-
dence) regarding the occurrences of faults. However, this
approach is limited, because it does not take into account
uncertainties about the model or the event observations,
only in diagnosis results. [10] proposes to reduce the
explosion of the state space estimation by introducing
generalized markings (negative token) to take into account
uncertainty about the firing of transitions. [11] uses the
Stochastic Petri nets (SPN) to build a formal model of each
component of integrated modular avionics architecture.
However, for all these approaches, no continuous aspect in
the model is taken into account.

To have a more compact representation and to capture all
uncertainties related to the system, to the observations and
to the diagnosis results, we propose to consider the formal-
ism of Modified Particle Petri Nets (MPPN) defined in [4].
MPPN are an extension of Particle Petri nets [12] that com-
bines a discrete event model (Petri net) and a continu-
ous model (differential equations). The main advantage of
MPPN is that uncertainties and hybrid dynamics are taken
into account. Particle filter is used to integrate probabili-
ties in the continuous state estimation process. MPPN have



been used for supervision and planning, but never for health
monitoring, diagnosis and/or prognosis. In [4], the applica-
tion is essentially based on the mission monitoring. It does
not consider different health states for the system. More-
over, there is no matching with the diagnoser approach and
the problem of ambiguous state tracking is not considered.
In [13], the authors propose a design approach for the spec-
ification and the realization of dynamic system monitoring.
They present the integration of system design and monitor-
ing into a unified framework for the reuse of component
descriptions and the automatic monitoring component gen-
eration. They automatically convert MPPN into an XML
description and the monitoring parameters are added to the
file. However, this observer is not formally defined, and no
equivalence with a diagnoser is given. Moreover, there is
no notion of health state for the system. Our paper proposes
to use MPPN for health monitoring, taking into account the
hybrid aspect and all the possibles uncertainties of real sys-
tems. Then it formally specifies a diagnoser-like object for
building an on-line diagnosis.

3 Modified Particle Petri Nets for monitoring

In this section, the Modified Particle Petri Nets (MPPN) for-
malism is described according to the work of [4]. First the
model structure is detailed, then its online use is presented.

3.1 Definition

Modified Particle Petri Nets are defined as a tuple < P, T,
Pre, Post,X,C, γ,Ω,M0 > where:

• P is the set of places, partitioned into numerical places
PN and symbolic places PS .

• T is the set of transitions (numerical TN , symbolic TS

and mixed TM ).

• Pre and Post are the incidence matrices of the net, of
dimension |P | × |T |.

• X ⊂ ℜn is the state space of the numerical state vector.

• C is the set of dynamics equations of the system asso-
ciated with numerical places, representing continuous
state evolution.

• γ(pS) is the application that associates tokens with
each symbolic places pS ∈ PS .

• Ω is the set of conditions associated with the transitions
(numerical ΩN and symbolic ΩS).

• M0 is the initial marking of the net.

The marking of the net is composed of tokens, that can be
numerical tokens (particles) or symbolic tokens (configura-
tions).

A numerical place pN ∈ PN is associated with a set of
dynamics equations representing the continuous behavior of
the system. Numerical places thus model continuous dy-
namics of the system. Numerical places are marked by a set
of particles πi

k = [xi
k,wi

k] with i ∈ {1, ..., |MN
k |} where

MN
k is the set of all the particles in the net at time k. Parti-

cles are defined by their corresponding numerical state vec-
tor xi

k ∈ X and their weight wi
k ∈ [0, 1] at time k. The

set of particles represents an uncertain distribution over the
value of the numerical state vector.

Symbolic places model the behavioral modes of the sys-
tem. A symbolic place pS ∈ PS is marked by configu-

rations δ
j
k with j ∈ {1, ..., |MS

k |} where MS
k is the set of

configurations in the net at time k. The set of configurations
represents all the possible current modes of the system.

The marking Mk of the MPPN at time k consists of both
kinds of tokens:

Mk = {MS
k ,M

N
k } (1)

3.2 Firing rules

A transition models a change in the continuous dynamic
and/or a change of the system mode. A symbolic transi-
tion is conditioned by an observable discrete event. A nu-
merical transition is conditioned by a set of constraints on
continuous observable variables. Finally, a mixed transition
is conditioned by an observable discrete event and a set of
constraints on continuous observable variables.

