N

N

A Natural Language Interface for Code Search

Markus Kimmig, Martin Monperrus, Mira Mezini

» To cite this version:

Markus Kimmig, Martin Monperrus, Mira Mezini. A Natural Language Interface for Code Search.
[Technical Report] hal-01094267, TU Darmstadt. 2011. hal-01094267

HAL Id: hal-01094267
https://hal.science/hal-01094267

Submitted on 12 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01094267
https://hal.archives-ouvertes.fr

A Natural Language Interface for Code Search

Markus Kimmig
Technische Universitidt Darmstadt

Abstract—One common task of developing or maintaining
software is searching the source code for information like specific
method calls or write accesses to certain fields. This kind of
information is required to correctly implement new features and
to solve bugs. This paper presents an approach for querying
source code with a natural language interface. It enables the
developer to execute a huge range of precise searches while being
as easy and intuitive to use as writing natural language. The
evaluation shows that the prototype implementation, integrated
with the Eclipse development environment for Java, supports a
wide range of queries and is able to correctly understand most
real developer queries.

I. INTRODUCTION

The ability to correctly find source code elements is crucial
for many software engineering tasks [1]. For instance, a
programmer may ask “Where is the field balance read?” before
changing the way it is set, in order to avoid undesired side-
effects and regression. Table I lists a sample of software
development tasks and related queries. Providing tool-support
for searching source code is especially important when the
code base is huge or when developers are unfamiliar with it.

The research on code querying has produced many powerful
code search languages and frameworks (e.g [2], [3], [4]),
that require developers to use a whole new query language
with a steep learning curve. On the industry side, the most
sophisticated search mechanisms offered by modern integrated
development environments (IDEs) are based on graphical
widgets. For instance, the Eclipse Java Search Widget has
a total of 31 check-boxes and many of them interplay with
each other in an unintuitive manner. We’ll show later in this
paper that users generally don’t appreciate this widget (see
V). The free text search (like grep) is easy to use, but yields
many wrong results (for instance grepping “balance” for the
previous example would also list method “checkBalance”).

In the same line of thought as naturalistic programming [5],
[6], we assume that the most natural way for programmers to
express code queries is using natural language. We aim at rec-
onciling a lightweight way to express queries over source code

Development Tasks Example Query
Where is the field balance read?

Where are the classes named *Account*

Change Analysis

Feature Identification

Bug Localization Where is an IncorrectRequestException thrown?

Dependency Analysis | Which classes import javax.swing.JButton?
TABLET
EXAMPLES OF SOFTWARE DEVELOPMENT TASKS AND RELATED SOURCE

CODE QUERIES

Martin Monperrus
University of Lille

Mira Mezini
Technische Universitdt Darmstadt

(“a la grep”) with the correctness and efficiency of dedicated
code query engines. This paper is a novel contribution in this
direction.

In this paper, we present an approach that enables the de-
veloper to query source code with natural language. Contrary
to [7], our approach does not impose rules on how the queries
have to be stated. It only assume that the query is grammat-
ically correct English. It combines Part-of-Speech Tagging,
statistical analysis and a touch of embedded knowledge to
identify which words of the query describe what the developer
is looking for. Eventually, the natural language query is
translated into a call to a code query engine. Consequently,
the scope of supported query kinds is given by the underlying
code query engine, and our approach handles the multitude of
variations and modulations in ways of expressing queries. It
is designed to answer a large range of questions from "Where
is method doSomething called?" to more complicated queries
like "Where are super reference calls to method doSome-
thing?". Our prototype implementation is built on top of the
Eclipse JDT code query engine [8] and the user-interface is
tightly integrated with the Eclipse development environment.

The approach is evaluated with a user study of 14 subjects.
The experiment consisted of a number of common program-
ming and refactoring tasks which require to find an appropriate
piece of code in an unknown project. Subjects were only
allowed to use our prototype system to find the correct piece of
code. A comprehensive log of all queries from every subject
shows that our system is able to correctly understand 83%
of all subject queries. We also interviewed every subject to
get detailed feedback about the prototype as well as possible
future improvements. The interviews show that the tool is
mostly perceived as being a valuable addition to the toolbox
of software developers.

This technical report is a long version of a paper pub-
lished in the Proceedings of the 26th IEEE/ACM International
Conference On Automated Software Engineering [9], it is
organized as follows. Section II gives an overview of our
approach. Section III gives a detailed explanation of the system
algorithms. A prototype implementation of our approach is
presented in section IV. The evaluation of the approach is
described in section V. We then discuss related work in section
VI and Section VII concludes the paper.

