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Some Liouville theorems for Hénon type elliptic equations

Chao WANG and Dong YE ∗

Abstract

We investigate here the nonlinear elliptic equations −∆u = |x|αeu and −∆u = |x|α|u|p−1u
with α > −2, p > 1 and N ≥ 2. In particular, we prove some Liouville type theorems
for weak solutions with finite Morse index in the low dimensional Euclidean spaces or half
spaces.
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1 Introduction

In this paper, we consider two Hénon type elliptic equations as

−∆u = |x|αeu in Ω ⊂ RN , (1.1)

and
−∆u = |x|α|u|p−1u in Ω ⊂ RN , (1.2)

where α > −2, p > 1 and N ≥ 2.

The study of stable solutions in the autonomous case, i.e. when α = 0 has been studied
recently, Farina classified completely in [11] all finite Morse index classical solutions of (1.2)
in RN for 1 < p < pJL, where pJL = p(N, 0) stands for the Joseph-Lundgren exponent (see
[14] and Theorem 1.1 below). More precisely, the equation (1.2) with α = 0 admits nontrivial
classical solutions in RN which are stable outside a compact set, if and only if N ≥ 3, p = N+2

N−2 ;
or N ≥ 11 and p ≥ pJL.

For the exponential case, it is shown by Farina in [12] that ∆u+eu = 0 has no stable classical
solution in RN for 2 ≤ N ≤ 9. He proved also that any classical solution of ∆u + eu = 0 with
finite Morse index in R2 verifies eu ∈ L1(R2), so it must be a solution classified by Chen & Li
[2], that is

u(x) = ln

[
32λ2

(4 + λ2|x− x0|2)2

]
with λ > 0, x0 ∈ R2.

Finally, when N ≥ 3, Dancer & Farina proved in [5] that the equation (1.1) with α = 0 admits
classical entire solutions which are stable outside a compact set, if and only if N ≥ 10.

A natural question is to ask if similar results can be observed for the nonautonomous case,
i.e. when α 6= 0. The equation (1.2) has been considered by Dancer, Du & Guo in [4], they
proved
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Theorem 1.1 Let α > −2 and u ∈ H1
loc ∩ L∞loc(RN ) be a stable solution of (1.2) in RN with

1 < p < p(N,α), where

p(N,α) =


∞, if N ≤ 10 + 4α

(N − 2)2 − 2(α+ 2)(α+N) + 2
√

(α+ 2)3(α+ 2N − 2)

(N − 2)(N − 4α− 10)
, if N > 10 + 4α.

Then u ≡ 0. On the other hand, for N > 10 + 4α and p ≥ p(N,α), (1.2) admits a family of
stable positive radial solutions in RN .

Dancer, Du & Guo have also studied positive solutions either in a punctured domain Ω \ {0} or
in an exterior domain RN \Ω, they obtained interesting results on asymptotic behavior when |x|
tends to 0 or ∞, for solutions which are stable respectively near the origin or outside a compact
set. Then they used these estimates and [1] to get some classification results.

In [10], Esposito studied the stability of solutions to the Hénon type equations (1.1), (1.2)
in RN and proved some Liouville results with α ≥ 0 and respectively bounded eu or |u|. It is
also worthy to mention that in [9, 10, 7], positive entire solutions of ∆u = |x|αu−p (p > 0), with
finite Morse index or stable in an exterior domain are classified.

Although we borrow many ideas from the previous works, we try to handle the problems in
more general setting by three folds.

• In all previous works for (1.1) and (1.2), the authors considered solutions with locally or
globally bounded eu or |u|. Here we deal with weak solutions which are not supposed a
priori to be locally upper or lower bounded. For example, if α < 0 and 0 ∈ Ω, any weak
solution of (1.1) or (1.2) cannot be a classical solution, due to the singularity at the origin.

• We work with general α > −2, and classify not only stable solution but also entire solution
stable out of a compact set for (1.1), or with finite Morse index for (1.2) under suitable
conditions on p, which were not considered in [4, 10].

• For the equation (1.2), we do not impose any sign condition for u and prove the fast decay
behavior near 0 (resp.∞) for weak solutions which are stable near the origin (resp. outside
a compact set) with suitable exponent p. Finally we consider also finite Morse index
solutions in the half space RN+ .

In order to state our results more accurately, let us precise the meaning of weak solution and
recall some basic notions. For simplicity, we assume always that Ω is a regular domain in RN
and f(x, ·) : R→ R is a C1 function for almost every x ∈ Ω.

Definition 1.2 We say that u is a weak solution of −∆u = f(x, u) in domain Ω ⊂ RN (bounded
or not), if u ∈ H1

loc(Ω) verifies f(x, u) ∈ L1
loc(Ω) and∫

Ω

[
∇u · ∇ψ − f(x, u)ψ

]
dx = 0, ∀ ψ ∈ C1

c (Ω). (1.3)

Here and in the following Ckc (Ω) denotes the set of Ck functions with compact support in Ω.

• Let u be a weak solution of −∆u = f(x, u) in Ω. We say that u is stable if ∂uf(x, u) ∈
L1
loc(Ω) and

Qu(ψ) :=

∫
Ω

[
|∇ψ|2 − ∂uf(x, u)ψ2

]
dx ≥ 0 for all ψ ∈ C1

c (Ω). (1.4)

Remark that when ∂uf(x, u) ≥ 0, (1.4) holds for any ψ ∈ H1
0 (Ω) by density argument. It

is the case for the equations (1.1) and (1.2).
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• The Morse index of a solution u, ind(u) is defined as the maximal dimension of all subspaces
X of C1

c (Ω) such that Qu(ψ) < 0 for any ψ ∈ X\{0}. Readily u is stable if and only if
ind(u) = 0.

• A weak solution u of −∆u = f(x, u) in Ω is said to be stable outside a compact set
K, if Qu(ψ) ≥ 0 for any ψ ∈ C1

c (Ω\K). Recall that any finite Morse index solution
u is stable outside a compact set K ⊂ Ω. Indeed, for ` = ind(u) ≥ 0, there exists
X = span{ϕ1, · · · , ϕ`} ⊂ C1

c (Ω) such that Qu(ϕ) < 0 for any ϕ ∈ X\{0}, so Qu(ψ) ≥ 0
for all ψ ∈ C1

c (Ω\K), where K =
⋃
j supp(ϕj).

We should mention that when α = 0, it is proved in [6] that any weak solution of (1.2)
with finite Morse index and p < pJL is indeed in C2(Ω), therefore all results for the special case
with α = 0 in (1.2) are well known thanks to [11]. Moreover, many other interesting results for
solutions stable outside a compact set can be found in [11] for the autonomous case of equation
(1.2).

So our work concerns only the nonautonomous case α 6= 0, which is different. Furthermore,
the restriction on α > −2 is necessary, seeing the following nonexistence result.

Proposition 1.3 For α ≤ −2, (1.1) admits no weak solution for any domain Ω ⊂ RN contain-
ing 0.