Let Pre(tj) be the set of input places of a transition
tj ∈ T :

Pre(tj) = {pi|Pre(i, j) 6= 0, i ∈ {1, ..., |P |}} (2)

As well, Post(tj) is the set of its output places:

Post(tj) = {pi|Post(i, j) 6= 0, i ∈ {1, ..., |P |}} (3)

∀pi ∈ P , Mk(pi) is the set of tokens in pi at time k and
mk(pi) = |Mk(pi)| is the number of tokens in pi at time k.

Definition 1. A numerical or a symbolic transition tj is fire-
enabled at time k if:

∀pi ∈ Pre(tj),mk(pi) ≥ Pre(i, j) (4)

A numerical transition tNj ∈ TN is associated with con-

ditions ΩN (tNj ), where ΩN (tNj )(π) = 1 if the particle sat-

isfies the conditions. For example, if π = [x,w] follows
the constraint equation c and b is a trigger value, a numeri-
cal condition can be defined as ΩN (tNj )(π) = (c(x) > b).

ΩS(tSj ) = occ(e) represents the conditions assigned to a

symbolic transition tSj ∈ TS . occ(e) is a boolean indicator

of the occurrence of the discrete event e : occ(e) = 1 if e
has occurred. Then, a configuration δ satisfies the condi-
tion ΩS(tSj ) when ΩS(tSj )(δ) = 1, ie. when the event e has
occurred.

We are now going to define transition firing rules. Firing
rules of a transition tj ∈ T use the following set of variables
over their domains of definition. It is suppose that:
pN ∈ (Pre(tj) ∩ PN ), p′N ∈ (Post(tj) ∩ PN ),
pS ∈ (Pre(tj) ∩ PS), p′S ∈ (Post(tj) ∩ PS).

If tj ∈ (TN ∪ TM ), let SN
k (pN ) be the set of particles in

pN that satisfy the conditions ΩN (tj) at time k:

SN
k (pN ) ⊆ MN

k (pN ) with π ∈ SN
k (pN ) if ΩN (tj)(π) = 1

at time k. As well, if tj ∈ (TS ∪ TM ), SS
k (p

S) is the set

of configurations in pS that satisfy the conditions ΩS(tj) at
time k:
SS
k (p

S) ⊆ MS
k (p

S) with δ ∈ SS
k (p

S) if ΩS(tj)(δ) = 1 at
time k.

The numerical firing uses the concept of classical firing
with the particles satisfying the numerical condition and the
concept of pseudo-firing (ie. duplication) for the configu-
rations. The duplication of configurations represents un-
certainty about the occurrence of an unobservable discrete
event.

Definition 2. The firing of a fire-enabled numerical transi-
tion tNj ∈ TN at time k is defined by:

{

MN
k+1(p

N ) = MN
k (pN )\SN

k (pN )

MN
k+1(p

′N ) = MN
k (p′N ) ∪ SN

k (pN )
(5)



{

MS
k+1(p

S) = MS
k (p

S)

MS
k+1(p

′S) = MS
k (p

′S) ∪MS
k (p

S)
(6)

An example of a numerical firing from marking at time k
to marking at time k + 1 is illustrated in Figure 1(a).
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Figure 1: Illustration of firing rules of numerical (a), sym-
bolic (b) and hybrid (c) fire-enabled transitions.

In this example, tN1 only has a numerical condition be-
cause it is a numerical transition. Particle π3 satisfies the
numerical condition ΩN (tN1 ) and thus is moved through the
fire-enabled transition tN1 to pN4 . The configuration in place
pS1 is duplicated in pS2 .

The symbolic firing uses the concept of pseudo-firing for
particles and configurations. The pseudo-firing of all the
tokens models uncertainty about the non occurrence of an
observable discrete event.

Definition 3. The firing of a fire-enabled symbolic transi-
tion tSj ∈ TS at time k is defined by:

{

MN
k+1(p

N ) = MN
k (pN )

MN
k+1(p

′N ) = MN
k (p′N ) ∪MN

k (pN )
(7)

{

MS
k+1(p

S) = MS
k (p

S)

MS
k+1(p

′S) = MS
k (p

′S) ∪MS
k (p

S)
(8)

Figure 1(b) illustrates an example of a symbolic firing.
The symbolic transition tS2 only has a symbolic condition
and is fire-enabled. No token satisfies the symbolic condi-
tion ΩS(tS2 ), however all tokens are duplicated.