II. OVERVIEW

Figure 1 outlines the different phases of our approach
to querying source code with natural language. First, the
developer has a development task that requires to examine

Query in Natural
Language

Development Task
o e.g. Where is an
e.g. Bug Localization IncorrectRequestException
thrown?

Translation to a Code Displaying the Search

Query Engine Results
e.g. the Eclipse Java e.g. the exception is
Search API thrown in method

"Server.handleRequest"

Fig. 1. Overview of our Approach to Querying Source Code With Natural Language

existing source code elements. Then, (s)he expresses a query in
natural language. A translator analyzes the query and translates
it to a formalized query for a code query engine, e.g. the
Eclipse JDT Search API The results given by the code query
engine are displayed in the development environment, and
the developer starts to examine the code elements found or
refines/reformulates his query if (s)he has not found what(s)he
is looking for. It is also important to give the developer a way
to inspect the result of the translation process to help him/her
assess that the translation was correct.

Our approach is a bridge between a natural language query
and an underlying code query engine. In our work, we have
used the JDT query engine. For the sake of giving concrete
examples when presenting the approach, we present this
engine here, but it is to be noted that our approach is, to a
certain extent, independent from the underlying query engine.

The core of the JDT query engine consists an API call taking
three arguments as parameter.

o the element kind is the kind of source code element

being sought (e.g. type or method)

o the code context is the programming context in which
we are interested in. For instance, if the kind is method,
the context may be method call or method declaration

« the identifier is a arbitrary string expression describing
the element that is sought (e.g. “Integer” or “toStr*”)

To execute a search we have to extract the three parameters
from a user’s query. Let us consider the example query “Where
is method splitString called?”

The first parameter is what kind of source code element the
user is looking for. In the example query above, this would be
METHOD. Some other possible values for this parameter are
TYPE, FIELD or CONSTRUCTOR.

The second parameter is the context in which the source
code element should be sought. For example, if the user is
looking for methods that return an Integer value, just looking
for all method signatures containing Integer may yield a lot
of incorrect results. By using the context parameter RETURN,
the search results are limited to methods the return value is
of type “Integer”. The context parameter values depend on
the element kinds. For instance, THROWN is a context for
EXCEPTION and FIELD_ACCESS is a context for FIELD.
However, there are some generic context like DECLARATION,
corresponding to where a source code element is declared (as
opposed to used). In the example query above, the context is
REFERENCE, meaning method calls when one searches for
methods.

The third parameter identifies what the user is looking
for. In the query given above, this is splitString. The

expression may contain wildcard characters to express a family
of identifiers. The supported wildcards are * for any number of
characters and ? for single characters. Hence, split « refers
to all methods starting with split.

Eventually, for the example query above, the correspond-
ing API call would be search (METHOD, REFERENCE,
"splitString").

ITII. FROM NATURAL LANGUAGE TO FORMALIZED
QUERIES

Figure 1 outlines the different phases of our approach to
querying source code with natural language. In our approach,
when the developer has a development task that requires
examining existing source code elements, (s)he expresses a
query in natural language. A translator analyzes the query and
translates it to a formalized query for a code query engine.
The results given by the code query engine are displayed
in the development environment, and the developer starts to
examine the code elements found or refines/reformulates his
query if (s)he has not found what (s)he is looking for. It is
also important to give the developer a way to inspect the
result of the translation process to help him/her assess that
the translation was correct.

Our approach to understanding natural language queries
over source code consists of 7 sequential steps that are
presented below. The full process is summarized figure 2,
along with a concrete example.

A. Cleaning and Tokenizing the Query

The first step is to tokenize the query. Tokenization means
that the string representing the query is split into tokens which
each represent a single word of the query. We use a tokenizing
function based on a regular expression that splits the query
string at one or more white spaces.

For example, the query "Which methods return type integer"
yields the following tokens: Which, methods, return, type and
integer. The order of the tokens is kept, because it is an
important piece of information that we use in the next steps
(see section III-E).

B. Part-of-Speech Tagging of the Query

A Part-of-Speech (POS) Tagger is an algorithm that as-
signs a grammatical category (e.g. noun or verb) to ev-
ery word of a sentence. For instance, the query "Where
are instances of type Integer created" could be POS-
tagged as follows: "Where(question word), are(be), in-
stances(noun), of{preposition), type(noun), Integer(noun), cre-
ated(verb)". POS-tagging the query enables us to enrich the

query with grammatical information that we will use later for
inferring the code query engine parameters.

In the following, the ordered list of important grammatical
types (using only nouns and verbs) is called the grammatical
form of the query. For instance, noun -> noun -> noun ->
verb is the grammatical form of the previous query.

