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Abstract—Anticipating multimedia file requests via caching at the
small cell base stations (SBSs) of a cellular network has emerged
as a promising technique for optimizing the quality of service
(QoS) of wireless user equipments (UEs). However, developing
efficient caching strategies must properly account for specific small
cell constraints, such as backhaul congestion and limited storage
capacity. In this paper, we address the problem of devising a user-
cell association, in which the SBSs exploit caching capabilities
to overcome the backhaul capacity limitations and enhance the
users’ QoS. In the proposed approach, the SBSs individually decide
on which UEs to service based on both content availability and
on the data rates they can deliver, given the interference and
backhaul capacity limitations. We formulate the problem as a one-
to-many matching game between SBSs and UEs. To solve this
game, we propose a distributed algorithm, based on the deferred
acceptance scheme, that enables the players (i.e., UEs and SBSs)
to self-organize into a stable matching, in a reasonable number
of algorithm iterations. Simulation results show that the proposed
cell association scheme yields significant gains, reaching up to 21%
improvement compared to a traditional cell association techniques
with no caching considerations.

I. INTRODUCTION

Meeting the stringent quality-of-service (QoS) requirements
of emerging wireless services such as multimedia streaming
and mobile TV has led to the introduction of novel wireless
cellular architectures. Among such architectures, the concept of
small cell base stations (SBSs), such as picocells, microcells or
femtocells overlaid on existing macro-cellular wireless systems,
has emerged as a key solution for delivering high QoS, at low
operational costs [1]. In order to reap the benefits of small
cell deployments, a number of technical challenges must be
addressed such as interference management, load balancing, and
capacity limited backhaul links [2].

To overcome the backhaul capacity limitations, state-of-the-
art SBS architectures propose the integration of offloading tech-
niques and data storage units. In fact, as predicted by Moore’s
law (and, more recently, by Kryder’s law), the capacity of
modern-day storage units has increased exponentially over the
past thirty years with consistently declining costs per stored bit
[3]. Driven by this trend, the introduction of storage units within
cellular architectures is now seen as an attractive solution to
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overcome the backhaul limitations of small cell networks [4],
[5].

One promising technique for offloading data from the back-
haul of small cell networks is data caching. Caching has been
originally proposed in content distribution networks for enhanc-
ing data locality, i.e., by content replication at strategic nodes of
the network (e.g., proxy servers), while balancing the network
traffic during off-peak intervals [6], [7]. Similarly, an SBS can
overcome the limitations of a congested backhaul, by download-
ing data contents and, subsequently, buffering them during the
periods of time in which the backhaul is less congested. By doing
so, the SBSs are able to boost the QoS of the users and reduce
traffic over the limited-capacity backhaul links.

Most existing works on caching in cellular networks have
focused on enhancing the users’ QoS by leveraging decentralized
cloud storage [6], [7], by offloading traffic to device to device
(D2D) communication links [8], or by proactive techniques [9]
(and references therein). Moreover, the benefits of data caching
have been evaluated in terms of energy efficiency [10] or by
exploring both spatial and social links among the users [11],
[12]. This body of work sheds light on an important tradeoff in
small cell networks with caching capabilities. On the one hand,
in order to increase the probability of meeting the UEs’ traffic
demand, each SBS should download large amounts of diversified
contents. On the other hand, the amount of cached data is
ultimately limited by the backhaul bandwidth and the storage
capacity at each SBS. As a result, the concept of caching is not
uniformly applicable to all the SBSs in a network, as each SBS
experiences unique network conditions due to the number of UEs
currently serviced and the existing traffic load on the backhaul.
In summary, leveraging caching in small cell networks demands
novel, decentralized approaches in which each SBS decides on
which UEs to service, based on its local file availability and the
currently experienced network conditions.

