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Abstract

The assembly process planning has been the subject of extensive scientific work, mainly due to the multiple aspects involved from
geometrical matters to operational research concerns. However, very few issues about assembly technique selection are addressed.
The aim of this paper is to propose a method to select an assembly technique for each joint of a product and to allocate geometrical
tolerances accordingly. This is achieved by solving a multi-objective optimization problem to minimize the cost and the non-
conformity associated with the assembly plan. The potential benefits of the method are illustrated on a case study representing the
assembly of a simple mechanical structure.

Keywords: assembly process planning, assembly technique selection, geometrical tolerance allocation, multi-objective
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1. Introduction

The design of the entire manufacturing process of a prod-
uct – and more particularly the assembly process – has a key
impact on the performance of an industrial company. When it
comes to mechanical structures composed of a high number of
components, like aeronautical structures, choices made for the
assembly process account for a large share in the total delivery
cost and geometrical quality of the assembled products.

A complete assembly process plan is supposed to describe
entirely how the product is assembled out of the given compo-
nents. As pictured in Fig. 1, it includes the assembly sequence,
the selection of the assembly techniques, the geometrical toler-
ance allocation on the component and the design and organisa-
tion of the assembly system. The assembly process planners
have to reach several objectives generally expressed through
various performance indicators.

Many efforts have been made to develop assisting solution
for assembly process planning. Several methods have been pro-
posed in the literature to evaluate (direct problem) or to op-
timize (inverse problem) assembly process plans. But these
methods are generally limited to a single aspect of the general
problem – such as sequence planning or tolerancing – and a
single performance indicator.

This paper aims at proposing an original method to select
assembly techniques and to allocate geometrical tolerances on
components by solving a multi-objective optimization problem
to minimize cost and maximize quality.
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Fig. 1: Evaluation scheme of an assembly process plan, from plan definition to
performance indicators (with the proposed approach bordered).

1.1. Assembly sequence planning and organisation

Extensive work has been conducted to assist the generation
of assembly sequences [1]. Bourjault [2], De Fazio and Whit-
ney [3] and Dini et al. [4], among others [5–7], presented the
assembly sequence as the ordered list of components introduced
into the assembly. Homem de Mello and Sanderson also con-
sidered the concept of attachment [8], what led to the design of
assembly sequences defined as the order in which the product’s
links and joints are made [9].

This joint-based approach reflects from some point of view
the assembly task decomposition proposed by Cao and Sander-
son [10] which is itself close to the issues considered for the
organisation of the assembly system commonly treated in oper-
ational research [11].
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Between those two problems, i.e. the generation of assem-
bly sequences and the organisation of the assembly system, the
issues for assembly technique1 selection [12] are seldom ad-
dressed in the literature even though it may have the greatest
impact on production cost, according to Abdullah et al. [13].

Almost all of the studies on assembly process planning afore-
mentioned aim at minimizing lead time and/or cost, evaluated
through various indicators such as, for example, tooling needs,
reorientations of sub-assemblies, technological similarities in
consecutive operations and so on [1].

1.2. Geometrical quality and tolerancing

The concern of geometrical quality of the assembled prod-
uct is not commonly addressed by the assembly process plan-
ning community, even if the description of the geometrical vari-
ations of the components to be assembled may be part of the in-
formation contained in a comprehensive assembly process plan.

Nevertheless, the combined impact of the component geo-
metrical variations, of the assembly technique capabilities and
of the assembly sequence on the product geometrical quality
was highlighted in several works related to tolerancing issues
[9, 14, 15].

Chase et al. dealt with component manufacturing process
selection to satisfy geometrical requirements on the assembled
product [16]. Adragna et al. proposed a tolerance allocation
method that maximises the assembly process capability index
[17]. Ding et al. and Huang et al. presented process-oriented
method for tolerance synthesis in multi-station manufacturing
environment [18, 19].

These studies aim at allocating geometrical tolerances to
satisfy objectives on indicators of the geometrical quality of the
assembled product.

1.3. Proposed approach

In the field of aeronautical structure assembly, making trades-
off between automated and manual assembly plans proved to be
very complex. The need for decreasing manufacturing cost and
increasing delivery rate is usually solved by massive automation
in other manufacturing domains, such as automotive industry.
But this solution is not always compatible with the high level of
geometrical requirements on aeronautical structures.

This paper focuses on a method to select assembly tech-
niques and allocate component geometrical tolerances in order
to minimize a cost indicator and to maximize a quality indica-
tor associated with the assembly plan. Considering the assem-
bly technique selection together with the geometrical tolerance
allocation allows exploring a wide range of potential solutions.

This multi-objective optimization approach prevents from
making decision a priori while it let the decision-making team
select the most appropriate assembly plan among several opti-
mal ones.

1Also called assembly process by some authors.

The assembly sequence (attachment-based defined) is con-
sidered to be predetermined – according to the method pro-
posed in [20] for example –. The detailed design and organ-
isation of the assembly system take place once the assembly
techniques are chosen and are thus not considered in this study.
The resulting boundary of the study is illustrated in Fig. 1.

The second section details the data structure used to define
a parametric assembly plan, what is required to tackle its op-
timization. The multi-objective optimization set to solve the
problem addressed in this paper is described in the third sec-
tion.