C. Selecting Code Search API Parameter Candidates

A code query engine can have different parameters. Some
parameters must take a value in a finite range of possible
values, some are free. Our prototype uses the Eclipse JDT code
query engine. The core of the JDT query engine consists of an
API call taking three arguments as parameter: the element kind
is the kind of source code element being sought (e.g. type or
method); the code context is the programming context in which
we are interested in. For instance, if the kind is “method”, the
context may be “method call” or “method declaration”; the
identifier is a arbitrary string expression describing the element
that is sought (e.g. “Integer” or “toStr*”).

Let us assume the user entered the query "Which methods
take a parameter of type Integer". We can deduce that the
user is searching either a method or a type, hence they are two
candidate values for the code search parameter “element kind”:
METHOD or TYPE. For identifiers (which are free text), any
word of the query would be a valid parameter value, hence the
8 words of the query are possible candidates. We describe in
this section how we use the query words, the word order and
the POS-tagging information to select those candidate values.

Our selection mechanism is inspired by naive bayes classifi-
cation [10]. We first tag a set of training data to indicate which
part of the query corresponds to which search API parameter,
then we compute the probability of the relationship between
each piece of query information and a search parameter value.

1) Training data: The training data consists of queries
which were manually annotated with information about
which tokens correspond to which search API parameter.
For example, a single line from the training data is: "What
methods return:context type:kind_of_sourcecode_element In-
teger:expression". It contains three annotations consist-
ing of a pair “word:tag”: return:context declares the
first verb (“return”) to be the context parameter value,
type:kind_of _sourcecode_element declares the second noun
(“type”) to be the kind of source code element being sought
and Integer:expression declares the third noun (“Integer”) to
be the expression parameter value for this query.

Training data can also use different query words to refer to
the same information. For instance, in "where are this:context
reference:context calls to playit:expression" the first deter-
miner (“this”) and the first noun (“reference”) together form
a tuple indicating the context parameter, we call this a fuple-
annotation. The second noun (playit) is the expression param-
eter value. Furthermore, it is not necessary for a training query
to contain values for all search API parameters. The previous
training query lacks data for the kind of source code element
parameter.

Part-of-speech Tagging:

Where _ is
(question word) (verb)

balance
(noun)

read
(verb)
Candidate selection:
(Candidates for element kind: {"is" (35%)} J

Candidates for context: {"read"}
_ Candidates for identifier: {"is" (20%), "balance" (80%)}

Translation to API values:
'd

Candidates for element kind: {}
Candidates for context: {FIELD_ACCESS}
| Candidates for identifier: {"is" (20%), "balance" (80%)}

Most likely candidate election:
(Candidates for element kind: {} A

Candidates for context: {FIELD_ACCESS}
L Candidates for identifier: {"balance"}

Missing Parameter Inference:
s A

Candidates for element kind: {FIELD}
Candidates for context: {FIELD_ACCESS}
Candidates for identifier: {"balance"}

\ /

Search API Call: search(FIELD, FIELD_ACCESS, "balance")

Fig. 2. Example Sequence of the Transformation of a Natural Language
Query to an API Call with Valid Values.

Annotated queries are defined based on a combination of
the implementor’s expertise and real-user data collection. For
replication, ours are published on [11]. According to our
experience, the number of required training data to obtain a
good performance is around 250 queries. The reason for this
relatively small number is that while the query space is infinite,
the space of different grammatical query forms (as given by
the POS tagger using only nouns and verbs) is finite, and
most queries can be described by a few dozens of grammatical
forms.

2) Candidate Selection: When a developer enters a code
search query, we first compute its grammatical form. Then, we
search the training data for annotated queries whose grammat-
ical form (consisting only of nouns and verbs. see III-B) corre-
sponds to the query form. In other terms, we search the training
data for queries that match the grammatical form of the POS-
tagged query. If one is found, we add to the candidate list for
the respective parameter the words from the query matching
the POS-tags and positions of the accordingly annotated words
from the training data. For instance, let us assume that a
training query is "Where is field::kind_of _sourcecode_element
balance read?". It contains one tuple of annotation saying that
the first noun (field) corresponds to the element kind. Let’s
now consider the query "Where is class Widget used?". Since
it has the same grammatical form, we add the noun “class” to
the candidate list for the element kind.

To decide which candidate to use, we compute a probability
value for each word of the query which describes how likely
this word is a candidate for the search API parameter. Note
that although we use only nouns and verbs to match the
query against the training data, any word of the query can
be a candidate for a parameter, regardless of its POS-tag, for

example the second adjective.