It was proved in [4] that when α ≤ −2, (1.2) admits no positive solution over any punctured
domain B(0, R)\{0}. Here and after, B(y, r) denotes the ball of center y and radius r > 0 in
RN . However, as far as we are aware, it is not known if the condition α > −2 is necessary to
have a sign-changing weak solution to (1.2) around the origin.

From now on, we assume that α > −2. Our main objective is to classify weak solutions of
(1.1) or (1.2) in RN , which are stable outside a compact set or with finite Morse index.

Theorem 1.4 Let α > −2 and Ω = RN . For 2 ≤ N < 10 + 4α, there is no weak stable solution
of (1.1).

Theorem 1.5 Let α > −2, Ω = RN and 2 < N < 10 + 4α− where α− = min(α, 0). Then (1.1)
has no weak solution which is stable outside a compact set. In particular, any weak solution of
(1.1) in RN has infinite Morse index if 2 < N < 10 + 4α−.

Theorem 1.4 is sharp. Indeed, for N ≥ 10 + 4α and α > −2, (1.1) possesses radial stable
weak solutions in RN ,

U(x) = −(2 + α) ln |x|+ ln[(2 + α)(N − 2)]

where |x| denotes the Euclidean norm. The stability of U is a direct consequence of the classical
Hardy inequality, ∫

RN
|∇ψ|2dx ≥ (N − 2)2

4

∫
RN

ψ2

|x|2
dx, ∀ ψ ∈ H1(RN ). (1.5)

But we do not know if Theorem 1.5 holds under the assumptions of Theorem 1.4, i.e. when
α > 0 and 10 ≤ N < 10 + 4α.

When N = 2 and α > −2, it is not difficult to see that any finite Morse index solution is
indeed an energy solution, that is |x|αeu ∈ L1(R2); Prajapat & Tarantello [16] have already
classified all such solutions.

3



Theorem 1.6 Let α > −2, Ω = R2 and u be a weak solution of (1.1) which is stable outside a
compact set, then ∫

R2

|x|αeudx = 4π(α+ 2). (1.6)

Furthermore, if α 6∈ 2N, we have u(x) = U∗(εx) + (α+ 2) ln ε where ε > 0 and

U∗(x) = ln 2 + 2 ln
α+ 2

1 + |x|α+2
.

If α ∈ 2N, let θ be the angle of x in polar coordinates, k = α+2
2 and

U∗∗(x) = 2 ln
2k

1 + |x|2k − 2|x|k cos(kθ − θ0) tanh ξ
+ ln

2

cosh2 ξ

with ξ, θ0 ∈ R. We have then u(x) = U∗∗(εx) + (α+ 2) ln ε where ε > 0.

For equation (1.2), we have similar Liouville type results.

Theorem 1.7 Let α > −2, N ≥ 2. The result of Theorem 1.1 holds true for weak solution of
(1.2) in RN . Moreover, let u be a weak solution of (1.2) in RN with finite Morse index. Assume
that

1 < p < p(N,α−) and p 6= N + 2 + 2α

N − 2
, (1.7)

then u ≡ 0.

In [4, Theorems 1.3-1.4], Dancer, Du & Guo have considered positive solutions to (1.2) with
finite Morse index, in punctured domains or in exterior domains under similar conditions on p.
Using results in [1], it was proved that either these solutions are of fast decay, or up to a suitable
scaling, they converge uniformly to a positive function on SN−1, but they did not consider the
Liouville type result for entire solutions of (1.2) in RN with finite Morse index.

Theorem 1.7 is sharp for α ∈ (−2, 0]. However, we don’t know if it holds true for α > 0,
p(N, 0) ≤ p < p(N,α) and N > 10. On the other hand, let N ≥ 3, p = N+2+2α

N−2 be the critical
exponent and α > −2, it is well known that (1.2) possesses radial positive entire solutions, given
by

V (x) = λ
N−2

2

(√
(N + α)(N − 2)

1 + λ2+α|x|2+α

)N−2
2+α

, λ > 0. (1.8)

We see that |x|αV (x)p−1 = O(|x|−4−α) when |x| → ∞. As α > −2, V is clearly stable outside
a compact set of RN by Hardy’s inequality (1.5).

Finally we consider the half-space problem of (1.2) with the Dirichlet boundary condition.

Theorem 1.8 Let α > −2 and u be a weak solution of

−∆u = |x|α|u|p−1u in RN+ = {x ∈ RN , xN > 0}, u = 0 on ∂RN+ .

Suppose that u has finite Morse index in RN+ . Then u ≡ 0 under the assumption (1.7).

Our proofs are based on some a priori estimations using the stability condition (1.4), in the
spirit of Proposition 4 in [11] (see also Proposition 1.7 of [4] and Proposition 5 of [12]), but we
need to be more careful with the weak solutions since they are not supposed to be bounded
a priori. Another important ingredient to handle (1.2) is the asymptotic behavior of solutions
near the origin and near infinity.
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Theorem 1.9 Let u be a weak solution of (1.2) in Ω containing 0. Suppose that u has finite
Morse index and p satisfies

1 < p < p(N,α−).

Then u ∈ C(Ω) ∩ C2(Ω \ {0}) and the following fast decay estimate holds:

lim
|x|→0

|x|1+ 2+α
p−1 |∇u(x)| = 0. (1.9)

For the fast decay estimate as |x| goes to ∞, we need more restriction on the exponent p.

Theorem 1.10 Suppose that u is a weak stable solution of (1.2) in RN \ K where K ⊂ RN is
a compact set. Assume that α > −2 and p satisfies

p(N,α) < p < p(N,α−).

where

p(N,α) =
(N − 2)2 − 2(α+ 2)(α+N)− 2

√
(α+ 2)3(α+ 2N − 2)

(N − 2)(N − 4α− 10)
, for all N ≥ 2.

Then we have

lim
|x|→∞

|x|
2+α
p−1 |u(x)| = lim

|x|→∞
|x|1+ 2+α

p−1 |∇u(x)| = 0. (1.10)

The estimates (1.10) were proved in [4, Theorem 1.6] only for positive solutions. We note that
the Harnack type argument used in [4] cannot work with sign-changing solutions.

We will deal with equations (1.1), (1.2) respectively in sections 2 and 3, some further remarks
and open questions are exposed in section 4. In the following, C or Ci denotes some generic
positive constant.

2 Hénon equation with exponential nonlinearity

Consider −∆u = |x|αeu. First we show the necessity to working with α > −2 and a quick proof
of Theorem 1.6, then we prove Theorems 1.4 and 1.5.

2.1 Nonexistence of weak solution for α ≤ −2

Arguing by contradiction, assume that α ≤ −2 and u is a weak solution of (1.1) with 0 ∈ Ω.
Let B(0, R) ⊂ Ω. Define v to be the average of u over spheres centered at the origin, i.e.

v(r) := u(r, θ) =
1

ωN

∫
SN−1

u(r, θ)dθ with ωN = |SN−1|.