The main contribution of this paper is to address the problem
of UE-SBS association given the state of the small cell backhaul
and the caching capacity at each SBS. By assuming coarse
localization estimation, we propose a framework in which the
SBSs make individual decisions on which UE they should
service, based on the availability of cached files, as well as the
backhaul congestion state. We model the problem as a one-to-
many matching problem and we propose a deferred acceptance
algorithm to find a stable matching between UEs and SBSs, given



the storage, backhaul and interference limitations. Simulation
results show that, in the proposed cache-based approach, the
SBSs overcome the backhaul capacity limitations and improve
the UE’s QoS delivery of traditional UE-SBS associations,
yielding gains of up to 21% that grow linearly with the SBSs’
storage capacity.

The rest of this paper is organized as follows. In Section II, we
introduce the system model and network setting. In Section III,
we formulate the UE-SBS association problem as a matching
game, and we propose an algorithm to obtain a stable UE-SBS
matching. Simulation results are analyzed in Section IV. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider the downlink transmission of a single orthogonal
frequency division multiple access (OFDMA) macro-cell. In this
network, M mobile UEs and N SBSs are deployed, respectively
denoted by the sets M = {1, ...,M} and N = {1, ..., N}.
Each SBS i can service at most qi UE. We let Li be the set
of UEs serviced by SBS i. The macro-cell spectrum is divided
in orthogonal frequency subbands, and each SBS i allocates one
subband wi,m to each UE m ∈ Li. The transmit power of each
SBS i ∈ N is denoted by pi. The SBSs are connected to the
core network via a backhaul of limited capacity Bi. Over a
time period T , each UE m requests a number of files f from
a set F . For simplicity, we assume that all files have the same
size s. The backhaul bandwidth Bi is scheduled over time to
accommodate the UEs’ traffic requests. The files f ∈ F are
requested based on their popularity, which is assumed to follow
a Zipf distribution with parameter ψ [8]. Thus, each UE requests
file f with probability f−ψ∑|F|

x
1
x
ψ , x ∈ F . Let Fm = {1, ..., Fm},

Fm ⊂ F denote the files requested by UE m during T . For
the transmission of the files in Fm, the instantaneous capacity
between each SBS i and UE m is given by:

ri,m(t) = wi,m log(1 + γi,m(t)), (1)

where gi,m(t) is the channel gain between UE m and SBS
i, at time t, γi,m(t) =

pigi,m(t)
σ2+Ii,m(t) is the instantaneous signal-

to-interference-plus-noise ratio (SINR) between SBS i and UE
m and σ2 the variance of the Gaussian noise. Moreover, the
interference component Ii,m(t) =

∑
j ̸=i pjgj,m(t), denotes the

interference produced by the transmissions from other SBSs
j to their respective UE n, which takes place on the same
frequency band wi,m allocated to UE m. Here, pj , and gj,m
denote, respectively, the transmit power and the channel gain
between SBS j and UE m.

The UEs are considered to be mobile at a speed νm within the
macro-cell modeled as a Manhattan grid map [13], as shown in
Fig. 1. In such a grid model, a path is defined by a polyline with
a start and an end point. Thus, a UE’s mobility is fully described
by its speed νm and its path, which are both chosen to be i.i.d..
While moving along its trajectory, we assume that each UE i
reports its channel gain gi,m(t) to its serving SBS i. This channel
state information (CSI) feedback is reported once per coherence
time and is used for deciding on the associations between SBSs
and mobile UEs. In fact, while the path loss only depends on
the distance between the UE’s location and the serving SBS, two

UE

SBS

Fig. 1. Network scenario based on the Manhattan mobility model.

UEs on the same path are likely to experience different fading
components, depending on their speed.