The section four details the proposed evaluation of the as-
sembly plan. The quality indicator is a conformity rate eval-
uated thanks to a probabilistic study based on the geometrical
variation propagation relation associated with the assembly pro-
cess plan. The evaluation of the assembly cost indicator com-
bines operations and tolerances cost. The former relies on a
simple activity-based analytical model applied on each opera-
tion. The latter is obtained thanks to a cost versus tolerance
relation adapted from [16]. Cost and quality indicators’ eval-
uation are both intentionally simple to let the reader focus on
the global approach proposed for technique selection and tol-
erance allocation. These indicators can easily be replaced by
more realistic ones for actual industrial applications.

The optimization method used is briefly described in section
five.

The entire method is illustrated through a simple case study
presented in section six where results are exposed and discussed.
It is followed by a conclusion.

2. Parametric assembly plan

2.1. Introduction

The inverse problem displayed in Fig. 1 is solved thanks
to a multi-objective optimization. Therefore, the performance
indicators of the assembly plan – the cost and the conformity
rate in this study – must be expressed as mathematical functions
(described in section 3). The input parameters of those two
functions must be parameters that describe the assembly plan to
evaluate. This section explains how this set of input parameters
is extracted from the description of the product and from the
technical know-how of a company.

2.2. Structuro-functional model of a product

An assembled product is a set of components connected to
each other thanks to assembly joints. Each joint involves two
surfaces, each one belonging to one of the components. The
structure of the product can be represented by an Elementary
Contact Graph [21] (ECG). The joints can be classified into
two categories: mates that pass dimensional constraints from
part to part, and contacts that provide support and lead to hy-
perstatic assembly [9]. This classification helps building Datum
Flow Chain (DFC) to identify components and joints involved
in the variation of the product’s key characteristics (KC) [9]. A
key characteristic is a property of a product required to satisfy a
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Fig. 2: Example of an Oriented Contact Graph as implemented in GAIA R©.
The Datum Flow Chain of the key characteristic 1 is represented.

function. In this paper, we only consider KC expressed as geo-
metrical conditions between two surfaces, even if the definition
applies for any measurable characteristic.

Marguet proposed to represent components, joints (mates
and contacts) and KC thanks to an Oriented Contact Graph that
mixes Elementary Contact Graph and Datum Flow Chain ap-
proaches [20]. This graph represents the structuro-functional
model of a product. It was implemented in a software called
GAIA R© [22].

The Oriented Contact Graph can also represent temporary
components used during the assembly, like tools and jigs. Joints
between temporary components and components of the product
are called temporary joints. They are all released at the end of
the assembly.

An example is given in Fig. 2. Two components are posi-
tioned by a tool (tj1 and tj2). The joint J1 is made by drilling the
b surfaces located with respect to the tool. The key characteris-
tic KC1 is not impacted by the b surfaces location as illustrated
by the DFC.

Finally the structuro-functional model of a product expressed
through the Oriented Contact Graph allows one to list the J
joints of the product. An assembly technique has to be chosen
for each one. It also allows one to list the L links of the datum
flow chains (i.e. the component dimensions and the joints in-
volved in the variations of the product’s Key Characteristics).
A tolerance has to be allocated to each component dimension

Tool 1

Tool 1

Component 1

Component 2

Fig. 3: Assembly Sequence Graph dual to the Oriented Contact Graph in Fig. 2.

to ensure that the product’s KC are kept within the authorized
boundaries.

2.3. Assembly sequence representation

As mentioned in subsection 1.1, the assembly sequence can
be described either as the order for component insertion or as
the order for joint manufacturing. The latter method includes
somehow the former, because a joint can only be made if the
components involved are already inserted in the assembly. In
order to provide a clear representation of the sequence, both
approaches are combined in an Assembly Sequence Graph. An
example is displayed in Fig. 3. The Assembly Sequence Graph
is dual to the Oriented Contact Graph. It shows the order in
which components are inserted (and removed when temporary)
in the assembly and when the joints are made (and released
when temporary).

The assembly sequence is considered as an input for the
work presented in this paper. The assembly sequence can be
defined by applying a method based on minimizing the length
of the datum flow chains as proposed by Marguet [20] for in-
stance.

2.4. Assembly technique definition

This paper aims at proposing a method to select an assembly
technique to make each joint of the product. For instance, the
same riveted joint can be made with manual drilling and rivet
fastening or with robots fitted with drilling and fastening end-
effectors. These are two possible assembly techniques to make
the same joint. Depending on the product, it can be hard to find
which one is the most suitable.

An assembly technique is defined as a collection of assem-
bly operations at the end of which a joint is made. For instance,
the manual drilling and rivet fastening technique previously in-
troduced require manual drilling, cleaning, sealing, rivet insert-
ing and rivet fastening.

Operation characteristics used in this study are fixed cost,
duration, required resources and resource quantities. If an oper-
ation is prone to geometrical deviations impacting the product’s
KC, the probability distribution characterizing its capability is
also required in the operation definition. Table 1 gives an exam-
ple of an assembly technique to make a temporary joint between
a tool and a component.

3



Table 1: Example of assembly technique definition for a temporary joint between a component and a tool (fixed cost given in cost unit and duration given in time
unit,N (0, 0.1) stands for a normal distribution with mean value of 0 and standard deviation value of 0.1).

Technique name: Tool
Operations Fixed cost Duration Resources Quantities Distribution
Docking 0 15 Tool; Operator 1;2 N (0, 0.1)
Clamping 3 10 Tool; Operator 1;1
Unclamping 3 10 Tool; Operator 1;1
Splitting 0 15 Tool; Operator 1;2

The manufacturing company know-how can be formalized
by building an assembly technique library. The assembly pro-
cess planner must define the list of techniques he wants to be ex-
plored for each joint of the product instead of manually building
and evaluating assembly plans according to the company know-
how not necessarily formalised. It is among this list that an op-
timal solution will be searched for. Then the search is likely to
be more efficient with respect to the high combinatorial that the
assembly process planner have to face.