By Jensen’s inequality, there holds

−∆v = |x|αeu = rαeu ≥ rαev,

which means that

− 1

rN−1
(rN−1v′)′ ≥ rαev. (2.1)

Note that

−rN−1ωNv
′(r) = −

∫
∂B(0,r)

∂v

∂ν
dσ = −

∫
B(0,r)

∆vdx =

∫
B(0,r)

|x|αeudx > 0,
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thus v′(r) < 0 for any r ∈ (0, R) and v is decreasing in (0, R). As rαev ∈ L1
loc(Ω) and 0 ∈ Ω, we

must have α > −N . Furthermore, integrate (2.1) in [r1, r] with 0 < r1 < r < R,

−rN−1v′(r) ≥
∫ r

r1

sN−1+αev(s)ds− rN−1
1 v′(r1) ≥

∫ r

r1

sN−1+αev(s)ds.

Tending r1 to 0, we get

−rN−1v′(r) ≥
∫ r

0
sN−1+αev(s)ds ≥ rN+αev(r)

N + α
. (2.2)

Hence −e−vv′ ≥ Cr1+α, which yields

e−v(r) > e−v(r) − e−v(r1) ≥ C
∫ r

r1

s1+αds ∀ 0 < r1 < r.

As α ≤ −2, a contradiction occurs by tending r1 to 0 since the last term goes to ∞. So
Proposition 1.3 is proved. �

Remark 2.1 We can remark that the above proof works for −∆u = |x|αg(u) with a positive,
convex and nondecreasing nonlinearity g.

2.2 Two dimensional case

Here we prove Theorem 1.6. Assume that u is stable outside B(0, R0). Fix φ ∈ C∞c (R) verifying
φ(t) = 1 if |t| ≤ 1 and φ(t) = 0 if |t| ≥ 2. For any R ≥ 4R0, let ψR(x) = φ(R−1|x|)− φ(R−1

0 |x|),
then supp(ψR) ⊂ B(0, R0)c, ψR is fixed in B(0, 2R0) and

ψR ≡ 1 in B(0, R) \B(0, 2R0), |∇ψR(x)| ≤ CR−1 in B(0, R)c.

Using ψR as the test test function in (1.4), there holds∫
B(0,R)\B(0,2R0)

|x|αeudx ≤
∫
R2

|x|αeuψ2
Rdx

≤
∫
R2

|∇ψR|2dx

≤
∫
B(0,2R0)

|∇ψR|2dx+

∫
B(0,2R)\B(0,R)

|∇ψR|2dx ≤ C

Tending R to∞, we get |x|αeu ∈ L1(R2). All conclusions follow straightforwardly from Theorem
1.1 in [16]. �

2.3 Main technical tool

As already mentioned, our proof of Liouville type results is based on the estimate Qu(ψ) ≥ 0
with suitable test function. In fact, we have the following estimate which is an extension of
result in [12].

Proposition 2.2 Let Ω be a domain (bounded or not) in RN , N ≥ 2. Let u be a weak and
stable solution of (1.1) with α > −2. Then for any integer m ≥ 5 and any β ∈ (0, 2), there
exists C > 0 depending on m, α and β such that∫

Ω
|x|αe(2β+1)uψ2mdx ≤ C

∫
Ω
|x|−2βα

(
|∇ψ|2 + |ψ||∆ψ|

)2β+1
dx, (2.3)

for all functions ψ ∈ C∞c (Ω) verifying ‖ψ‖∞ ≤ 1.
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Proof. We use some ideas in [12, 3], but we need to pay more attention with weak solution. As
u is not assumed to be bounded, eβuϕ is not, a priori, a licit test function (for any β > 0), even
with ϕ ∈ C∞c (Ω). Our idea is to consider suitable truncations of eβu and proceed as in [3]. Let
β > 0, k ∈ N, k ≥ β−1 and

ζk(t) =

{
eβt, if t ≤ k
eβk

k t, if t ≥ k.

We choose also another Lipschitz function ηk and a differentiable function ξk such that η′k = ζ ′2k ,
ξ′k = ηk in R. Let

ηk(t) =

{
β
2 e

2βt, if t ≤ k
e2βk

k2
(t− k) + β

2 e
2βk, if t ≥ k

and

ξk(t) =

{
e2βt

4 , if t ≤ k
e2βk

2k2
(t− k)2 + β

2 e
2βk(t− k) + e2βk

4 , if t ≥ k.

Since u ∈ H1
loc(Ω), clearly ζk(u), ηk(u) ∈ H1

loc(Ω) for any k ∈ N.

Applying now (1.4) with the test function ζk(u)ϕ, where ϕ ∈ C∞c (Ω), we get∫
Ω
|x|αeuζ2

k(u)ϕ2dx ≤
∫

Ω
|∇(ζk(u)ϕ)|2dx

=

∫
Ω
|∇(ζk(u))|2ϕ2dx+

∫
Ω
ζ2
k(u)|∇ϕ|2dx−

∫
Ω

ζ2
k(u)

2
∆(ϕ2)dx.

So |x|αeuζ2
k(u) ∈ L1

loc(Ω). On the other hand,∫
Ω
|∇(ζk(u))|2ϕ2dx =

∫
Ω
ζ ′2k (u)|∇u|2ϕ2dx =

∫
Ω

(∇ηk(u) · ∇u)ϕ2dx

=

∫
Ω
∇u · ∇

(
ηk(u)ϕ2

)
dx−

∫
Ω
ηk(u)∇u · ∇(ϕ2)dx

=

∫
Ω
|x|αeuηk(u)ϕ2dx−

∫
Ω
ηk(u)∇u · ∇(ϕ2)dx

=

∫
Ω
|x|αeuηk(u)ϕ2dx+

∫
Ω
ξk(u)∆(ϕ2)dx.

For the third line, we used the following argument: as |x|αeu > 0, (1.3) is valid for any ψ ∈ H1
0 (Ω)

by density argument. The above estimates imply then∫
Ω
|x|αeuζ2

k(u)ϕ2dx

≤
∫

Ω
|x|αeuηk(u)ϕ2dx+

∫
Ω
ζ2
k(u)|∇ϕ|2dx+

∫
Ω

[
ξk(u)−

ζ2
k(u)

2

]
∆(ϕ2)dx.

Moreover, direct calculation shows that

ηk(t) ≤
(
β

2
+

1

4k

)
ζ2
k(t) in R.

Therefore(
1− β

2
− 1

4k

)∫
Ω
|x|αeuζ2

k(u)ϕ2dx ≤
∫

Ω
ζ2
k(u)|∇ϕ|2dx+

∫
Ω

[
ξk(u)−

ζ2
k(u)

2

]
∆(ϕ2)dx. (2.4)
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Set now ϕ = ψm with ψ ∈ C∞c (Ω) satisfying ‖ψ‖∞ ≤ 1 and m ∈ N∗. Using ζk(u) ≤ eβu and
Hölder’s inequality, there holds∫

Ω
ζ2
k(u)|∇ϕ|2dx = m2

∫
Ω
ζ2
k(u)ψ2(m−1)|∇ψ|2dx

≤ C
∫

Ω

[
euζ2

k(u)
] 2β
2β+1ψ2(m−1)|∇ψ|2dx

≤ C
(∫

Ω
|x|αeuζ2

k(u)|ψ|
(m−1)(2β+1)

β dx

) 2β
2β+1

(∫
Ω
|x|−2βα|∇ψ|4β+2dx

) 1
2β+1

.