For instance, in the query "Which methods take a parameter
of type Integer", the grammatical form is noun -> verb ->
noun -> noun -> noun. Let’s assume that the training data
contains 10 queries with the same grammatical form. In 8 of
them, the first noun refers to the code element kind. Hence, the
probability of “methods” to indicate the code element kind is
80% (8/10). However, in two queries, the third noun represents
the code element kind. In this case, the resulting candidate list
for the sought element kind is: { method (80%), type (20%)}.
To sum up, for a given query we compute NxM probabilities
where N is the number of words of the query and M is the
number of parameters required by the underlying code search
API (e.g. M=3 for the JDT code query engine). Probabilities
are often equal to zero because many combinations have
no corresponding annotations in the training queries with a
matching grammatical form.

Note that if an annotated query contains tuple-annotations,
e.g. "where are this:context reference:context calls to
playit:expression" which contains twice the annotation “con-
text”, then a tuple a containing the corresponding values is
added to the candidate list (and not two separate words). In
the previous example, the tuple <first determiner, first noun>
(with the real values from the query) is added to the context
candidate list.

The important part is that the candidates do not contain real
words like for example type or method but only references to
specific POS tags like for example the first noun.

3) Performance Consideration: This candidate selection
mechanism has different key characteristics that allow optimiz-
ing the implementation: 1) computing the grammatical form
of each training data can be done offline in order to save POS-
tagging time. 2) for a given grammatical form, the probabilities
can also be computed offline and stored. Doing so, when a
users enters a query, the system only has to find the matching
grammatical form. 3) comparing two grammatical forms is
comparing two ordered lists, this can be done in better than
O(n) where n is the number of training queries.

D. Translating to Concrete API Candidates

We now have a set of candidate words for each search API
parameter. Some API parameters are free text, which means
that we can pass the user query word as is. However, most
search API parameters must fit in a fixed enumeration. For
instance, the kind of sought source code elements could be
either {METHOD, CLASS, PACKAGE, ...}. However, the
user may use different syntactical forms (e.g. plural) and
synonyms. (e.g. “function” for “method”).

In order to give the user the freedom to enter queries in
a number of different syntactical styles (e.g. past or present),
we first stem all candidate words (except for the identifier
candidate list, because the corresponding API parameter is
free text). Stemming consists of transforming words to their
morphological root form. For instance, the words fype and
types are both stemmed into fype and the words call, calling,
called are stemmed into call.

For each search API parameter which is not free text (e.g.
the element kind that is sought), we define a mapping from a
list of words in stemmed form to API parameter values. For
example, if the user enters methods (stemmed into “method”)
in the query and this word is a candidate for the source code
element kind, the mapping translates it to the valid parameter
value METHOD. Note that multiple words may be mapped to
the same parameter value in order to allow the user to refer
to the same programming concept with multiple words (for
example class and type). The mapping data is defined once at
implementation time, with the keys being stemmed words and
the values being the corresponding search parameter values.

The target domain (the values of the mapping data) depends
on the search API used. For instance, the JDT Code Search
API contains two enumeration parameters: the kind of source
code element and the context. Since it has 11 possible kind
of code element parameter values and 27 possible context
parameter values, the target domain contains at most 11 + 27
entries. The input (the keys) domain is made up of words that
are commonly used to refer to the respective programming
language concept (e.g. class, method, read, super, etc.). In
our prototype, the mapping for element kinds contains 12
entries, the mapping for the context contains 46 entries. For
replication, our mapping data is published publicly available
[11].

Some valid API values must sometimes be deduced by a
combination of words. For example if the query contains the
substring "super reference", this hints that we are looking
for method calls to the parent classes (i.e. calls to super).
We add a tuple of words to candidate lists when annotated
queries contains several annotations for the same parameter.
Those tuples of words may have a corresponding entry in
the mapping data that we call a multi-key. As for simple
keys, multi-keys are mapped to a single search API parameter
value. In the previous example, there is a mapping from the
tuple < super,reference > to the search API parameter
“SUPER_REFERENCE_METHOD_CALL”.

E. Electing the Most Likely Search API Parameters

To elect the most likely value for each for each search API
parameter, we define several rules.

Rule #1: If a candidate word has no translation to a valid
parameter value in the mapping, it is removed. For example,
if Integer is a candidate for the kind of source code element
parameter, but the mapping does not contain a translation
to any kind of source code element parameter value, the
candidate word Integer is removed from the candidate list for
sought element kinds.