Mixed transitions are introduced in [4] to model the inter-
action between discrete events and system continuous dy-
namics. In the referred article, they were called "hybrid
transitions". A mixed transition merges a symbolic tran-
sition with a numerical transition to correlate discrete ob-
servations with continuous observations. The firing of the
symbolic transition only depends on a discrete event, but
the simultaneous firing of the numerical transition models
the dependency of the mixed transition on the symbolic part
because discrete events are part of the process behavior. A
mixed transition tMj ∈ TM is then associated with both nu-

merical conditions ΩN (tMj ) and with symbolic conditions

ΩS(tMj ).

Definition 4. A mixed transition tMj ∈ TM is fire-enabled

at time k if ∀pi ∈ Pre(tMj ):

{

mk(p
S
i ) ≥ Pre(i, j), if pSi ∈ Pre(tMj ) ∩ PS

mk(p
N
i ) ≥ 0, if pNi ∈ Pre(tMj ) ∩ PN

(9)

The mixed firing uses the concept of classical firing with
the particles satisfying the numerical condition and the con-
cept of pseudo-firing with the configurations satisfying the
symbolic condition. The pseudo-firing of configurations
models uncertainty about the occurrence of an observable
discrete event which is supported by a change of continuous
dynamics.

Definition 5. The firing of a mixed transition tMj ∈ TM at
time k is defined by:

{

MN
k+1(p

N ) = MN
k (pN )\SN

k (pN )

MN
k+1(p

′N ) = MN
k (p′N ) ∪ SN

k (pN )
(10)

{

MS
k+1(p

S) = MS
k (p

S)

MS
k+1(p

′S) = MS
k (p

′S) ∪ SS
k (p

S)
(11)

An example of a mixed firing is illustrated in Figure 1(c).
tM3 is a mixed transition therefore it has a symbolic condi-
tion and a numerical condition. The configuration in place
pS9 is duplicated because it satisfies the symbolic condition
ΩS(tM3 ). Regarding the numerical part, particles π8 and π9

satisfy ΩN (tM3 ) and so they are moved through tM3 . Fur-
thermore, π7 stays in place pN11 because it does not satisfy
ΩN (tM3 ).

Heterogeneous systems are defined as systems that have
a discrete, continuous or both discrete and continuous dy-
namics. MPPN can easily model heterogeneous systems by
using only the symbolic or numerical subpart of the model
or both in the case of hybrid systems.

3.3 State estimation

The problem of hybrid state estimation in MPPN has been
introduced in [4] and consists of a prediction step and a cor-
rection step, illustrated in Figure 2.

For the sake of clarity in this paper we assume that a
hybrid state is represented by a couple (pSi , p

N
j ) of a sym-

bolic place and a numerical place. The initial marking of
the MPPN is M0 = {MS

0 ,M
N
0 } and the estimated marking

at time k is M̂k = {M̂S
k , M̂

N
k } where M̂k = M̂k|k. The

observations start at time k = 1, O1 = (OS
1 , O

N
1 ) where

OS and ON respectively represent the observations corre-
sponding to the symbolic part and the numerical part.

(1) The prediction step is based on the evolution of the
MPPN marking and on the estimation of the particle
values. It aims at determining all possible next states

of the system M̂k+1|k = {M̂S
k+1|k, M̂

N
k+1|k}. A noise

is added during the particle values update to take into
account uncertainty about the dynamics equations and
thus about the continuous system model.

(2) The correction step is based on the update of the predic-
tion according to new observations on the system.

(a) A numerical correction, based on particle filter
algorithms, produces a probability distribution

PrDN of the particles M̂N
k+1|k+1 over the value



of the numerical state vector. At this step, parti-
cle weights are updated using a probability distri-
bution function depending on a random noise that
models uncertainty about continuous observations
ON

k+1.

(b) A symbolic correction then computes a probability
distribution PrDS over the symbolic states of the
system, depending on discrete observations OS

k+1
and on PrDN making the process hybrid.
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0 MN
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k
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k+1 M̂N

k+1

State

State
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(pS , pN )
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k+1, O
N

k+1)

Observations

Figure 2: Hybrid sate estimation process of MPPN.

Finally, in order to update the complete predicted marking

M̂k+1|k, a decision making method is required. The result
of the whole state estimation process is the estimated mark-

ing at time k + 1, M̂k+1|k+1 = {M̂S
k+1|k+1, M̂

N
k+1|k+1}.