Take m ≥ 5 so that (m− 1)(2β + 1) ≥ 2mβ for any β ∈ (0, 2). As ‖ψ‖∞ ≤ 1, we obtain∫
Ω
ζ2
k(u)|∇ϕ|2dx ≤ C

(∫
Ω
|x|αeuζ2

k(u)ψ2mdx

) 2β
2β+1

(∫
Ω
|x|−2βα|∇ψ|4β+2dx

) 1
2β+1

. (2.5)

Furthermore, for any β ∈ (0, 2) there exists C > 0 depending only on β such that

e
2β

2β+1
u ≥ Ce

2β
2β+1

k [
1 + (u− k)2

]
∀ u ≥ k,

because et ≥ 1 + t + t2

2 for t ≥ 0. We deduce then for any β ∈ (0, 2), there exists C > 0
(independent of k ∈ N∗) satisfying∣∣∣∣ξk(u)−

ζ2
k(u)

2

∣∣∣∣ ≤ C [euζ2
k(u)

] 2β
2β+1 in R.

As ∆(ϕ2) = 2mψ2m−1∆ψ + 2m(2m − 1)ψ2m−2|∇ψ|2, proceeding as above (see also [11]), fix
m ≥ 5 and applying once again Hölder’s inequality, we get∣∣∣∣∫

Ω

[
ξk(u)−

ζ2
k(u)

2

]
∆(ϕ2)dx

∣∣∣∣
≤ C

(∫
Ω
|x|αeuζ2

k(u)ψ2mdx

) 2β
2β+1

[∫
Ω
|x|−2βα

(
|∇ψ|2 + |ψ||∆ψ|

)2β+1
dx

] 1
2β+1

.

(2.6)

Combining (2.4)-(2.6),(
1− β

2
− 1

4k

)∫
Ω
|x|αeuζ2

k(u)ψ2mdx

≤ C
(∫

Ω
|x|αeuζ2

k(u)ψ2mdx

) 2β
2β+1

[∫
Ω
|x|−2βα

(
|∇ψ|2 + |ψ||∆ψ|

)2β+1
dx

] 1
2β+1

,

which means that there exists C > 0 independent of k such that∫
Ω
|x|αeuζ2

k(u)ψ2mdx ≤ C
∫

Ω
|x|−2βα

(
|∇ψ|2 + |ψ||∆ψ|

)2β+1
dx,

provided 1− β
2 −

1
4k > δ > 0. Fix β ∈ (0, 2), tending k →∞, the proof of (2.3) is completed by

the monotone convergence Theorem. �

Remark 2.3 In [19], the author considered the regularity of weak stable solutions for (1.1) with
α = 0. He obtained higher integrability similar to (2.3) by using the simple cut-off function
uk = min(k, u). However, several arguments as the iteration process in Step 3 of the proof for
[19, Lemma 2.1], are not valid for the nonautonomous equation.
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2.4 Proof of Theorem 1.4

Suppose that (1.1) admits a weak and stable solution u with Ω = RN and N < 10 + 4α. Fix
m ≥ 5 and choose β ∈ (0, 2) such that N − 2(2β + 1)− 2βα < 0.

For every R > 0, consider the function φR(x) = φ
(
R−1|x|

)
, where φ ∈ C∞c (R) satisfies

0 ≤ φ ≤ 1 in R, φ(t) = 1 if |t| ≤ 1 and φ(t) = 0 if |t| ≥ 2. Applying Proposition 2.2 with
ψ = φR,∫

B(0,R)
|x|αe(2β+1)udx ≤

∫
RN
|x|αe(2β+1)uφ2m

R dx ≤ CRN−2(2β+1)−2βα, ∀ R > 0.

Taking R→∞, we have ∫
RN
|x|αe(2β+1)udx = 0,

which is impossible, so we are done. �

2.5 Proof of Theorem 1.5

We argue always by contradiction. Suppose that (1.1) admits a weak solution u which is stable
outside a compact set K in RN . There exists R0 > 0 such that K ⊂ B(0, R0), therefore we can
apply Proposition 2.2 with Ω = RN\B(0, R0). We claim:

• For any β ∈ (0, 2) and any R > 2R0, it holds∫
2R0<|x|<R

|x|αe(2β+1)udx ≤ A+BRN−2(2β+1)−2βα
(2.7)

where A,B > 0 are independent of R.

• For any β ∈ (0, 2) and any B(y, 2r) ⊂ RN \B(0, R0), it holds∫
B(y,r)

|x|αe(2β+1)udx ≤ CrN−2(2β+1)−2βα, (2.8)

where C > 0 is independent of r and y.

For R > 2R0, let φ and φR be as in the previous proof and define ψR = φR − φR0 . Notice
that ψR ∈ C∞c (RN\K) and 0 ≤ ψR ≤ 1 in RN and ψR is a fixed function η0 in B(0, 2R0). Hence
Proposition 2.2 (applied with m = 5 and ψR) implies that for all R > 2R0,∫

{2R0<|x|<R}
|x|αe(2β+1)udx ≤

∫
RN\K

|x|αe(2β+1)uψ2
Rdx

≤ C
∫
RN\K

|x|−2βα
(
|∇ψR|2 + |ψR||∆ψR|

)2β+1
dx

≤ C
∫
R0≤|x|≤2R0

|x|−2βα
(
|∇η0|2 + η0|∆η0|

)2β+1
dx

+ C

∫
R≤|x|≤2R

|x|−2βα
(
|∇ψR|2 + |ψR||∆ψR|

)2β+1
dx

≤ A+BRN−2(2β+1)−2βα.

As the constants A, B depend only on η0, R0, φ and β, we get the claim (2.7). Using Proposition
2.2 with the test function φr(x− y), we obtain easily the estimate (2.8).
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Consider Γ(β) = N −4β−2−2βα−. As 3 ≤ N < 10 + 4α−, Γ(0) > 0 and Γ(2) < 0, so there
exist β1 ∈ (0, 2) and ε0 ∈ (0, 2) such that

2β1 + 1 ≥ 2β1 + 1 + 2β1α
− > θ :=

N

2− ε0
>
N

2
.

