Spectrum for a small inclusion of negative material

Lucas Chesnel 1 Xavier Claeys 2, 3 Sergueï A. Nazarov 4
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
2 ALPINES - Algorithms and parallel tools for integrated numerical simulations
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, INSMI - Institut National des Sciences Mathématiques et de leurs Interactions
Abstract : We study a spectral problem (P δ) for a diffusion like equation in a 3D domain Ω. The main originality lies in the presence of a parameter σ δ , whose sign changes on Ω, in the principal part of the operator we consider. More precisely, σ δ is positive on Ω except in a small inclusion of size δ > 0. Because of the sign-change of σ δ , for all δ > 0 the spectrum of (P δ) consists of two sequences converging to ±∞. However, at the limit δ = 0, the small inclusion vanishes so that there should only remain positive spectrum for (P δ). What happens to the negative spectrum? In this paper, we prove that the positive spectrum of (P δ) tends to the spectrum of the problem without the small inclusion. On the other hand, we establish that each negative eigenvalue of (P δ) behaves like δ −2 µ for some constant µ < 0. We also show that the eigenfunctions associated with the negative eigenvalues are localized around the small inclusion. We end the article providing 2D numerical experiments illustrating these results.
Document type :
Journal articles
Complete list of metadatas

Cited literature [44 references]  Display  Hide  Download

Contributor : Xavier Claeys <>
Submitted on : Friday, December 12, 2014 - 12:03:00 PM
Last modification on : Friday, September 20, 2019 - 4:34:04 PM
Long-term archiving on: Friday, March 13, 2015 - 10:46:09 AM


Files produced by the author(s)


  • HAL Id : hal-01094428, version 1
  • ARXIV : 1401.2146


Lucas Chesnel, Xavier Claeys, Sergueï A. Nazarov. Spectrum for a small inclusion of negative material. Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2015, 66 (5), pp.2173-2196. ⟨hal-01094428⟩



Record views


Files downloads