In classical networks, an SBS retrieves the UE’s files f ∈ Fm

only once an explicit request is made by the UE. In such a
reactive protocol, the quality of the transmission stream depends
on the wireless channel conditions (e.g., received interference)
and on the backhaul capacity Bi,m that SBS i allocates to
the UE’s traffic requests. As a result, in a traditional reactive
approach, the maximum data rate at which the files in Fm can
be delivered, from an SBS i to a UE m, is:

Ci,m(t) = min{Bi, ri,m(t)}. (2)

Note that, in case of backhaul traffic congestion, the backhaul
capacity Bi is insufficient for keeping up with the transmission
data rate ri,m(t) (i.e., Bi < ri,m(t) ). As a result, UE m can
experience a considerable QoS degradation (e.g., low resolution
or playback, for video applications), for reasons that are indepen-
dent from the quality of the wireless transmission. To overcome
such limitations, we assume that each SBS is equipped with a
data storage unit having a capacity of Ki bytes, that are used
to download data files (e.g., popular video files) in F to be
stored at the SBS level, prior to a UE’s requests. Hence, when
an SBS i is not servicing any UE1, it can cache a set of files
Di = {1, ..., Di}, Di ⊂ F , by downloading them from the core
network via the backhaul. Note that, by locally caching the files
Di, an SBS can enhance the UE’s QoS, by transmitting at data
rates that are no longer affected by the backhaul status, since the
constraint in (2) no longer applies.

This caching procedure can continue until the storage capacity
Ki is exhausted. Upon reaching the maximum storage capacity
Ki, the least popular files are systematically dropped to accom-
modate new file entries, while verifying the storage capacity
constraint:

Di · s ≤ Ki [bits]. (3)

1Equivalently, an SBS can keep copies of the files that have been transmitted
to its UEs over time.



When applying caching techniques to small cell networks, it
must be noted that the proportion of cached data is not equal at
all SBSs, as it depends on the backhaul conditions experienced
by each SBS, and on their storage capabilities. As a result, data
caching techniques cannot be applied uniformly to each SBS
and, thus, they require novel decentralized approaches in which
each SBS selects its own caching strategy, by accounting for
both the local storage capacity and the network properties (i.e.,
backhaul capacity, received interference).

In the following section, we will describe how each SBSs
can devise an individual caching strategy, while accounting for
the mobility pattern of the incoming users and the network
properties.

III. CACHE-AWARE USER ASSOCIATION AS A MATCHING
GAME

A. Problem formulation

Given the system model presented in the previous section,
our key goal is to study the problem of UE-SBS association, by
focusing on which UE should be serviced by each SBS, given a
set of locally available files Di. We consider that each SBS keeps
track of the CSI feedbacks gi,m(t) that are periodically reported
by each UE m in its vicinity. Based on the CSI sequence, an SBS
can learn the UEs’ speed and direction of arrival, and thus infer2

the time instants tINi,m and tOUT
i,m , at which user m will arrive and

leave cell i. Once a user is associated (at time tINi,m), the files that
are available in the local storage units are transmitted first, at an
instantaneous transmission data rate of ri,m(t) bps. The amount
of data cached at SBS i transmitted to a UE m is: |Fm ∩Di| · s,
and the estimated time to accomplish that is:

τ̂i,m(t) =
|Fm ∩ Di| · s
ri,m(t)

[sec]. (4)

Note that the estimated time in (4) for delivering the files
in the cache of SBS i depends on the instantaneous data rate
ri,m(t). Therefore, in case τ̂i,m(t) ≥ tOUT

i,m , only a portion of
the cached data can be delivered to UE m, precisely, until UE
m leaves cell i at time tOUT

i,m . As a result, the data cached at
SBS i can be transmitted a UE m starting from tINi,m until time
limit τ̂max

i,m (t), defined as:

τ̂max
i,m = min{τ̂i,m(t), tOUT

i,m } [sec]. (5)

When a UE m requests a file f that is not locally available
in the SBS cache, that file is retrieved from the core network,
via the backhaul. In this case, the files are delivered to the
UE m at a transmission rate Ci,m(t) as per (2), depending on
whether the bottleneck is represented by the backhaul capacity
or the transmission data rate. In order to formalize the UE-SBS
association problem, we define a suitable utility function for each
UE m ∈ M seeking a set of files f ∈ Fm, and being serviced
by SBS i ∈ N , as the amount of bits that SBS i delivered to
UE m during the service time [tINi,m, t

OUT
i,m ]:

2For example, an SBS can estimate the incoming users based on mobility
tracking [14], [15], or based on the received signal strength indicators that a UE
periodically broadcasts [16].