Modified Particle Petri Nets have been originally de-
signed to monitor hybrid system mission in [13]. The main
advantage provided by MPPN is the way they manage un-
certainties. In this article, we will focus on a way to use
them in a context of health monitoring.

4 Application to health monitoring

The main objective of the system health monitoring is to
determine the health state of the system at any time [2]. Di-
agnosis is used to identify the probable causes of the failures
by reasoning on system observation. Thus diagnosis reason-
ing consists in detecting and isolating faults that may cause
a system failure. Results of the diagnosis function lead to
the current health state of the system. We are interesting in
representing changes in system dynamics when one or sev-
eral anticipated faults happen. Thinking that way, we define
a health mode by a discrete health state coupled to a con-
tinuous behavior. As long as the system does not encounter
any fault, it is in a nominal mode. We assume that tracked
faults are permanent. This means that once a fault happens,
the system moves from a nominal mode to a degraded mode
or faulty mode. Without repair, system evolution is unidi-
rectional and ends with a failure mode whereas the system
is not operational anymore. This evolution is illustrated in
Figure 3.

With the definition of the MPPN abstraction provided in
previous sections, it is possible to model a hybrid system be-

Figure 3: Unidirectional system evolution without mainte-
nance or repair action.

havior. Indeed, MPPN numerical places can be used to rep-
resent system dynamics, and symbolic places can be used
to represent the different discrete health states of the sys-
tem. Systems dynamics are then represented by differential
equations. Thus, a hybrid state (pSi , p

N
j ) will represent a

health mode of the system. We designate by Q = {qm} the
set of health modes of our system:

qm = (pSi , p
N
j ) ∈ Q if ∃tl ∈ T, (pSi , p

N
j ) ∈ (Post(tl))

2

(12)
Using places that way, it becomes possible to use symbolic
conditions to model the occurrence of observable discrete
events belonging to Σo and unobservable discrete events be-
longing to Σuo (faults, mission events, interaction with the
environment, etc ...). Σ = Σo ∪ Σuo is defined as the set of
discrete events of the system.

An example of a system behavioral model is described in
Figure 4. In this example, the system has three different dy-
namics represented by pN5 , pN6 , pN7 and four different health
states pS1 , pS2 , pS3 and pS4 . Using Equation 12, five health
modes are distinguishable.
Health modes q1 = (pS1 , p

N
5 ) and q2 = (pS1 , p

N
6 )

are two nominal modes changing from the one to the
other when condition ΩS(tS1 ) = occ(e1) or condition
ΩS(tS2 ) = occ(e2) is satisfied. These conditions represent
respectively the occurrence of observable events e1 ∈ Σo

and e2 ∈ Σo supporting a change of behavior between pN5
and pN6 . Health modes q3 = (pS2 , p

N
6 ) and q4 = (pS3 , p

N
6 )

are two degraded modes reachable from health mode
q1 by satisfying the conditions ΩS(tS3 ) = occ(f1) and
ΩS(tS4 ) = occ(f2) respectively. These two conditions rep-
resent respectively the occurrence of two unobservable fault
events f1 ∈ Σuo and f2 ∈ Σuo. Finally, q5 = (pS4 , p

N
7 )

is a failure mode in which both f1 and f2 occurred and
is reachable from the two degraded modes. Therefore
ΩN (tS5 ) = occ(f1) is associated to the occurrence of f1
and ΩS(tS6 ) = occ(f2) is associated with the occurrence of
f2.

Section 5 will now present a methodology to build a state
tracker object called a diagnoser from the behavioral system
model.

5 Diagnosis

In health monitoring, diagnosis is used to track system cur-
rent health state. To do so, a common way is to generate a
diagnoser of the system from the system model [5]. The di-
agnoser is basically a monitor that is able to process any pos-
sible observable event on the system. It consists in recording
these observations and providing the set of possible faults
whose occurrence is consistent with these observations.
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Figure 4: Example of system behavioral model using
MPPN.