Let |y| > 4R0 and R = |y|
4 , so B(y, 2R) ⊂ RN \B(0, R0). By Hölder’s inequality and (2.8),

∫
B(y,R)

(|x|αeu)θ dx ≤

(∫
B(y,R)

|x|αe(2β1+1)udx

) θ
2β1+1

(∫
B(y,R)

|x|
2β1αθ

2β1+1−θ dx

) 2β1+1−θ
2β1+1

≤ C
(
RN−2(2β1+1)−2β1α

) θ
2β1+1

(
R
N+

2β1αθ
2β1+1−θ

) 2β1+1−θ
2β1+1

= CRN−2θ,

that is, ∫
B(y,R)

(|x|αeu)θ dx ≤ CRN−2θ, ∀ |y| > 4R0 and R =
|y|
4
. (2.9)

We claim now
lim

|x|→+∞
|x|2+αeu(x) = 0. (2.10)

To prove that, we need a well-known result of Serrin in [18] (see also Theorem 7.1.1 in [17]):

Lemma 2.4 Let θ = N
2−ε0 , ε0 ∈ (0, 2), q ∈ (1,∞] and δ > 0. For any weak solution of

−∆η = a(x)η in B(y, 2R) ⊂ RN , if Rε0‖a(x)‖Lθ(B(y,2R)) ≤ δ, there holds

‖η‖L∞(B(y,R)) ≤ CR
−N
q ‖η‖Lq(B(y,2R)) (2.11)

where C is a constant depending only on N , q, θ and δ.

Moreover, the estimate (2.11) holds also for any weak nonnegative function verifying −∆η ≤
a(x)η in B(y, 2R) ⊂ RN assuming that Rε0‖a(x)‖Lθ(B(y,2R)) ≤ δ.

Set

β2 =
N − 2

2(2 + α)
, λ =

2β2 + 1

2
=

N + α

2(2 + α)
> 0 and w = eλu.

Then β2 ∈ (0, 2) since 3 ≤ N < 10 + 4α and N − 2(2β2 + 1)− 2β2α = 0. Take β = β2 in (2.7)
and tending R to ∞, we obtain ∫

|x|≥2R0

|x|αw2dx <∞. (2.12)

We have also
−∆w − λ|x|αeuw = −λ2w|∇u|2 ≤ 0 in D′(RN ).

Let |y| > 8R0 and R = |y|
8 . Using the estimate (2.9), as θ = N

2−ε0 ,

Rε0‖λ|x|αeu‖Lθ(B(y,2R)) ≤ λRε0
(
CRN−2θ

) 1
θ

= C ′Rε0+N
θ
−2 = C ′. (2.13)

Applying Serrin’s result with η = w, a(x) = λ|x|αeu, q = 2 and δ = C ′ of (2.13), by (2.12),

w(y) ≤ CR−
N
2 ‖w‖L2(B(y,2R)) ≤ CR−

N
2 R−

α
2 ‖|x|

α
2w‖L2(B(y,2R)) = o

(
R−

N+α
2

)
as |y| → ∞.
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Consequently

eu(y) = w(y)
1
λ = o

(
R−

N+α
2λ

)
= o

(
R−2−α) as |y| → ∞,

hence the claim (2.10) holds true.

To finish the proof, consider v, the average of u over spheres. Fix M > 0 large satisfying
α+ 2− 2

(N−2)M > 0 (recall that α > −2). By (2.10), there exists RM > 0 such that

−∆v(r) = rαeu ≤ 1

Mr2
, ∀ r ≥ RM .

Integrating from RM to r, we deduce then

v′(r) ≥ − C

rN−1
− 1

(N − 2)Mr
, ∀ r ≥ RM .

As N ≥ 3, there exists R′ > RM such that

v′(r) ≥ − 2

(N − 2)Mr
, ∀ r ≥ R′.

Integrating on [R′, r], we get

r2+αev(r) ≥ Crα+2− 2
(N−2)M , ∀ r ≥ R′,

which yields

sup
|x|=r

(
|x|2+αeu(x)

)
= r2+α sup

|x|=r
eu(x) ≥ r2+αev(r) ≥ Crα+2− 2

(N−2)M →∞,

which contradicts (2.10), the proof is completed. �

3 Hénon equation with power growth

Here we consider the equation (1.2) in RN or RN+ . As for Theorem 1.4, the basic argument is
always the a priori estimates resulting from the stability condition (1.4).

Proposition 3.1 Let Ω be a domain (bounded or not) in RN , N ≥ 2. Let u be a weak stable
solution of (1.2) with p > 1 and α > −2. Then for any γ ∈ [1, 2p + 2

√
p(p− 1) − 1) and any

integer m ≥ max
(
p+γ
p−1 , 2

)
, there holds∫

Ω

(
|∇(|u|

γ−1
2 u)|2 + |x|α|u|γ+p

)
|ψ|2mdx ≤ C

∫
Ω
|x|−

(γ+1)α
p−1

(
|∇ψ|2 + |ψ||∆ψ|

) p+γ
p−1 dx (3.1)

for all test functions ψ ∈ C∞c (Ω) verifying ‖ψ‖∞ ≤ 1, where the constant C depends on p,m, γ
and α.

Similarly, if we suppose that the weak solution of (1.2) u belongs to H1
loc(Ω) such that u = 0

on ∂Ω and u is stable outside a compact set K ⊂ Ω, then the estimate (3.1) holds for all test
functions ψ ∈ C∞c (RN\K) verifying ‖ψ‖∞ ≤ 1.

The proof follows the main lines of the demonstration of Proposition 1.7 in [4] or Proposition
6 in [11], with small modifications. As for Proposition 2.2, we need to consider truncations of
the weak solution u, but the calculation is easier here (see also [6]).

Set just ζk(t) = max(−k,min(t, k)), k ∈ N and use the test function |ζk(u)|
γ−1
2 uϕ ∈ H1

0 (Ω)
in (1.4), with ϕ ∈ C∞c (Ω) and ϕ ∈ C∞c (RN\K) respectively. The rest of proof can be proceeded
as for Proposition 1.7 in [4], and by taking k tends to ∞. We omit the details.

Assume for example that u is a weak solution of (1.2), stable outside a compact set of RN ,
i.e. there exists R0 > 0 such that (3.1) holds true with Ω = RN\B(0, R0). Let α > −2 and
p > 1, using (3.1), we can prove
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• Let γ ∈ [1, 2p+ 2
√
p(p− 1)− 1) and r > 2R0, then∫

2R0<|x|<r

[
|∇(u

γ+1
2 )|2 + |x|α|u|γ+p

]
dx ≤ A+Br

N− (2+α)γ+2p+α
p−1 , (3.2)

where A and B are constants independent of r > 2R0.

• Let γ ∈ [1, 2p+ 2
√
p(p− 1)− 1) and B(y, 2r) ⊂ RN\B(0, R0), then∫

B(y,r)

[
|∇(u

γ+1
2 )|2 + |x|α|u|γ+p

]
dx ≤ CrN−

(2+α)γ+2p+α
p−1 , (3.3)

where C > 0 is independent of y and r.

The proof is very similar to that for (2.7) and (2.8) (see Step 1 of the proof for Theorem 3.3 in
[4]), we leave the details for interested readers.

3.1 Slow decay estimate and proof of Theorem 1.9

Before proving the fast decay (1.9), we prove slow decay estimates for solutions on punctured
domains or at infinity for 1 < p < p(N, 0), and a special regularity result when p < p(N,α−).