Ui,m(tINi,m, t
OUT
i,m , τ̂max

i,m ) = (6)

=

∑τ̂maxi,m

t=tINi,m
ri,m(t)∆(gi,m(t)) +

∑tOUTi,m

t=τ̂maxi,m
Ci,m(t)∆(gi,m(t))

tOUT
i,m − tINi,m

,

where ∆(gi,m(t)) is the interval duration between two consecu-
tive time instants t and it is assumed to be equal to the coherence
time at time t. In other words, ∆(gi,m(t)) is the duration during
which the channel is unchanged, starting from time instant t.

In the utility (6), we can see that the files f ∈ {Fm ∩ Di}
requested by UE m, and already available at SBS i, are trans-
mitted at data rate ri,m during [tINi,m, τ̂

max
i,m ]. In addition, the files

f ∈ {Fm \ Di}, that have to be downloaded from the core
network, are transmitted during [τ̂max

i,m , tOUT
i,m ] and subject to the

constraints in (2) and (5). As a result, while the QoS of cached
files delivery only depends on the wireless channel properties,
the files that are not in local caches are also exposed to a possible
QoS degradation, due to the backhaul capacity limitations.

Finally, we aim at finding a matching η : M → N that
maximizes the utility Ui,m, by considering the limitations on
the backhaul capacity and storage size. Essentially, this yields
the following optimization problem:

argmax
η : (i,m)∈η,f∈Di

∑
i∈N

∑
m∈Li

Ui,m(tINi,m, t
OUT
i,m , τ̂max

i,m ), (7)

s.t., Di · s ≤ Ki, ∀i ∈ N . (8)

In terms of complexity, solving the UE-SBS association using
classical optimization techniques is an NP-hard problem, which
depends on the number of SBSs and UEs in the network [17].
Such an exponential complexity makes a centralized approach in-
tractable, especially in dense network deployments in which the
number of UEs and SBSs significantly grows. As a result, solving
the UE-SBS association problem in (7) mandates a decentralized
approach in which UEs and SBSs autonomously decide on the
UE-SBS association based on their caching capabilities. The
formulation and implementation of such a decentralized solution
are discussed in the following section.

B. Matching game formulation

For solving the SBS-UE association problem in (7), one
suitable framework is that of matching theory [17]. Matching
theory provides a computationally tractable set of tools for
solving a combinatorial problem such as (7). Essentially, a
matching game is defined as follows:

Definition 1. A matching game is defined by two sets of players
(M,N ) and a function η : {M∪N} → {M∪N}, such that:

• |η(m)| = 1, for every UE m ∈ M,
• |η(i)| ≤ qi, (or equivalently |Li| ≤ qi) for every SBS i ∈ N ,
• η(m) = i if and only if i = η(m), or equivalently, m ∈ Li.

Specifically, we consider a one-to-many matching that assigns
to each UE m ∈ M, an SBS i = η(m), i ∈ M, and to each
SBS i ∈ M, a set of UEs η(i) ⊂ M, such that |η(i)| ≤ qi,
where qi denotes a maximum quota. Both UEs and SBSs define



Algorithm 1: UE-SBS Cell Association Algorithm.
Data: Each UE m is initially associated to a randomly selected SBS j,

(j,m) ∈ η′.
Result: Convergence to a stable matching η.
Phase I - Incoming UE discovery;
• At time t: each SBS i tracks the CSI feedbacks gi,m(t) of the UE m in
the vicinity;
• Each SBS estimates the arrival time tINi,m and tOUT

i,m of user m;
• At time tINi,m: UE m notifies Fm to SBS i, and the utility Ui,m is
updated;
Phase II - UE-SBS matching proposal ;
for all the discovered UEs m do
• Incoming users m are sorted by ≻i;
• SBS i sends a proposal to the UE i at the top of the preference list
and notifies Bi;
• UE m computes the data rate Ci,m(t) and sorts the SBSs by ≻m;
if i ≻m j then
• UE m accepts the proposal of SBS i;
• SBS i will start the transmissions at tINi,m.