3. Optimization problem

3.1. Decision variables and constraints

An assembly technique has to be chosen for each joint of
the product (including the temporary joints represented on the
Oriented Contact Graph). Let Nt be the number of techniques
in the assembly technique library. The list of authorized assem-
bly techniques for the joint j ∈ {1, . . . , J} is denoted Tj and
is a subset of {1, . . . , Nt}. The assembly technique decision
variables are gathered in a vector xt defined by eq. (1):

xt =
[
x1 . . . xJ

]T
(1)

The assembly technique decision space is then limited to
Ωt, defined in eq. (2):

Ωt =

J∏
j=1

Tj (2)

The DFC identified from the sructuro-functional model of
the product allow ones to list the L links that impact the product
KC. These L links geometrical variations must be allocated tol-
erances. Lt links of the DFCs are already characterized by the
assembly technique selected for their related joint, as for tj1
and tj2 in Fig. 2. Geometrical tolerances must be allocated to
the remaining Lg = L − Lt links involved in the variation of
the product KC.

Let i ∈ {1, . . . , Lg} be the index of one of these links. Its
probabilistic distribution is assumed to be fixed. The distribu-
tion has ni parameters written {xi1, . . . , xini}. For example, a
normal distribution has two parameters – the mean value and
the standard deviation – and ni equals two. Allocating toler-
ance comes to setting these two (or ni) parameters, called geo-
metrical variation decision variable. The geometrical variation
decision variables are gathered in a vector xg defined in eq. (3):

xg =
[
. . . xi1 . . . xini . . .

]T
(3)

The dimension of the geometrical variation decision space
is denoted Ng . Its value is calculated according to eq. (4):

Ng =

Lg∑
i=1

ni (4)

Some constraints can exist in each subset of the geometri-
cal variation decision variables {xi1, . . . , xini}. For instance,
if the distribution i is uniform, then the lower bound xi1 must
be lower than the upper bound xi2. Those constraints are in-
trinsic to the distributions. The geometrical variation decision
space noted Ωg is the restriction of RNg satisfying to all the
distribution intrinsic constraints.

Finally, the assembly technique selection and component
geometrical deviation tolerances can be expressed by n = J +
Ng decision variables gathered in a vector x defined in eq. (5):

x =
[
xt xg

]T ∈ Ω (5)

with:

Ω = Ωt × Ωg (6)

3.2. Multi-objective optimization

As illustrated in Fig. 1, the definition of an assembly process
plan is driven by several performance indicators. This work
deals with the search for assembly plans that minimize assem-
bly cost indicator and maximize quality indicator (i.e. minimize
non-conformity rate defined in subsection 4.1). These objec-
tives are likely to conflict with each other.

One can decide to express the problem into a single objec-
tive optimization problem, combining both performance indi-
cators into a single objective function or optimizing a single
indicator handling the other one as a constraint. Although this
approach seems simpler from a mathematical point of view, its
main drawback is that it forces the user to introduce high-level
information into the model used for optimization. The trade-
off between several performance indicators can not always be
encapsulated into a unique equation.

Solving a multi-objective optimization problem seems to be
more adapted within the industrial context. The optimization
result is a set of non-dominated solutions (see Fig. 4 for illustra-
tion) obtained without modelling anything but the performance
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Fig. 4: Non-dominated elements (red circles) among a population (blue
squares) for a two-objective problem.

indicators. A decision variable vector x∗ dominates a deci-
sion variable vector x according to the N objective functions
{f1, . . . , fN} if the assumptions of eq. (7) are verified [23, 24]:{

∀p ∈ {1, . . . , N}, fp(x∗) ≤ fp(x)
∃q ∈ {1, . . . , N}, fq(x∗) < fq(x)

(7)

When the set of non-dominated solutions, commonly called
the Pareto front, is found, it can be used as a decision aid. Then
the final decision on assembly techniques and geometrical tol-
erance allocation is taken by a decision-making team among the
non-dominated solutions. This approach fits common industrial
practices better than a blind selection according to a black-box
optimization result.

The multi-objective optimization problem dedicated to as-
sembly technique selection and geometrical tolerance alloca-
tion is finally formulated in eq. (8):

Minimize
x∈Ω

[NCR(x),C(x)]
T (8)

The non-conformity rate function NCR(x) : Ω → R is
detailed in subsection 4.1 and the assembly cost function C(x) :
Ω→ R is detailed in subsection 4.2.

4. Assembly plan evaluation

4.1. Evaluation of the non-conformity rate

The quality indicator used in this paper is called non-conformity
rate. The non-conformity rate associated with an assembly pro-
cess plan figures the probability for a product to have one of its
KC out of the boundaries derived from the functional require-
ments.

The structuro-functional model of the product presented in
subsection 2.2 allows one to identify the L links of the DFC.
The geometrical variation propagation relation associated with
the assembly process plan is assumed to be known. Each KC
of the product is expressed as a function of the DFC’s links
denoted δli in eq. (9):

δKC = f
(
{δli}i∈{1,...,L}

)
(9)

The geometrical variation propagation relation generically
expressed by eq. (9) can either be a simple geometrical variation
stack-up, or a linear relation integrating component flexibility
as in the Method of Influence Coefficient [25]. The relation f
can even be expressed by a meta-model, such as a trained neural
network, that accounts for the non-linearity due to the assembly
sequence and the contact interaction between components [26].