Theorem 3.2 Let N ≥ 2, 1 < p < p(N, 0) and u be a weak solution to (1.2) with finite Morse

index. If the domain Ω contains B(0, r) \ {0} (resp. RN \B(0, r)), there hold u ∈ C2,β
loc (Ω \ {0})

for some β ∈ (0, 1) and

u(x) = O
(
|x|−

2+α
p−1

)
, ∇u(x) = O

(
|x|−1− 2+α

p−1

)
, for |x| → 0 (resp. |x| → ∞). (3.4)

Moreover, when 1 < p < p(N,α−), there exists β ∈ (0, 1) such that u ∈ C0,β
loc (Ω).

Proof. First, since each single point is of zero capacity in RN when N ≥ 2, all arguments for
[6, Proposition 2.1] (see also [9]) are still valid although the equation is different, that is

Lemma 3.3 Let N ≥ 2 and u be a weak solution to (1.2) with finite Morse index. For every
x0 ∈ Ω, there exists r0 > 0 such that u is stable in B(x0, 4r0).

Similar to (3.3), by using standard cut-off function ψ ∈ C2
0 (B(x0, 4r0)) with (3.1), we obtain

|x|α|u|γ+p ∈ L1(B(x0, 3r0)) for any γ ∈ [1, 2p+ 2
√
p(p− 1)− 1). If p < p(N, 0) and x0 6= 0, as

in the proof of [4, Theorem 2.1], we can claim that∫
B(x0,2r0)

(
|x|α|u|p−1

) N
2−ε0 dx < C for some ε0 ∈ (0, 2) and r0 <

|x0|
4
,

where C is a constant depending on α, r0, p and ε0. Applying now Lemma 2.4, since −∆u =
|x|α|u|p−1u and u ∈ L2

loc(Ω), we get u ∈ L∞(B(x0, r0)). As x0 can be any point in Ω \ {0},
it means that u ∈ L∞loc(Ω \ {0}). Hence |x|α|u|p−1u ∈ Lqloc(Ω \ {0}) for some q > N

2 because

α > −2. We get u ∈ C2,β
loc (Ω \ {0}) by classical regularity theory.

When x0 = 0, we can still use the above idea. But the estimate |x|α|u|p−1 ∈ L
N

2−ε0 (B(0, 2r0))

needs also the condition N + α(θξ−1)
ξ−1 > 0 (see line 5 of page 3291 in [4]), which requires

∆(p, γ, α) < 0 so p < p(N,α). When p < p(N,α−), Lemma 2.4 yields again u ∈ L∞(B(0, r0)),
therefore u is Hölder continuous at 0 by equation.

The key argument to prove (3.4) is a uniform estimate inspired by the interesting work of
Phan & Souplet [15].
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Lemma 3.4 Let 1 < p < p(N, 0), B1 := B(0, 1) and β > 0. Assume that c ∈ C0,β(B1) verifies
‖c‖C0,β(B1) ≤ C1 and c(x) ≥ C2 > 0 in B1. Then there exists a constant C > 0 depending only

on β, C1, C2, p and N , such that any stable solution u to −∆u = c(x)|u|p−1u in B1 satisfies

|u(x)|
p−1
2 + |∇u(x)|

p−1
p+1 ≤ C

1− |x|
, ∀ x ∈ B1.

Indeed, arguing by contradiction, we can repeat exactly the proof of Lemma 2.1 in [15] and
arrive at a nontrivial stable solution verifying −∆v = C0|v|p−1v in RN , with a constant C0 > 0.
However, this is impossible by Farina’s classification result [11, Theorem 1] since p < p(N, 0).

Using the scaling argument, the proof of (3.4) is the same as for [15, Theorem 1.2]. Look at
the situation near the origin. Applying Lemma 3.3, u is stable in B(x0, R) when |x0| = 2R > 0
is small. Define

U(y) = R
2+α
p−1 u(x0 +Ry), where y ∈ B1 = B(0, 1). (3.5)

Therefore U is a stable solution of

−∆U = c(y)|U |p−1U in B1 with c(y) =
∣∣∣x0

R
+ y
∣∣∣α .

We can check that 1 ≤ c(y) ≤ 3 in B1 and ‖c‖C1,α(B1) ≤ Cα, hence |U(0)| + |∇U(0)| ≤ C by
Lemma 3.4, which is equivalent to say

|u(x0)|+R|∇u(x0)| ≤ CR−
2+α
p−1 , for |x0| = 2R small enough.

So we are done. �

Remark 3.5 The estimate (3.4) was proved in Theorems 5.1 and 5.2 of [4] with different
method.

Proof of Theorem 1.9. Thanks to Theorem 3.2, we need only to consider (1.9), which is
also a direct consequence of scaling argument. Let |x0| > 0 be small such that B(0, 2|x0|) ⊂ Ω.
Define V (y) = u(x0 +Ry) in B1, where 2R = |x0|. As u ∈ C(Ω), we have ‖∆V ‖∞ ≤ CR2+α, so
|∇V (0)| ≤ CR2+α by standard elliptic theory. Hence |∇u(x0)| ≤ C|x0|1+α, we get easily (1.9)
since α > −2. �

3.2 Proof of Theorem 1.7 for subcritical p

Consider the subcritical cases, that is

1 < p <
N + 2 + 2α

N − 2
and p < p(N, 0). (3.6)

Let γ = 1, so

N − (2 + α)γ + 2p+ α

p− 1
= N − 2p+ 2 + 2α

p− 1
< 0.

Consequently, since u ∈ C(RN ) by Theorem 3.2 and taking r → ∞ in (3.2), we have ∇u ∈
L2(RN ) and |x|

α
p+1u ∈ Lp+1(RN ).

Let φR(x) = φ
(
R−1|x|

)
, where φ ∈ C∞c (−2, 2) is a cut-off function such that 0 ≤ φ ≤ 1 in

R and φ(t) = 1 for |t| ≤ 1. As uφR ∈ H1
0 ∩ L∞ is compactly supported, by density argument,

we can use it as test function in (1.2), to obtain∫
RN
|∇u|2φRdx−

∫
RN
|x|α|u|p+1φRdx =

1

2

∫
RN
|u|2∆φRdx. (3.7)
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By Hölder’s inequality and the estimate (3.3), we get∣∣∣∣∫
RN
|u|2∆φRdx

∣∣∣∣
≤

[∫
R<|x|<2R

(
|x|

α
p+1 |u|

)p+1
dx

] 2
p+1
[∫

R<|x|<2R

(
|x|−

2α
p+1 |∆φR|

) p+1
p−1

dx

] p−1
p+1

≤ CRN−
2p+2+2α
p−1 .