else
• UE m refuses the proposal, and SBS i sends a proposal to the
next preference.

end
end
• At time tINi,m: UE m gets associated to SBS m, Li ← Li ∪ {m}.
Phase III - Cache management;
• During [t̂i,m, tINi,m], the SBSs update the cached data sets based on the
file popularity;
• Caching procedure continues until the memory capacity is reached.
Beyond that point, least popular files are systematically dropped.

individual preference relations ≻, that are complete, reflexive,
and transitive binary relation between the players in M and N .
Accordingly, the preference profile of an SBS i, over the set
of UEs M is defined by an ordered list Π(i) = {m,n, . . . },
denoting that SBS i prefers to service UE m, rather than UE j,
or briefly m ≻i n. Similarly, Π(m) = {i, j, . . . } represents the
preferences of UE m over the set of SBS N , indicating that that
UE m prefers being associated to SBS i, rather than to SBS j,
i.e., i ≻m j.

When defining a preference for an SBS, a UE has no knowl-
edge of the files stored at the SBS side. As a result, a UE
can only define a preference based on the properties of the
SBSs’ transmitted signals. Hence, for any UE m, we propose
a preference relation ≻m defined over the set of SBSs N , based
on the transmission data rate of SBS i:

i ≻m j ⇔ Ci,m(t) > Cj,n(t). (9)

Next, we define an analogous preference relation ≻i for any
SBS i over the set of UE M, based on the utility in (6). Such
a preference relation accounts for a UE’s time of arrival and
departure from cell i, and the amount of files requested by UE
m, that are currently available at the SBS side:

m ≻i n⇔ Ui,m(tINi,m, t
OUT
i,m , τ̂max

i,m ) > Ui,n(t
IN
i,n , t

OUT
i,n , τ̂max

i,m )
(10)

To solve the problem in (7) in a decentralized approach, the
SBSs and UEs can individually rank one another, based on
the preference relations ≻m, ≻i. The aim of each SBS is to
maximize its own utility, or equivalently, to become associated
with the UE, for which the requested files are likely to be
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Fig. 2. Average utility per UE-SBS link as a function of the backhaul capacity Bi,
for different storage capacities Ki = {1, 2, 3}, M = 120 UEs , N = 120 SBSs,
νm = 1 m/s.

locally available, in Di, or can be retrieved through a backhaul of
capacity Bi. Similarly, the aim of each UE m is to be associated
with the SBS delivering the largest data rate Ci,m(t) for its
requested files.

C. Proposed game solution

In order to find a UE-SBS matching and the problem in (7),
we propose a new approach, shown in Algorithm 1, inspired by
the deferred acceptance scheme proposed by Gale and Shapley
for the stable marriage problem [17]. Algorithm 1 is composed
of three main phases: incoming UE discovery, UE-SBS matching
proposal, and cache management. Initially, each UE is associated
to a randomly selected SBS j3. Then, each SBS i discovers the
incoming UE i ∈ M in the vicinity, using standard tracking
techniques such as in [2]. At this stage, SBS i learns the time
of arrival tINi,m, and the time left for caching additional contents.
Next, based on the current matching, UEs and SBSs update their
respective utilities and individual preferences over one another.
In the second phase, each SBS sends a proposal to the most
preferred UE m, by notifying the available backhaul capacity
Bi. Upon receiving a proposal, UE m updates its preference
list and accepts the request of SBS i only if it is the most
preferred SBS, among the available ones. Otherwise, if rejected,
SBS m proposes to the next UE in its preference list. Both
UEs and SBSs periodically update their respective utilities and
preferences according to the current utilities and ensure that they
are associated to their respective first preference.