The probability density function (PDF) of each δKC can
be evaluated according to the geometrical variation propagation
relation given in eq. (9) fed with the probabilistic distribution of
the δli. The distributions of the δli are either given by the as-
sembly technique definitions related to xt or by the geometrical
variation parameters defined in xg .

The probability for the KC deviation indexed r to be smaller
than its functional lower bound lbr or greater than its func-
tional upper bound ubr can then be extracted from its PDF. The
non-conformity rate of the key characteristic r is expressed in
eq. (10):

NCRr(x) = P[δKCr < lbr](x) + P[δKCr > ubr](x) (10)

The probability for the KC to exceed its bounds is evalu-
ated applying a First Order Reliability Method (FORM) [27].
Various input distributions can be considered with this method,
making it more generic than approaches such as Root Sum Square.
This method can also be more computationally efficient than
Monte Carlo based methods when it comes to predict low prob-
abilities.

The non-conformity rate associated with the assembly pro-
cess plan is defined as the maximum of the non-conformity rate
of one of the NKC of the product, as displayed in eq. (11):

NCR(x) = max
r∈{1,...,NKC}

NCRr(x) (11)

For example, considering the assembly of a product includ-
ing two KCs with respective probability 0.1 and 0.2 to be out
their functional domain, the associated non-conformity rate will
be 0.2. This approach can provide a non-conformity rate lower
than the total rate of non-conform products but it allows a sep-
arate analysis for each KC.

4.2. Evaluation of the cost

4.2.1. Cost sources
The cost associated with an assembly plan can be split into

two sources:

• the activity cost, denoted Ca, can be evaluated by apply-
ing an activity based cost model for all the operations of
the process plan;

• the geometrical tolerance cost, writtenCg , and depending
on the geometrical tolerance allocation.
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The choice of the assembly techniques directly impacts the
activity cost of the assembly process plan. It also indirectly im-
pacts the geometrical tolerance cost as the tolerances allocated
may be adjusted for each set of selected assembly techniques.
The two cost sources are treated separately in the following but
are considered together to evaluate the total cost associated with
an assembly process plan:

C(x) = Ca(xt) + Cg(xg) (12)

4.2.2. Activity based cost model
The evaluation of the assembly operations’s cost is performed

using a generic model applied to each operation. Even if this
model is simple, it can easily be replaced by a more realistic
one if required.

LetOpα be the operation α of the process plan. Let tα be its
duration and Fcα its fixed cost. The fixed cost represents, for
instance, consumables or tool wear. This operation also con-
sumes the quantities mαβ of the resources {rβ}β∈{1,...,R}. Ev-
ery resource rβ has a cost per time unit Ctu,β . Then the ele-
mentary cost COp,α associated with the operation Opα is the
sum of the fixed cost and the cost of the resources consumed,
as expressed in eq.(13):

COp,α = Fcα + tα ×
R∑
β=1

mαβ × Ctu,β (13)

The assembly recurring cost Creq (i.e. the cost required to
assemble each product) is assumed to be the sum of the elemen-
tary cost of each of the Nop operations {Opα}α∈{1,...,Nop} of
the assembly plan weighted by the number of occurrences qα
of each operation in the plan. This is expressed in eq.(14) with
a matrix notation.

Creq = qT ·Cop (14)

where:

q =
[
q1 · · · qNop

]T
(15)

and:

Cop =

 Fc1
...

FcNop

+

t1 · · · 0
...

. . .
...

0 · · · tNop

 ·
 m11 · · · m1R

...
. . .

...
mNop1 · · · mNopR

 ·
Ctu,1...
Ctu,R


(16)

With this formulation, the recurring cost is the product of
qT , that depends on the choice of assembly techniques xt only,
and Cop which is a constant vector depending on the assembly
technique library.

When it comes to assembly technique selection, not only the
recurring cost has to be taken into account, the non-recurring

cost must also be evaluated. Let Cr,β be the investment to ac-
quire the resource rβ . It is assumed that this investment cost
is not included in the resource cost per time unit. With qr,β
the quantity of the resource rβ required by the assembly pro-
cess plan, then the non-recurring cost Cnr associated with the
assembly process plan is expressed thanks to eq.(17):

Cnr =
[
qr,1 · · · qr,R

]
·

Cr,1...
Cr,R

 = qTr ·Cr (17)

The non-recurring cost is then the product of qTr , that de-
pends on the choice of assembly techniques only, with Cr a
constant vector. When a product is manufactured at an indus-
trial scale, there is often a potential market identified for the
product and the assembly process can be planned considering
the total amount P of product that may be sold. Based on this
hypothesis, the non-recurring cost associated with the assembly
process plan can be shared among those P products.

Finally, the costCa associated with the assembly operations
of a process plan is expressed in eq.(18):

Ca(xt) = q(xt)
T ·Cop +

1

P
· qr(xt)T ·Cr (18)

The evaluation of the Ca associated with an assembly pro-
cess plan is reduced to the evaluation of q and qr. Resource di-
mensioning has been investigated in operational research [28]
and many possibilities exist to evaluate qr. A simple method
is applied: the quantity of a resource is equal to the maximum
quantity consumed by an operation of the plan, as expressed in
eq.(19):

∀β ∈ {1, . . . , R}, qr,β = max
α∈{1,...,Nop},qα 6=0

mαβ (19)

For monotonous assembly processes, q can directly be ex-
tracted according to the choice of assembly technique for each
joint of the product. If some operations of a technique must
be repeated several times due to constraints coming from the
manufacturing of another related joint – what is a common case
in aeronautical structures assembly –, finding q according to
the assembly technique choice may require a more elaborated
method, like finite-state-machine or Petri net models of the as-
sembly process. In this paper, only monotonous assembly pro-
cesses are considered.