Concerning hybrid systems, one approach is to build a hy-
brid diagnoser [3] from a hybrid automaton describing the
system. The major idea is to abstract the continuous part
of the system to only work with a discrete view of the sys-
tem. This abstraction is done by using consistency tests,
that take the form of a set of analytical redundancy relations
(ARR). The diagnoser method is then directly applied on
the resulting discrete event system. In previous works [2],
we extended this approach in order to integrate diagnosis
and prognosis for hybrid systems. The main drawback of
this approach is that the DES oriented diagnosis framework
seems not the best suited for the incorporation of the highly
probabilistic prognosis task. With the MPPN representation,
we succeed in capturing all the uncertainties on the state
knowledge, but also on the observations. Consequently,
we have to develop a new diagnoser build from an MPPN.
Moreover, the classical diagnoser is a finite state machine. If
this theoretical object is very interesting for studying prop-
erties on system, like diagnosability or controllability, it is
absolutely not suited for embedded systems, because the
number of states of the diagnoser explodes for large mod-
els. Consequently, we choose to build a diagnoser based on
a MPPN model for the following reasons:

• it is not necessary to transform the specification of the
behavior of the system in another formalism,

• MPPN model captures all the uncertainties, so the in-
tegration with prognosis becomes more natural,

• this representation is more compact than hybrid au-
tomaton description, so the problem of embeddability
of the diagnoser is reduced.

The diagnoser takes as input the MPPN specifying the
behavior of the system and the set of online observations on
the system. The output of the diagnoser is an estimation of
the health state of the system that takes the form of a mark-

ing of the diagnoser ∆k = M̂k = {M̂S
k , M̂

N
k }. Next sec-

tions describe how to generate a diagnoser from an MPPN

specifying the behavior of a system, then define what is fi-
nally called a diagnosis and how this object may be used for
health monitoring.

5.1 Diagnoser generation based on MPPN

The goal of this section is to generate a MPPN that
is able to monitor the system current health state
thanks to the observations. Let suppose that the
MPPN specifying the behavior of the system is a tuple
< P, T, Pre, Post,X, F, γ,Ω,M0 > as defined in Sec-
tion 3.1. The set of places of the diagnoser remains the same
as the one of the system. Concerning the transitions, there
are two aspects to take into account.

First, it is necessary to follow the continuous behavior of
the system with information issued from the observed vari-
ables of the system. A set of analytical redundancy rela-
tions (ARR) can be generated from the set of differential
equations C of the system model. In the linear case, ARRs
can be computed by using the parity space approach [14].
The parity space approach has been extended to multi-mode
systems in [15]. In our case, a relation ARRi is associ-
ated to each numerical place pNi . A numerical condition

ΩN (tl) associated with a transition tl linking two numeri-
cal places pNi and pNj carries ARRij satisfaction test, with

(i, j) ∈ {1, ..., |PN |}2 and l ∈ {1, ..., |T |}. This means
that ΩN (tl)(π) is satisfied when ARRij is satisfied for π.
ARRs are satisfied if the observations satisfy the model con-
straints. Since ARRs are constraints that only contain ob-
servable variables, they can be evaluated online with the in-
coming observations given by the sensors. It is thus possible
to check the consistency of the observed system behavior
with the predicted one.

Secondly, because the diagnoser only captures the ob-
servable behavior of the system, a condition representing the
occurence of an unobservable discrete event would never be
satisfied. Consequently, all the symbolic conditions repre-
senting the occurences of unobservable events are removed
from Ω without loss of information. Concerning the observ-
able discrete part of the system, occurrences of observable
discrete events will be used as symbolic condition triggers.

Once the system behavioral model is defined and all nu-
merical conditions are computed from the ARRs generation,
the corresponding diagnoser can be generated with the fol-
lowing steps:

Step 1: Add corresponding numerical conditions ΩN (tSj )

to every symbolic transition tSj ∈ TS , with j ∈ {1, ..., |T |}.

As a result, the symbolic transition tSj will be upgraded into

a mixed transition tMj ∈ TM .

Step 2: Remove, from any mixed transition tMj ∈ TM ,

symbolic conditions ΩS(tMj ) covering the occurrence of an
unobservable event, because these conditions would never
be satisfied. Consequently, the mixed transition tMj is trans-

formed in a numerical transitions tNj ∈ TN .