In order to study the stability of the proposed matching, we use
the stability concept used by Gale and Shapley [17], by adapting
it to the problem in (7):

Definition 2. A UE-SBS association is stable if there does not
exist two UEs m, n, that are respectively serviced by two SBSs
i and j, although m prefers j to i, and n prefers i to j.

For our proposed game, the scheme shown in Algorithm 1
will reach a stable matching as follows:

3Equivalently, the UE can be initially associated to the closest SBS.
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Fig. 3. Average utility per UE-SBS link as a function of the number of SBS N ,
for different storage capacities Ki = {1, 2, 3} TB, M = 100 UEs , Bi = 2.5
Mbps, νm = 1 m/s.

Proposition 1. The proposed Algorithm 1 is based on the
deferred acceptance algorithm, thus, it is guaranteed to converge
to a stable matching in a finite number of iterations, as per [17].

IV. SIMULATION RESULTS

For our simulations, we consider a single cell of a macro-
cellular network, modeled as a Manhattan map of 500× 500 m
with a bandwidth of 20 MHz. In this cell, M UEs and N SBSs
are uniformly deployed. The UE’s speed is chosen as i.i.d in the
interval νm = [1, 10] m/s. The transmit power of each SBS i
is pi = 33 dBm and the assigned bandwidth per UE is wi,m =
720 KHz. Transmissions are affected by distance dependent path
loss, with path loss exponent 3, and shadowing according to
3GPP specifications [18]. The files in F have a size of s =
2 KB. The file requests follow a Zipf distribution with parameter
ψ = 0.4. Each UE requests Di = 1500 files, out of a set of
|F| = 1.5 · 109 files. Each SBS i ∈ N has a memory capacity
chosen from an interval Ki = [0.2, 3] TB. Similarly, the backhaul
capacity is chosen from an interval Bi = [0.5, 5] Mbps.

Prior to the performance evaluation, we considered a training
phase of the duration of 600 seconds, in which each SBS has
downloaded a set of popular files directly through the backhaul,
according the Zipv file popularity distribution.

For comparisons, we consider a traditional non cache-based
approach, in which the SBSs accommodate the UE’s data
requests by downloading the respective files directly from the
backhaul whose capacity is given by Bi. In practice, the utility
of such an approach is still expressed by (6), while setting
τ̂max
i,m = tINi,m, since no files are kept at the SBSs’ side.

Figure 2 shows the average utility per UE-SBS link as a
function of the backhaul capacity Bi, for different storage
capacities Ki at the SBSs, in a network with N = 120 SBSs,
and M = 120 UEs. Figure 2 shows that the proposed caching
strategy is mostly beneficial during a regime of limited backhaul
capacity (i.e., Bi ≤ 3.4 Mbps). In fact, the proposed approach
yields a utility gain which is proportional to the probability
of having the UE’s files in the serving SBS’ storage unit. For
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Fig. 4. Average utility per UE-SBS link as a function of the storage capacity
per SBS, Ki, for different UEs’ speeds νm = {1, 5, 10} m/s, M = 120 UEs,
Bi = 2.5 Mbps.

example, Figure 2 shows that the performance gap between the
proposed approach and a non cache-based association scheme
is 21%, for SBSs with a backhaul capacity of Bi = 2 Mbps
and storage units of 3 TB. Finally, the gains stemming from
caching saturate when the backhaul capacity no longer represents
a bottleneck for QoS delivery (i.e., Bi ≥ 3.4 Mbps). Therefore,
Figure 2 demonstrates that the proposed cache-based approach
yields significant utility gains by exploiting local content avail-
ability, notably in networks with a limited-capacity backhaul.