4.2.3. Cost associated with the geometrical tolerance
The cost associated with the geometrical tolerance alloca-

tion of the process plan is assumed to be the sum of the cost
required to keep each of the Lg dimensions in its allocated tol-
erance zone.

The relation between the size of the tolerance allocation and
the associated cost is commonly investigated in the literature.
Chase et al. gathered several simple cost vs. tolerance models
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in [16]. Most of those cost models can be generalized by the
eq. (20) in which a, b, m, k and Tlim are fixed parameters of
the relation.

c = a+ b · e−m(T−Tlim) ·(T − Tlim)−k (20)

Therefore, for each i ∈ {1, . . . , Lg}, a value for Ti must be
calculated according to the {xi1, . . . , xini} parameters of the
probabilistic distribution of the dimension i:

• if its probability density function (PDF) is not equal to
zero on a finite interval of R (like uniform or truncated
normal distribution), Ti is the size of this interval;

• else, the value used for Ti is chosen equal to the size of
the 99.73% coverage interval (6σ for a normal distribu-
tion).

The cost associated with the geometrical tolerance alloca-
tion is finally expressed in eq. (21):

Cg(xg) =
∑Lg
i=1

(
ai + bi · e−mi(Ti−Tlim,i) ·

(Ti − Tlim,i)−ki
) (21)

Some more elaborated models can easily be included in the
framework presented in this paper.

5. Optimization solution

5.1. Choice of an optimization method

Most of the existing methods to solve multi-objective op-
timization problems rely on population-based evolutionary al-
gorithm. Coello Coello and Reyes Sierra investigated pros and
cons several optimization solutions [29, 30]. As it provides a
good trade-off between performance and robustness while re-
quiring few parameters to be tuned, the NSGA-II algorithm
(Non-Sorted Genetic Algorithm - II) proposed by Deb et al.
[31] is chosen to solve the optimization problem formulated in
eq. (8).

5.2. Implementation

Fig. 5 presents an overall flowchart of the search for non-
dominated points in the non-conformity rate versus cost plane.

An initial population of Np assembly plans modelled by
Np x decision variable vectors is created randomly. The fit-
ness of each element of the population is evaluated to create
Np pairs (NCR,C) according to eqs. 11 and 12. The non-
dominated points are stored in an archive. Then, based on the
selection described in the NSGA-II algorithm, the population
evolves thanks to two separate mechanisms.

Crossovers are performed between two parents to create an
offspring. The crossover operator used in this paper is called
blend crossover. It consists in creating an offspring by comput-
ing the arithmetic mean of two parents xp1 and xp2 weighted
respectively by α and 1− α, with α randomly chosen between
0 and 1. This strategy is chosen due to its ability to cope with

i = 1

i < Np?

iNCR = NCR(ix) (11) iCa = Ca(
ixt)    (18)

iC = iCa + iCg (12)

iCg = Cg(
ixg)    (21)

i = i+1

g < Ngen?

g = g+1

Search non-
dominated points (7)
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Fig. 5: Flowchart of the optimization process, with reference to the associated
equations.

continuous variables such as the geometrical part xg of the de-
cision variables vector x.

Some candidates x are also subject to Gaussian mutation. It
consists in adding a random value drawn with Gaussian distri-
bution to each component of the candidate x. That provides the
algorithm with enhanced exploration capability, while crossover
alone generally leads to a narrow part of the actual Pareto front
– a small set of assembly techniques explored in this study for
instance –. A mutation rate rm is defined, and the number of
candidates subject to mutation in each generation is rmṄp.

When an arbitrarily chosen number Ngen of generations
has been created and evaluated, the evolution stops and non-
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Fig. 6: Schematic view of the use case.

dominated points are searched in the archive stored filled at
each generation.

The method presented is implemented in Python language.
The optimization is performed with the NSGA-II algorithm im-
plemented in the Inspyred Python library [32].

6. Use case and results

6.1. Structuro-functional model of the product

The methodology described in sections 2 to 5 is illustrated
through a simple case study. The product is a box composed
of four components: two flanks (right and left), one splice and
one cover. Fig. 6 shows a schematic view of this product. The
splice is bonded on the two flanks and the cover is riveted on
them.

The box has six key characteristics: the bonding areas of
the splice (KC1 and KC2), the outcrop of the cover (KC3 and
KC4) and the location of the rivets (KC5 and KC6), as pictured
in Fig. 6.

Fig. 7 presents the assembly sequence and the structuro-
functional model of the product after the ninth assembly step.
Fig. 8 shows the product state after the sixteenth step of the
assembly sequence. Details about the names of the surfaces are
given in Fig. 9.

6.2. Assembly techniques libraries

The assembly technique library gathering all the assembly
techniques available in this study is detailed in Appendix B.