Ambiguity: Hybrid system diagnosis consists in deter-
mining the health state of the system wherein observations
are consistent. Diagnosis challenge is the ability to diag-
nose anticipated but unobservable faults in the system. In



this context, modeling unobservable events can lead to am-
biguity in the diagnoser. Indeed, the occurrence of several
faults that can not be distinguishable with the observations
of the systems will lead to ambiguous health states for the
diagnoser. Therefore, a third step is needed during the diag-
noser generation to track ambiguity. To do so, it is necessary
to define a merger property to merge two numerical transi-
tions. Two numerical transitions are mergeable if they are
conditioned by the same dynamics change and if they share
the same symbolic places in their sets of inputs places. In a
more formal way:

Definition 6. Two numerical transitions (tNi , tNj ) ∈ (TN )2,

with (i, j) ∈ {1, ..., |TN |}2 and i 6= j are mergeable if :

(Pre(tNi ) = Pre(tNj )) ∧ (Post(tNi )∩PN∩Post(tNj ) 6= ∅)
(13)

Note that condition (13) implies that the two transitions
share the same numerical condition: ΩN (tNi ) = ΩN (tNj ).

Step 3: Merge all mergeable transitions while there is at
least two mergeable transitions using the following merging
definition:

Definition 7. The merging of two mergeable numerical
transitions (tNi , tNj ) ∈ (TN )2, with (i, j) ∈ {1, ..., |TN |}2

and i 6= j is defined by two steps as follows:

(1) Creation of a new transition tNij characterized by:







Pre(tNij ) = Pre(tNi )
Post(tNij ) = Post(tNi ) ∪ Post(tNj )
ΩN (tNij ) = ΩN (tNi )

(14)

(2) Introduction of tNij and deletion of tNi and tNj in T :

T = (T\{tNi , tNj }) ∪ {tNij} (15)

The resulting diagnoser of the model in Figure 4, after
computing the third steps above, is presented in Figure 5.

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tM1 ) ΩN (tM1 )

ΩS(tM2 ) ΩN (tM2 )

ΩN (tN3 )

ΩN (tN5 ) ΩN (tN6 )

Figure 5: Example of diagnoser of system using MPPN.

In Figure 5, performing Step 1 has generated numerical
condition ΩN to every transition. Indeed, all transitions
where supported by a change of dynamics that can be ob-
served with the generation of the ARR. After these steps,
all transitions are upgraded into mixed transitions. As there
were unobservable events, symbolic conditions associated
with the occurrence of f1 and f2 have been removed from
the diagnoser model during Step 2, transforming t3, t4, t5
and t6 into numerical transitions. Finally, because transi-
tions t3 and t4 were generating a change of dynamics from
pN1 to pN2 , they were mergeable and thus have been merged
into one single numerical transition tN3 .

5.2 Diagnosis results

The diagnosis is defined at each clock tick as the state of the
diagnoser. By using the MPPN, the diagnosis ∆k at time k
is the distribution of health mode believes that depends on
particle values and weights and is deduced from the marking
of the diagnoser at time k :

∆k = M̂k = {M̂S
k , M̂

N
k } (16)

The marking M̂k indicates the belief on the fault occur-
rences. It gives the same information than a classical di-
agnoser mode in terms of faults occurrences, with the same
ambiguity. The difference is that in a classical diagnoser,
every possible diagnosis has the same belief degree. With
MPPN-based diagnoser, the ambiguity is valued by the
knowledge about the weights of each particle of the mark-
ing.

Consequently, using the diagnosis results for health man-
agement becomes easier. Indeed, in the case of classical di-
agnoser, it is very difficult to "choose" a belief state for the
system in case of decision making. It is then very important
to obtain the less ambiguous diagnosis as possible. In the
case of MPPN-based diagnoser, each possible state of the
system is valued, so it is easy to evaluate the more probable
state at each clock tick.

6 Conclusion and future work

This paper proposed to use the MPPN formalism to repre-
sent hybrid systems. The main advantage of this formalism
is to take into account all the possible uncertainties about
the knowledge of the system and the online observations.
MPPN can be used to model a diagnoser to monitor both
discrete and continuous behaviors of the system. Moreover
this representation is intuitive and compact and then facili-
tates the modeling task. The methodology is illustrated with
an academic example. The building of such a diagnoser is
a first step to perform prognosis and health management of
hybrid systems under uncertainty. Moreover, diagnosis re-
sults can be used as probability distributions for decision
making.

In future works, we will also consider the system degra-
dation depending on the health state of the system and pro-
pose a prognosis method on MPPN. Moreover, this work
will be implemented and tested on an embedded system.
The prognosis methodology will be formally described con-
sidering the InterDP framework introduced in [2] that in-
terleaves diagnosis and prognosis methods to let results be
more accurate.
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