Rule #2: Sometimes candidate words are part of single
key and multi-key translations. Take for example the query
"Where are parameter bounds of type Integer". There are
two candidates for the context parameter value: parameter
indicating the API parameter value METHOD_PARAMETER
and the multi-key candidate parameter bounds indicating the
API parameter value PARAMETER_BOUND (for example
Array<I extends Integer>), which overlap in the query. In

‘Your query: where is type integer referenced
Query understond,
I found: name: inkeger ; what: TVPE ; conkext: REFEREMCES

] Console | @ Matural Language Search View 53 = O || Ju unit (Ql Error Lag (-,);' Search &3 = d
-] eF | =n 3 2 o
|where is bype inteqger referenced Searchl @ ﬁ} | ¥ 5& | I — | El EEU. J| %8l | i 3 a’
'inkeger’ - 60 references in
Al =D nLsPSearchuiew]

E:'E nlp - src - Matural Language Search
: Eﬁ NLJavaSearch
b @ 8 mapping (2 matches) LI

- B execukeMavaSearch(MLavaSearch2, Arraylist<Integer =) (2 matches) |

Fig. 3. Screenshot of our Prototype Implementation in the Eclipse IDE. The graphical interface contains a query field, a feedback area, and a search result

area.

these cases, we always choose the multi-key candidate with
the highest number of words, because it is the most specific.

Rule #3 If several candidates remain after rule #1 and #2,
the chosen API parameter value is the one with the highest
probability computed from the training queries (see III-C2). If
no value could be found, the value is set to unknown.

Rule #4: We always start by electing the context parameter
value, then we elect the code element kind, and then the iden-
tifier. Starting with the context parameter has two rationales.
First, according to our experience, this parameter is correctly
chosen with the highest reliability. Second, it enables us to
infer the correct element kind is many cases, as shown below
in III-E1.

Rule #5: If a candidate has been chosen as the final
parameter value, all other candidates with the same token are
removed from the other candidate lists. For example, let us
assume that the element kind candidate list consists of the
first noun, and that the context candidate list contains the first
noun and the second verb. If the first noun is elected as the
value for the context parameter, the first noun is removed from
all other candidate lists.

Rule #6: The last parameter value to choose is the identifier
(a free string). We first check whether a word is indicated
as such with double quotes in the input query (e.g. Where
is declared metho “printToConsole“?). If this is the case, the
identifier parameter is set to this quoted word. If this is not the
case but there is exactly one word in the query which contains
wildcard characters (* or ?), this word is chosen. Otherwise
the word with the highest probability to be correct is chosen
(see rule #3).

1) Inferring Missing Values: At this point, for each search
API parameter, we have either a unique valid value or noth-
ing. To be able to process queries that provide incomplete
information, we also store the information of the dependency
between search API parameter values. For instance, the context
parameter often implies one specific kind of source code
element to be sought. Take for example the following query:
“Where is number read”. This query does not contain any
explicit information on the kind of source code element that
is sought (e.g. type, method, etc.). However, the word “read”
indicates the context parameter value READ_ACCESS. With
this information, we are able draw the conclusion that the
only possible kind of source code element parameter value
is FIELD, because all other code elements, like for example
package or method, can not be read.

Inference rule #2: If we have no annotated training query
corresponding to the query’s grammatical form, the following
fallback strategy is applied. For the context and kind of source
code element parameters, we search the query for words which
are contained in the key set of the mapping (in stemmed
form). If we find one, its translation is used as the respective
parameter value. If more than one word of the query for one
parameter is contained in the respective key set, the first one
is taken. If no word could be found, the parameter value is set
to unknown.

2) Performing the Code Search: Figure 2 sums up our
algorithm to translate a natural language query into a set
of valid code query engine parameter values. The final step
eventually consists of using the target search API to carry out
the search request with the parameter values determined by
the presented strategy. The search results are then displayed
to the developer. Our prototype is integrated into the Eclipse
IDE as a plug-in. A screenshot is shown in figure 3.

IV. IMPLEMENTATION

We implemented a prototype of our approach for searching
Java source code. It is implemented using the Eclipse JDT
Search API, which can be used to carry out all kinds of search
tasks on java source code. Our prototype is integrated into the
Eclipse IDE as a plug-in. A screenshot is shown in figure 3.

A. Graphical User Interface

The user-interface consists of a query field (top left hand
side of figure 3), a feedback area (bottom left hand side of
figure 3) and a search result area (right hand side of figure 3).
The search result area is a standard Eclipse component and
the user can directly jump to the respective code by clicking
on the search results.

The feedback area tells the user whether the system has
understood the query. For example, if the algorithm could not
find a value for the kind of code element parameter, it will
show the following error message to the user: "Sorry, I didn’t
completely understand your question. Please also specify what
you are looking for. (eg type, method, etc)".

For each query, the feedback area also shows how the tool
interpreted the developer’s query by showing the values for
each of the code query parameters, or unknown in case it did
not find a value. This is useful to trust the system, as well as
to get hints on how to reformulate the query when it is not
understood.