As explained in subsection 3.1, each joint j has its own au-
thorized assembly technique list Tj . The Table 2 summarizes
the authorized assembly techniques defined for each joint of the
product. The temporary joints tj1 and tj2 are made by back-to-
back positioning on a reference plane. So are J1−m, J3 and J5,
with a few modifications detailed in Table B.1. The temporary
joints tj3 to tj7 can be made either with a tool, an adjustable
tool, a robot used as a tool or a specific automated station. De-
tails are given in Table B.2. Two bondings techniques are avail-
able for joints J1 − c and J2. Differences between the two are

Table 2: Authorized assembly techniques for the joints of the product.
Joint j Authorized assembly techniques list Tj
tj1 and tj2 1-Back-to-back positioning (temporary)
tj3 to tj7 2-Tool, 3-Adjustable tool, 4-Robot as tool,

5-Specific automated station
J1-m 6-Back-to-back positioning
J1-c and J2 7-Traditional bonding, 8-Rapid bonding
J3 and J5 9-Back-to-back positioning (with splitting)
J4 and J6 10-Drilling with grid, 11-Drilling with

numerical grid, 12-Robot Drilling, 13-
Specific drilling station

given in Table B.1. Finally, the joints J4 to J6 can be made
with either a traditional drilling grid, a numerical grid, a robot
fitted with a drilling end-effector or a specific drilling station,
as exposed in Table B.3.

The assembly technique decision variable vector xt (see
eq. (1)) has 14 components representing the index of the tech-
nique chosen for each of the 14 joints of the product. Some as-
sembly technique decision variables are constrained to be equal
because of technical constraints. It is the case for the tech-
nique selected for the sets of joints {tj3, tj4, tj5}, {tj6, tj7}
and {J4, J6}.

Even with these constraints set, the domain to explore is still
wide, from manual to highly automated assembly techniques.
The aim of the study is to search optimal solution without mak-
ing any more decision.

6.3. Datum flow chains and conformity rate

The datum flow chain of each key characteristic can be built
according to the structuro-functional model of the product and
its assembly sequence defined in Fig. 7. The datum flow chain
of KC3 is displayed in Fig. 8. The geometrical variation prop-
agation problem is kept unidimensional in this use case. The
value of KC3 depends on the location of the contact in joints
tj6 and tj7. Then, the deviation δKC3 is calculated according
to eq. (22):

δKC3 = −δtj6 + δtj7 (22)

where δtj6 and δtj7 stand for the deviation of the contact lo-
cations with respect to their theoretical locations along the x
axis.

In the following, δliab denotes the geometrical deviation of
the surface b with respect to the surface a of the component i.
The geometrical deviation due to the joint j is written δj. Then,
the eq. (9) applied to each datum flow chain of the product leads
to the system of eqs. (23):



δKC1 = δtj3 − δtj5 + δl1ab
δKC2 = −δtj4 + δtj5 − δl2ab + δl3ab
δKC3 = −δtj6 + δtj7
δKC4 = −δtj3 + δtj4 + δtj6 − δtj7 − δl4ab
δKC5 = −δtj6 + δmJ4

δKC6 = −δtj3 + δtj4 + δtj6 − δmJ6

(23)
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Fig. 7: Structuro-functionnal model of the box (after nine assembly steps) as represented in GAIA R© [22].
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Table 3: Probabilistic distributions and cost vs. tolerance model parameters of
the components geometrical deviations (cu stands for cost unit).

Tlim,i ai bi mi ki
(mm) (cu) (cu/mm) (mm−1)

δl1ab 0.01 0 200 1 1
δl2ab 0.01 0 200 1 1
δl3ab 0.01 0 50 1 1
δl4ab 0.01 0 50 1 1

The geometrical deviations of the components impacting
the product key characteristics are listed according to eq. (23):
it consists in δl1ab, δl2ab, δl3ab and δl4ab. Tolerances are allo-
cated for those deviations in the following. They are assumed to
have uniform distributions. Then, the lower and upper bounds
of the allowed deviations need to be set. The geometrical vari-
ation decision variable vector xg (see eq. (3)) has 8 compo-
nents representing the lower bound and upper bound of the tol-
erance allocated for each of the four component characteristics
impacting the product KC and therefore the conformity rate.
Table 3 summarizes their cost vs. tolerance model parameters
from eq. (21) and Fig. 10 gives a graphical representation of the
cost vs. tolerance relation. The geometrical variations of l1ab
and l2ab are allocated the same tolerance due to the symmetry
of the components.

The joints subject to deviations impacting the product key
characteristics are tj3 to tj7. The surfaces e of the flanks and
e and f of the cover are manufactured when the joints J4 and
J6 are made. The deviations δmJ4 and δmJ6, that depend
on the technique selected for J4 and J6, also impact the key
characteristics and the conformity rate.

6.4. Implementation

The method presented in this paper is implemented in Py-
thon language. The optimization is performed with a popula-
tion composed of 200 individuals evolving during 20 genera-
tions. The size of the population is selected to provide a good
trade-off between spread and speed. The number of genera-
tions has been set according to empirical results showing that

Fig. 10: Cost vs. Tolerance function with the set of parameters given in Table 3.

the Pareto front does not significantly moves during further evo-
lutions. Mutation rate is set to set at 0.1 and blend crossover is
applied to the entire population. Those settings are providing a
good spread along the Pareto front while keeping the computa-
tion time below one hour2.

6.5. Results

6.5.1. Main results
The optimization problem presented in the previous sec-

tions is solved considering the number P of products to be as-
sembled equal to 100.

The Pareto front obtained at the end of the evolution of 200
decision variable vector along 20 generations is presented in
Fig. 11. Each point of the graph represents the non-conformity
rate and cost associated with a set of techniques chosen for the
product’s joints and a set of tolerances allocated to the compo-
nents’ geometrical deviations. The values in the Table 4 are the

2Running on a single 2.53Ghz CPU.
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Fig. 11: Optimization result: Pareto Front obtained with P = 100.

Table 4: Assembly techniques and tolerances for the square point in Fig. 10.