(3.8)

As u ∈ C2(RN \ {0}) by Theorem 3.2, we can apply the classical Pohozaev identity to u in
Ωε,R := B(0, R) \B(0, ε) with R > ε > 0, then

N + α

p+ 1

∫
Ωε,R

|x|α|u|p+1dx− N − 2

2

∫
Ωε,R

|∇u|2dx

=

∫
∂Ωε,R

|x|α〈x, ν〉|u|p+1dσ +

∫
∂Ωε,R

∂u

∂ν
〈x,∇u〉dσ −

∫
∂Ωε,R

|∇u|2

2
〈x, ν〉dσ.

(3.9)

Using (3.4) and p < N+2+2α
N−2 ,∫

∂B(0,R)

(
|x||∇u|2 + |x|α+1|u|p+1

)
dσ ≤ CRN−2− 2(2+α)

p−1 → 0, if R→∞. (3.10)

On the other hand, we have −∆u = O(|x|α) near the origin and u ∈ C(RN ). As α > −2, by
regularity theory and Sobolev embedding we can claim that ∇u ∈ Lqloc(R

N ) for some q > 2.
Applying again Hölder’s inequality,

1

ε

∫ ε

0

(∫
∂B(0,s)

|x||∇u|2dσ

)
ds ≤

∫
B(0,ε)

|∇u|2dx ≤ εσ‖∇u‖Lq(B(0,ε)), where σ > 0.

Thus there exists a sequence εj → 0 such that

lim
j→∞

∫
∂B(0,εj)

|x||∇u|2dσ = 0. (3.11)

Take ε = εj in (3.9) then tend R and j to ∞. It follows from (3.10) and (3.11) that

N + α

p+ 1

∫
RN
|x|αup+1dx− N − 2

2

∫
RN
|∇u|2dx = 0.

Combining with (3.7) and (3.8), we have(
N − 2

2
− N + α

p+ 1

)∫
RN
|x|α|u|p+1dx = 0.

As N−2
2 − N+α

p+1 < 0 for subcritical p, we conclude that u ≡ 0 under the assumption (3.6). �

3.3 Fast decay behavior at infinity

We show here Theorem 1.10. Consider first

p ≥ N + 2 + 2α

N − 2
and p < p(N,α−). (3.12)
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Let γ(p) = 2p+ 2
√
p(p− 1)− 1, p > 1 and α > −2. Clearly

(2 + α)γ(p) + 2p+ α

p− 1
= 2 + (4 + 2α)

[
p

p− 1
+

√
p

p− 1

]
is decreasing in (1,∞). If N ≤ 10 + 4α, (2 + α)γ(p) + 2p + α > N(p − 1) for any p > 1. We
can check also that if N > 10 + 4α, (2 + α)γ(p) + 2p+ α = N(p− 1) with p = p(N,α) given in
Theorem 1.1. Therefore under the assumption (3.12), as p(N,α) is increasing with respect to
α, there exists γ1 ∈ [1, 2p+ 2

√
p(p− 1)− 1) such that N(p− 1)− (2 + α)γ1 − 2p− α = 0.

Set now

β0 =
γ1 + p

2
> 1 and ω(x) = |u(x)|β0 ≥ 0,

Using (3.2) with γ = γ1 and letting r →∞, we have∫
|x|>2R0

|x|αω2dx <∞. (3.13)

and
−∆ω − β0|x|α|u|p−1ω = −β0(β0 − 1)|u|β0−2|∇u|2 ≤ 0 in D′(RN ).

Moreover, as p < p(N,α−) ≤ p(N, 0), it follows from (3.3) that there exists ε0(p,N) ∈ (0, 2)
such that ∫

B(y,r)

(
|x|α|u|p−1

) N
2−ε0 dx ≤ CrN−

2N
2−ε0 , ∀ B(y, 2r) ⊂ RN \B(0, R0)

where the constant C is independent of y and r. Let |y| > 8R0 and R = |y|
8 , so B(y, 4R) ⊂

RN \B(0, R0). Therefore

Rε0‖β0|x|α|u|p−1‖
L

N
2−ε0 (B(y,2R))

≤ β0R
ε0
(
CR

N− 2N
2−ε0

) 2−ε0
N

= C ′,

Applying (3.13) and Lemma 2.4,

ω(y) ≤ CR−
N
2 ‖ω‖L2(B(y,2R)) ≤ CR−

N
2 R−

α
2 ‖|x|

α
2 ω‖L2(B(y,2R)) = o

(
R−

N+α
2

)
as |y| → ∞.

Hence

|u(y)| = ω(y)
1
β0 = o

(
R
−N+α

2β0

)
= o

(
R
− 2+α
p−1

)
as |y| → ∞,

which shows the fast decay of u. To prove the second claim of (1.10), we observe that

−∆u(y) = |y|α|u|p−1u = o
(
R
− 2+α
p−1
−2
)

as |y| → ∞.

The scaling argument and standard elliptic theory imply then

|∇u(y)| = o
(
R
− 2+α
p−1
−1
)

as |y| → ∞.

Now we consider the remaining case

p(N,α) < p <
N + 2 + 2α

N − 2
and p < p(N,α−). (3.14)

Here we will use Kelvin’s transformation as in [4]. Let

v(x) = |x|2−Nu
(

x

|x|2

)
, for |x| > 0 small,

then v verifies −∆v = |x|β|v|p−1v with β = (N − 2)(p− 1)− (4 +α). We can verify that β > −2
since p > N+α

N−2 . Moreover, we have the following properties (see Proposition 3.1 and the proof
of Theorem 3.4 in [4]):
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• The solution v is stable over B(0, r)\{0} for r > 0 small since u is stable outside B(0, r−1).

• The assumption (3.14) implies N+2+2β
N−2 < p < p(N, β−). Indeed, p(N,α) < p < p(N,α)

yields that β < p(N, β).

Using estimate (3.4) for v, we can prove that v is a weak stable solution of −∆v = |x|β|v|p−1v
in B(0, r). For example, there holds∫

B(0,r)
|∇v|2dx ≤ C

∫ r

0
s
N−3− 2(2+β)

p−1 ds <∞, since N − 2− 2(2 + β)

p− 1
> 0.

Moreover v is continuous in B(0, r) by Theorem 3.2 as β < p(N, β−), so we get

u(x) = |x|2−Nv
(

x

|x|2

)
= O

(
|x|2−N

)
= o

(
|x|−

2+α
p−1

)
as |x| → ∞.

As p < p(N, 0), combining with (1.9) for v, we have

∇u(x) = O
(
|x|1−N

)
+ o

(
|x|

2+β
p−1

+1−N
)

= o
(
|x|−1− 2+α

p−1

)
as |x| → ∞.

The proof is completed. �

3.4 Proof of Theorem 1.7 for supercritical p

Now we are in position to prove Theorem 1.7 for p verifying

p >
N + 2 + 2α

N − 2
and p < p(N,α−).

In fact, combining Theorems 1.9 and 1.10, the regularity result in Theorem 3.2, the supercritical
exponent situation for Theorem 1.7 is a direct consequence of the following nonexistence result.