B. Query Preparation

We use the LingPipe [12] natural language processing
library for POS tagging. For stemming words of the query to
match them with mapping keys we use the porter stemming
algorithm [13].

C. Default Parameters

The JDT Search API needs four parameters to carry out a
search. These are search string (corresponds to the identifier),
search for (corresponds to the kind of source code element)
and limit to (corresponds to context). The fourth parameter
describes where to search, for example, the current project or
the whole workspace. It also describes which kinds of sources
to include, for example java source files, jar files or the java
runtime environment (JRE) libraries. Our prototype defaults
this parameter to the current project with only the java source
files included.

V. EVALUATION

A system to query source code with natural language is use-
ful if it correctly understands a wide range of user queries. To
evaluate this, we have created a suite of automated test queries
that check the ability of our prototype to translate common
queries into correct parameter values of the underlying code
query engine (see V-A). However, the major threat to validity
of this test suite is that it has been done by ourselves. Even
if we took special care to envision all possible ways to ask
queries, we surely have missed a lot of different query forms
since we can not imagine all possible ways of asking queries.

Consequently, we set up an experiment to collect queries
from developers. This experiment enables us to collect queries
from people with different programming background and level,
native language, and personal ways of expressing queries. The
following presents first the automated test queries and then the
experiment and its results.

A. Automated Tests

For each of the 37 kinds of query support by the JDT query
engine in our prototype, we manually defined 201 test queries
(between 3 and 9 unit test cases per kind of query). Those
tests were used to design the system as well as to check for
regression. They represent different ways to formulate a query.
They also include versions of queries using wildcards and with
and without marked search strings (string expressions). The
unit tests check whether the query is translated to the correct
search API parameter values. For instance, the following test
queries are used to test the translation algorithm for the
following parameter value combination: fype as element kind,
catch clauses as context and NullPointerException as identifier.

o What catches exceptions of type "NullPointerException"?
o What catches exceptions of type NullPointerException?
o Where are NullPointerException catched?

o Where is a NullPointerException catched?

o Where are catch clauses for NullPointerException?

o What catches NullPointerException?

e Where are NullPointer* catched?

Note that the last test query checks whether the identifier
equals NullPointer* because the wildcard resolution is done
by the search API and not the translation algorithm.

The test queries are complete in the sense that they contain
all the necessary information to translate them to valid API
parameters. Furthermore, all grammatical forms are already in
the annotated training data. Note that the fact that test queries
are also contained in the training data does not influence the
results of the unit test, since the actual words of the training
queries are irrelevant and only the syntactical structure is used
in the translation process.

We designed and trained our prototype so that it understands
100% of the test queries. For replication, the test suite is
publicly available [11].

B. Experiment

The goal of the experiment is to evaluate whether our
prototype systems understands queries from real users working
on a unknown Java project. Interesting metrics are how many
queries are understood or how long it takes the subjects to
find the information they are looking for. The experiment also
enables us to find out the main weaknesses of the current
approach and prototype. The experiment is not a controlled
experiment (e.g. comparing subjects with the natural language
search tool and subjects with the search widget of Eclipse).
The main reason comes from the difficulty of recruiting sub-
jects: on the one hand we would like to collect the maximum
number of queries, on the other hand, meaningful statistical
tests for controlled experiments require a large number of
subjects’.

1) Experiment Tasks: The subject is given an open devel-
opment environment (Eclipse v3.6) and 13 tasks. The tasks
consists of working on a Java project implementing the game
“Space invaders”2. The source code of the Java project consists
of 13 classes, and a total of about 2400 lines of code®. The
project is unknown to the subject, and they do not get any
information about it. The tasks that the subject must complete
are:

1) Method init() is called in a method where it doesn’t
make any sense. Remove the method call.

2) Field channelNum is wrongly set to 5. Fix this by setting
itto 1.

3) One of the types in the project extends type BaseClass.
This isn’t necessary anymore since BaseClass will be
removed from the project. Change it accordingly.

4) All types that implement interface IRenderable should
also implement ICollidable. Check the code and change
it in case it has been forgotten somewhere.

5) Remove unused method playlt().

6) Add a System.out.println("Instance created") right after
an instance of SoundManager is created.

le.g. 52 subjects (26 subjects for each group) for an independent sample
t-test at 95%/5% with estimated p1 = 15min, u2 = 10min, and o = 5min

2which is included as an example in the Lightweight Java Game Library,
seehttp://www.lwjgl.org/

3For replication, the project is available at [11]

7) Add a System.out.println("Possible source of NullPoint-
erException"); to every method that throws a NullPoint-
erException.

8) If exceptions of type NullPointerException are catched,
a text message stating this fact should be printed to the
console.