Joint Assembly technique selected
tj1 and tj2 1-Back-to-back positioning (temporary)
tj3 to tj7 4-Robot as tool
J1−m 6-Back-to-back positioning
J1− c and J2 7-Traditional bonding
J3 and J5 9-Back-to-back positioning (with splitting)
J4 and J6 10-Drilling with grid
Geometrical characteristic Tolerance allocated
δl1ab and δl2ab U(−0.40, 0.30)
δl3ab U(−0.22, 0.21)
δl4ab U(−0.17, 0.16)

decision variables corresponding to the point represented by a
blue square in the Fig. 11.

The benefit of the multi-objective optimization can easily
be illustrated in Fig. 11. If the problem was solved considering
the cost as a single objective and the non-conformity rate con-
strained to be zero, the result would have been the point in the
top left hand corner (cost equal to 4412 cost units). Instead of
this, the non-conformity rate could have been constrained to be
lower than an arbitrary value decided before running the opti-
mization. Let this value be 5% for the example. It leads to a
cost of around 2620 cost units. But running a single objective
optimization do not allow the user to know that he can decrease
the non-conformity below 2% for around 2700 cost unit per
product. The main interest of the multi-objective optimization
is that it helps the user decide which solution fits its real ob-
jectives the best instead of needing for him to translate his real
objectives into blind mathematical constraints.

The Pareto front alone does not provide all the information
obtained at the end of the optimization. Four zones are circled
in Fig. 11. In each zone, the assembly technique decision vari-
ables of the points are identical. In fact, if the assembly tech-

niques were all selected before and the optimization was only
performed to allocate tolerances, the Pareto front would have a
smoothly decreasing shape. Here, each zone corresponds to a
smooth front with its own set of assembly techniques selected.
It is emphasized in Fig. A.1 in Appendix A where the number
of products P is equal to 10.

In other words, the multi-objective optimization approach
shows its ability to let the assembly process planner identify
which set of assembly techniques seems to be the most relevant.

For all zones, traditional bonding and drilling with grid proved
to be the most relevant techniques.

In zone 1, the joints tj3 to tj7 are made with the Adjustable
tool technique. As expected, the low geometrical variations in-
troduced by assembly techniques helps reaching a non-conformity
near zero but the measurement and setting operations make the
cost grow noticeably.

In zone 2, the joints tj3 to tj5 are made with the Adjustable
tool technique and the joints tj6 and tj7 are made with the
Robot as tool technique. Compared to zone 1, the cost can be
significantly reduced if a small loss on the non-conformity is
permitted.

In zone 3, only the Robot as tool technique is used. Com-
pared to zone 2, the cost can also be reduced but its reduc-
tion will be associated with more significant loss on the non-
conformity. This part of the Pareto front provides a lot of infor-
mation for potential trades-off.

In zone 4, the joints are made with the Tool technique. Ac-
cording to the level of non-conformity reached, this choice of
techniques is probably not relevant.

With these results, the assembly process planner can focus
on a small amount of solutions. For example, the search for
optimal solution can be refined in the zone that best fits its ob-
jectives. The actual cost of repairing and/or adjusting products
that are not meeting the functional requirements can also been
investigated.

The combination of activity-based cost and geometrical tol-
erance cost into a single indicator can be a challenging work
in practical industrial conditions. The identification of sev-
eral zones in the Pareto front can help overcome this hurdle by
damping the effect of an indicator not well balanced between
the two cost sources.

The combination of the two cost sources can also be avoided
by considering them separately and solving a three-objective
optimization problem.

The results presented in Fig. 11 also illustrate the capability
of the method in terms of search. The Pareto front obtained is
wide enough to show several assembly technique sets with var-
ious scenarios of geometrical tolerance allocation. This shows
that the optimization algorithm has explored the entire domain.

6.5.2. Illustration with P = 10000

The optimization problem was also solved with a number of
products P = 10000 to present the results in a case of manufac-
turing on a larger scale. The Pareto front obtained is presented
in Fig. 12. The zone 4 (in which the joints are realized with the
Tool technique) is no longer present in the Pareto front because
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Zone 1

Zone 2

Zone 3

Fig. 12: Optimization result: Pareto Front obtained with P = 10000.

the investment required to use the Robot as tool technique is
compensated by a lower assembly cost.

The separation between zones is less visible than in Fig. 11
but the Pareto front globally has the same shape and the conclu-
sions drawn in the previous subsection still apply.

7. Conclusion

This paper aims at presenting an original method for computer-
aided assembly process planning. It addresses the problem of
assembly technique selection and of component geometrical
tolerance allocation. This problem is solved to satisfy both ob-
jectives of minimizing a cost indicator and maximizing a qual-
ity indicator. This is achieved by writing a multi-objective op-
timization problem.

The optimization result, presented as a Pareto front, proved
to be an efficient tool for making trades-off once a set of non-
dominated assembly plans have been found. The identification
of zones on the Pareto front helps the assembly process plan-
ner to identify relevant sets of assembly techniques. Therefore,
the proposed approach is well adapted to an industrial context
where decision-aid capabilities are essential.

The method can be used in different ways to satisfy indus-
trial needs. On top of the results illustrated in this paper, it can
help evaluate and assess the potential benefits of using innova-
tive assembly techniques or help find the minimum capability
required for a technique under development to be competitive,
for example.

The use case and the quality and cost indicators presented in
this paper are intentionally kept simple to let the reader focus on
the global method. More complex models for non-conformity
rate or cost evaluation can easily be applied using the same
framework. The method is currently under test on industrial-
scaled use cases.