Proposition 3.6 Let α > −2 and p > 1 and p 6= N+2+2α
2+α . Then there does not exist any

nontrivial weak solution of (1.2) in RN satisfying u ∈ C2(RN \ {0}), the estimates (1.10) and

lim
|x|→0

|x|
2+α
p−1 |u(x)| = lim

|x|→0
|x|1+ 2+α

p−1 |∇u(x)| = 0. (3.15)

As in [11, 20], we use the Emden-Fowler change of variable

u(r, σ) = r
− 2+α
p−1w(t, σ), t = ln r.

Therefore w satisfies

wtt +A1wt + ∆SN−1w +A2w + |w|p−1w = 0 in R× SN−1,

where

A1 = N − 2− 2 + α

p− 1
6= 0, A2 = −2 + α

p− 1

(
N − 2− 2 + α

p− 1

)
and ∆SN−1 denotes the Laplace-Beltrami operator on the unit sphere SN−1 ⊂ RN . Set

E(w)(t) =

∫
SN−1

(
1

2
|∇SN−1w|2 −

A2

2
w2 − 1

p+ 1
|w|p+1 − 1

2
w2
t

)
dσ.

Clearly,
d

dt
E(w)(t) = A1

∫
SN−1

w2
t dσ.
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The estimates (1.10) and (3.15) yield

lim
t→±∞

w(t, σ) = lim
t→±∞

|wt(t, σ)| = lim
t→±∞

|∇SN−1w(t, σ)| = 0,

hence limt→±∞E(w)(t) = 0. On the other hand, integrating the equation of w, we get

0 = A1

∫
R

∫
SN−1

w2
t dσdt = A1

∫
RN

w2
t dx,

which means that wt = 0 in RN . Therefore w ≡ 0 since limt→±∞w(t, σ) = 0, so u ≡ 0. �

Remark 3.7 We can see that the above proof works also for

p(N,α) < p < min

(
N + 2 + 2α

N − 2
, p(N,α−)

)
.

3.5 Proof of Theorem 1.8

The proof is a simple adaptation of ideas for Theorem 9(b) in [11]. The main point is that we
can consider v, the odd extension of u. Then v is a weak solution of (1.2) in RN . The crucial
argument is that we can use test function as ζk(u)ψ with ψ ∈ C∞c (RN ) as u verifies the Dirichlet
boundary condition on ∂RN+ , we get all the corresponding estimates since all the boundary terms
are zero when doing the integration by parts (see more details in [11]). For example, u is stable
outside a compact set K ⊂ RN+ , so we can obtain the estimate (3.1) for ψ ∈ C∞c (RN \ K). By
symmetry, the same estimate holds with v in RN− with ψ ∈ C∞c (RN \K′) where K′ is the mirror

symmetry of K. By taking the sum, we can claim that for any γ ∈ [1, 2p+ 2
√
p(p− 1)− 1) and

m ∈ N large enough, there holds∫
Ω

(
|∇(|v|

γ−1
2 v)|2 + |x|α|v|γ+p

)
|ψ|2mdx ≤ C

∫
Ω
|x|−

(γ+1)α
p−1

(
|∇ψ|2 + |ψ||∆ψ|

) p+γ
p−1 dx,

for any ψ ∈ C∞c (RN \ (K ∪ K′)) verifying ‖ψ‖∞ ≤ 1.

In other words, we refind all the regularity results and the corresponding estimates for v as
for weak solution in RN with finite Morse index. For example, we can prove the corresponding
result of Lemma 3.4 to solution of −∆u = c(x)|u|p−1u in B1 ∩RN+ verifying u = 0 on B1 ∩ ∂RN+ ,
where the contradiction comes from the classification result on half space, Theorem 9(b) in [11]
instead of [11, Theorem 1].

Proceeding as for Theorem 1.7, we refine then v ≡ 0, so is u. �

4 Further remarks and open questions

In general, the Hénon equation −∆u = |x|αg(u) is more delicate to handle than the correspond-
ing autonomous equation, i.e. when α = 0. Many properties for the autonomous equation are
no longer true or less understood for the nonautonomous situation.

For example, let α > 0; we don’t know if a positive and continuous solution to −∆u = |x|αup
in RN could exist with a subcritical exponent

N + max(2, α)

N − 2
< p < pα :=

N + 2 + 2α

N − 2
.

Only very recently, Phan and Souplet proved the nonexistence of bounded positive solution in
R3 for any 1 < p < pα, see [15] and the references therein.

For the critical exponent case p = pα with α > −2, the existence of radial solutions in RN is
known via (1.8), and they are stable outside a compact set. When α = 0 and p = N+2

N−2 , Farina
proved in [11, Theorem 2] a very interesting equivalence between the following assumptions:
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(i) u is a finite Morse index solution of (1.2) in RN ;

(ii) u is a solution of (1.2) in RN and u is stable outside a compact set;

(iii) u is a solution of (1.2) in RN and ∇u ∈ L2(RN ).

Combining with [8], we get infinitely many (conformally non-equivalent) sign-changing solutions

to −∆u = |u|
4

n−2u in RN with finite Morse index.

For weak solution to (1.2) with general p ≤ pα and α > −2, the implications (i)⇒ (ii)⇒ (iii)
hold true. For (ii)⇒ (iii), we can take just γ = 1 in the estimate (3.2). However it is difficult to
give a general positive or negative answer for implication (ii) ⇒ (i) or (iii) ⇒ (ii), which seem
to be completely open, even for α = 0, except Farina’s result.

An interesting work linked to that is [13] (see also the references therein), where the authors
proved some relationships between the symmetry and low Morse index solutions for −∆u =
f(|x|, u). For example, using [13, Theorem 1.5], we can claim that for α > 1, any stable solution
to (1.2) in RN verifying ∇u ∈ L2(RN ) must be radial.

When α 6= 0 and p = pα, the existence of non-radial or sign-changing entire solution to (1.2)
with finite Morse index seems also unknown.

When p ≥ p(N,α) and α > −2, we have the following question:

Does there exist classical or weak solution u to (1.2) in RN with p ≥ p(N,α) and
0 < ind(u) <∞?

As far as we are aware, the problem is open, even for α = 0. All known solutions for α = 0 and
p ≥ p(N, 0), as radial solutions or lower dimensional solutions are either stable or have infinite
Morse index in RN . Of course, we can ask the similar question for (1.1) with N ≥ 10 + 4α.

The understanding of finite Morse index but unstable solutions to (1.2) in RN for p ≥ p(N,α)
is far away from evident, even they have necessarily finite energy, i.e.∇u ∈ L2(RN ). For example,
when α = 0, if such a solution u exists and if u→ 0 as |x| → ∞, it must be non-radial and sign-
changing, since any positive solution is radial and all radial solutions are stable as p ≥ p(N, 0).
Theorem 1.6 in [13] yields then ind(u) ≥ N + 1 ≥ 12, which means that u must have a large
Morse index.

The assumption lim|x|→∞ u(x) = 0 seems to be reasonable for any finite Morse index solution
of (1.2), but we don’t know if it holds true in general for p ≥ p(N, 0).
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