9) Print the value of field lastld right after it is read.

10) The import of class DropTarget isn’t necessary. Remove
1t.

Rename field numbe to number. numbe is a typo.
There is one method in the project that takes an Integer
argument. Print the value of the argument by adding a
System.out.println to the method for debugging reasons.
Remove all Deprecated annotations. It has been decided
that the annotated code will be used in future releases.

11)
12)

13)

2) Development Environment: The subjects can only use
the Eclipse IDE to complete the tasks. The only IDE feature
they are allowed to use is the natural language search tool. In
particular, to browse and find code, they are not allowed to
use the “package explorer view” and the “outline view”, the
“open type widget”, the text and java search widgets. Indeed,
the goal of the experiment is to find out how well our approach
is sufficient for finding code elements.

The code snippets to change are distributed over all classes
on the project to avoid the situation where the subject already
knows where to find the code for a task because he accidentally
found it while working on an earlier task. The names of the
objects and methods mentioned in the tasks give no hint of
where the sought code is.

3) Experiment Setup: The experiment takes about 30 min-
utes per subject, and consists of three phases. First, the
experimenter presents the experiment and the prototype to the
subject. Then, the subject works on the given tasks for about
15 to 20 minutes. The experiments concludes with an oral and
recorded interview structured around 4 topics (see V-BS).

Subjects are given a 5 minutes oral presentation on how
to enter queries, what information should be included in the
queries, where the results are shown and how to use them,
what kind of error messages the tool displays, what to do if
the tool does not show any result or wrong result and any
special features like the possibility (not required) of marking
search strings with double quotes to help the system. Note that
the subject does not know the final goal of the experiment
(collecting queries) so as not to interfere with the way of
expressing queries. Also, since our prototype is novel and
not publicly available, we are sure that the subjects have no
experience with the tool.

Any user interaction with the natural language search tool
is logged. The logging information includes the query entered
by the user, the response of the tool (like for example Query
understood), the translation information of the tool (the exact
values it found for the three parameters of the JDT query
engine) and a time stamp for each entered query.

4) Pre-Experiment and Final Experiment: We run two
versions of the experiment: a pre-experiment and a final

experiment. The pre-experiment has three goals. First, we
wanted to have a first impression on how the prototype
performs. Second, we aimed to collect data to improve the
prototype (training data, mapping data). Third, it was also a
way to get feedback on the experiment itself and to validate
the experimental protocol. Two months before the main ex-
periment described here, the pre-experiment took place with
6 subjects, not compensated. It fulfilled our expectations and
the setup remained the same for the main experiment, except
minor changes to the tasks like field name changes and small
reformulations.

The main experiment was carried out with an enhanced
version of the prototype based on the collected data and ob-
servations during the pre-experiment. For instance, we added
data to the training queries and mapping information. We also
refined parts of our approach and algorithms.

We recruited 14 people for the main experiment, all com-
pensated. 11 of them were students and 3 of them were
graduated computer scientists. We recruited 3 by using internet
forums or mail invitations, the rest were directly recruited with
on-place contact at the university where the experiment was
held.

All numbers and analyses given in the following sections
are derived from the main experiment (14 subjects), since
it uses the latest and best version of the prototype. The
most important data, the number of understood and correctly
understood queries for the pre-experiment is given in table III.

5) Interview: The last 5 to 10 minutes of the experiment
are used to interview the subject about his/her background and
the natural language search tool. This interview was only done
with the subjects in the main experiment. First, the subjects
were asked how they would assess their Java programming
skills on a scale from 1 to 5 (with 1 being beginner and 5
being expert) and their native language. This is used to classify
the experiment results.

The second set of questions is about the qualitative eval-
uation of our prototype. The subjects were asked about their
general impression of the prototype, what they liked about the
idea and whether they would use the tool in their daily work.
We also asked questions about the standard Java search widget
offered by Eclipse (whether they know it and like it). Also,
we asked whether they would prefer the default Eclipse search
widget or the natural language search tool if given the choice
between the two. The reason for this is that the widget uses the
same API as our prototype implementation (i.e. they have the
same expressive power), but the look’n’feel of using it is very
much different (Eclipse search uses a standard graphical user
interface using radio buttons and text fields). The qualitative
analysis derived from these interviews is given in section
V-BO.

6) Quantitative Results: With the data acquired through
logging, we derived a number of statistics to analyze how
well our approach works under our experimental conditions.