Zone 1

Zone 2

Zone 3

Zone 4

Fig. A. 1: Optimization result: Pareto Front obtained with P = 10.
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A. Optimization results with P = 10

The Fig. A.1 shows the Pareto front obtained after the opti-
mization with p = 10. Even if this problem do not reflects a re-
alistic case, it illustrates the ability of the optimization method
to produce a discontinuous Pareto front. The non-dominated
points of the front can also be classified into several zones in
which the points are sharing the same assembly techniques de-
cision variables. The assembly techniques selected in each zones
1, 2, 3 and 4 are the same as for the zones presented in Fig. 11.

B. Assembly technique library

The assembly technique library used in the case study pre-
sented in section 6 is detailed in Table B.1, Table B.2, Table B.3.
The characteristics of the resources required for the assembly
operations of this library are given in Table B.4.
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Ecole Normale Supérieure de Cachan (2001).

[21] A. Ballu, L. Mathieu, Choice of functional specifications using graphs
within the framework of education, in: Proceeding of the 6 th CIRP Inter-
national Seminar on Computer-Aided Tolerancing, University of Twente,
Enschede, The Netherlands, 1999, pp. 197–206.

[22] H. Falgarone, N. Chevassus, An innovative design method and tool for
structural and functional analysis, in: Proceedings of CIRP Design Semi-
nar, Cairo, Egypt, 2004.

[23] F. Edgeworth, Mathematical physics; an essay on the application of math-
ematics to the moral sciences, Paul Kegan, London, England, 1881.
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Table B. 1: Assembly techniques for the joints tj1, tj2, J1-m,, J1-c, J2, J3 and J5

Technique name: Back-to-back positioning
Operations Fixed cost Duration Resources Quantities Distribution
Docking 0 1 Operator 1
Splitting* 0 1 Operator 1
Sealing** 4 2 Operator 1
Docking* 0 1 Operator 1
Final splitting*** 0 1 Operator 1

Technique name: Traditional bonding
Operations Fixed cost Duration Resources Quantities Distribution
Surfaces cleaning 4 12 Operator 1
Glue lay-down 10 5 Operator; Glue gun 1;1
Clamping 0 5 Operator 1
Drying 0 15 None 1

Technique name: Rapid Bonding
Operations Fixed cost Duration Resources Quantities Distribution
Surfaces cleaning 6 15 Operator 1
Glue lay-down 30 5 Operator; Glue gun 1;1
Clamping 0 5 Operator 1

* not for temporary back-to-back positioning
** only for back-to-back positioning with splitting
*** only for temporary back-to-back positioning
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Table B. 2: Assembly techniques for the joints tj3 to tj7

Technique name: Tool
Operations Fixed cost Duration Resources Quantities Distribution
Docking 0 15 Tool; Operator 1;2 N (0, 0.1)
Clamping 3 10 Tool; Operator 1;1
Unclamping 3 10 Tool; Operator 1;1
Splitting 0 15 Tool; Operator 1;2

Technique name: Adjustable Tool
Operations Fixed cost Duration Resources Quantities Distribution
Docking 0 15 Adjustable Tool; Operator 1;2
Clamping 1 10 Adjustable Tool; Operator 1;1
Measurement 0 5 Adjustable Tool; Operator; Non-

Contact Measurement Device
1;1;1

Unclamping 1 10 Adjustable Tool; Operator 1;1
Setting 0 5 Adjustable Tool; Operator 1;1 N (0, 0.02)
Clamping 1 10 Adjustable Tool; Operator 1;1
Unclamping 1 10 Adjustable Tool; Operator 1;1
Splitting 0 15 Adjustable Tool; Operator 1;2

Technique name: Robot as Tool
Operations Fixed cost Duration Resources Quantities Distribution
Robot referencing 0 1 Robot 1
Component Grabbing 0 0.5 Robot 1
Component Positioning 0 0.5 Robot 1 U(−0.07, 0.07)

Technique name: Specific Automated Station
Operations Fixed cost Duration Resources Quantities Distribution
Component grabbing 0 0.5 Specific Automated Station 1
Component Positioning 0 0.5 Specific Automated Station 1 U(−0.3, 0.3)
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Table B. 3: Assembly techniques for the joints J4 and J6

Technique name: Drilling with grid
Operations Fixed cost Duration Resources Quantities Distribution
Grid positioning 0.2 2 Operator; Grid 1;1
Drilling 10 3 Operator; Grid; Automated Drilling

Unit
1;1;1 N (0, 0.05)

Grid removal 0.2 2 Operator; Grid 1;1
Deburring 0 5 Operator 1
Riveting 5 2 Operator 1

Technique name: Drilling with numerical grid
Operations Fixed cost Duration Resources Quantities Distribution
Grid positioning 0 1 Operator; Numerical Grid 1;1
Drilling 10 2.8 Operator; Numerical Grid; Automated

Drilling Unit
1;1;1 N (0, 0.075)

Grid removal 0 0.5 Operator; Numerical Grid 1;1
Deburring 0 5 Operator 1
Riveting 5 2 Operator 1

Technique name: Robot Drilling
Operations Fixed cost Duration Resources Quantities Distribution
Robot referencing 0 1 Robot; Drilling End-effector 1;1
Drilling 8 2.4 Robot; Drilling/Riveting End-effector 1;1 N (0, 0.03)
Automated riveting 5 1 Robot; Drilling/Riveting End-effector 1;1

Technique name: Specific drilling station
Operations Fixed cost Duration Resources Quantities
Drilling 9 2.4 Specific Drilling/Riveting Station 1 N (0, 0.01)
Automated riveting 5 1 Specific Drilling/Riveting Station 1
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