Figure 3 shows the average utility per UE-SBS link as
a function of the number of SBSs N , for different storage
capacities, in a network with M = 100 UEs, and a backhaul
capacity of Bi = 2.5 Mbps. Figure 3 shows that, for all the
considered approaches, the average utility of an UE grows with
the probability of being serviced by a nearby SBS, yielding
higher SINR. Note that, even when higher transmission data rates
are possible, delivering the UE’s files in a traditional non cache-
based approach is ultimately limited by the backhaul capacity,
as per constraint (2). In such a backhaul-limited regime (i.e.,
45 ≤ N ≤ 199 SBSs), locally cached files can be transmitted
at data rates larger than the backhaul capacity. For example,
Figure 3 shows that the performance gains of the proposed cache-
based approach increase with the storage capacity Ki, reaching
up to 11% and 6% relative to a non cache-based approach,
respectively for Ki = 3 TB, and Ki = 1 TB, in a network
with N = 120 SBSs. Finally, for all the considered techniques,
the utility eventually decreases as the received interference grows
with the size of the small cell tier. In summary, Figure 3 shows
that by locally caching UE’s file, the SBSs are able to overcome
the backhaul capacity limitations and improve the QoS delivery,
yielding gains that grow linearly with the SBSs’ storage capacity
Ki.

In Figure 4, we evaluate the average utility per UE-SBS link
as a function of the caching capabilities at the SBS sides, for
different UEs’ speeds νm = {1, 5, 10} m/s. Figure 4 shows that,
for the considered cases, the UE-SBS utility grows linearly with
the storage capacity Ki, while depending on the average time
spent by a UE within an SBS’ coverage. In fact, the longer
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Proposed decentralized UE−SBS association approach

Centralized UE−SBS association approach

A centralized approach is 
mathematically intractable for 
networks with N>30 SBSs  

Fig. 5. Average number of algorithm iteration as a function of the network size
N , M = 120 UEs, Bi = 2.5 Mbps, νm = 1 m/s.

a UE is associated to an SBS, the larger is the amount of
cached data that an SBS can deliver. For example, the gain
of the proposed solution with respect to a traditional UE-SBS
association approach is 9% and 7.1%, respectively for a UE’s
speed of νm = 1 m/s and νm = 10 m/s, for SBSs with a storage
capacity Ki = 2 TB. In a nutshell, Figure 4 shows that the
proposed cache-aware user association approach can enhance the
UE’s QoS in a wide range of UEs’ mobility patterns.

In Figure 5, we show the average number of algorithm itera-
tions (Phase II of Algorithm 1) required at each SBS to converge
to a stable matching, as a function of the number of SBSs in the
network. Figure 5 shows that the complexity of a decentralized
approach depends on the number of SBSs that can service a given
UE. For instance, the average number of algorithm iterations is
17, for a network with M = 120 UEs and N = 120 SBSs,
while it grows up to 20 for a larger network with N = 160
SBSs. Figure 5 also shows the number of iterations required
to devise an optimal UE-SBS matching in a centralized fashion.
Here, although the deferred acceptance scheme has a polynomial
complexity, a centralized approach requires a brute-force search,
whose complexity grows exponentially with N [19]. As a result,
a centralized solution is computationally intractable for networks
larger than N = 35 SBSs. In summary, Figure 5 shows that the
proposed distributed approach converges to a stable matching by
performing a reasonable number of algorithm iterations at each
SBS.

V. CONCLUSIONS

In this paper, we have presented a novel cache-aware UE-
SBS association approach for wireless small cell networks. The
proposed scheme enables each SBS to select the UEs to be
serviced, by accounting for the local availability of cached
files, as well as the backhaul and interference limitations. We
have modeled the problem as a one-to-many matching game, in
which the SBS and UE devise individual preferences over one
another. We have proposed an algorithm, based on the deferred
acceptance scheme, that enables the UEs and SBSs to generate a
list of preferences that are respectively based on the transmission

capacity and a utility that accounts for the SBSs’ data storage
capabilities and the UE’s mobility pattern. We have shown that,
by using the proposed algorithm, the SBSs and the UEs reach a
stable matching in a reasonable number of iterations. Simulation
results have shown that, by exploiting local files availability at
the SBSs, the proposed cache-based solution enables the SBSs
to overcome the limitations of a congested backhaul, and yield
significant gains in terms of data delivered to the UEs, reaching
up to 21%, with respect to a traditional UE-SBS association
approach with no cache considerations.
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