The most important ones are the number of understood
queries and the number of correctly understood queries. These
have to be separated, because the fact that the tool understood

Characteristics Value Input Queries # Queries % rec % correct
Number of programming tasks 13 Test suites 201 201 188 (94%)
Number of subjects 14 (100%)
Total completion time - Average 9 min Pre-experiment 146 114 (18%) | 91 (62%)
Total completion time - 90% percentile [6,10] min Final experiment 276 251 O1%) | 228 (83%)
- - - - TABLE III
Total completion time - Min 6 min PERCENTAGE OF UNDERSTOOD AND CORRECTLY UNDERSTOOD QUERIES
Total completion time - Max 16 min FOR THE TEST SUITE, THE PRE-EXPERIMENT AND THE FINAL
Task completion time - Average 41.5 sec EXPERIMENT
Task completion time - 90% percentile [10,60]
seC

iast Compiegon t?me - xm ;O Sec. to phrase their queries was an average of 40% lower than

ask completion time - Efx -5 min the time it took the other subjects (chinese, vietnamese and
Average # of tasks solved in one query o russian). This may be caused by the lower language distance

TABLE IT
DESCRIPTIVE STATISTICS OF THE EXPERIMENT

a query only means it found a value for all three parameters,
but not necessarily the right ones. For example, if the user
enters the query "Where is method init() called" the tool might
choose method for the “search for” parameter, call for the
context parameter and where for the expression parameter,
which is wrong. The correct values would be be METHOD,
CALL, "init()". The average percentage of understood queries
was 91% (251/276). The average percentage of correctly
understood queries was 83% (228/276). However, about 91%
(229/251) of all understood queries were understood correctly.

The average number of queries the subjects needed to solve
all 13 tasks was 20. This includes queries which were not
understood and wrongly understood. It took them an average
of 17 correctly understood queries to solve the 13 tasks.

It took the subjects an average of 9 minutes to finish all
tasks or an average of about 41.5 seconds to finish one task
(reading the task, finding the correct query, checking that the
found code is correct).

In average over all subjects, 9/13 tasks were be completed
with a single query (i.e. the first query was correctly under-
stood). The four tasks that the subjects could not solve with
one query were different for all subjects. There was no task
that no user could solve with one query, nor there was a single
task that every user could solve with one query. The lowest
number of tasks a subject was able to complete with one query
was 8. Also, one subject was able to solve all 13 tasks with
13 queries only. We observed that most users had one or two
tasks for which they needed a lot of queries, up to 9 for a
single task for one subject.

The average Java proficiency score the users gave them-
selves was 3.15 out of 5 with the highest score being 4
and the lowest being 1 to 2 (counted as 1.5). Despite the
difference between the highest and the lowest score, we could
not find any patterns in the amount of understood and correctly
understood queries related to Java skills of the subjects.

In terms on native language, 9 subjects were German, 1 Chi-
nese, 2 Vietnamese and 1 Russian. We also found no relation
between query understanding ratio and native language of the
subjects. We figured that the time it took the German subjects

between english and german compared to chinese, vietnamese
and russian. We also found that the graduated subjects (3/14)
had higher average recognition rates, 94% of their queries were
understood. We assume that they are both more comfortable
with English and with Java, resulting in clearer queries.

7) Analysis: Not/wrongly Understood Queries: In the fol-
lowing, we analyze the reasons behind the 17% of queries that
were not or incorrectly understood.

The main reason is missing information. For example, if
the subject enters the query "Where is init?" the tool has no
information at all to deduce what the subject is looking for
(e.g. method or class) This problem accounted for 51% of the
queries that were not understood.

Another reason is the use of an word that is missing in
the mapping dictionary. For example, a subject working on
task #9 entered the query "Where is field lastid used", which
was not understood, even if the necessary information is
present. The reason is that the mapping dictionary does not
contain “use” (the stemmed root of used) as a key. Unknown
keywords accounted for for 35% of all queries which were
not understood. Note that since that unknown keywords can
be easily added to the prototype configuration, those queries
would be understood by simply feeding the prototype with
new mapping entries.

It also happened that the subject entered a query which con-
tains all necessary information (including known keywords),
but misspelled them. Taking again task #9 as an example, a
subject entered the query "Where is field lastid red" which
was not correctly understood. The reason is that the subject
misspelled “read” in “red” and thus no mapping entry was
found. This problem is responsible for about 15% of all
queries that were not understood. Note that sometimes a query
presented different symptoms hence the sum of percentages is
higher than 100%.

Let us now consider the queries that were incorrectly
understood. After analysis, we figured out that in the candidate
election phase (see III-C2) the candidate with the highest prob-
ability was the wrong one. This problem could be mitigated
by enriching the training data of the system (see III-C1).

8) Analysis: Correctly Understood Queries with No/Wrong
Results: Not all correctly understood queries yield search
results usable to solve a task. Some even yield no search results
at all. There are two reasons for this.

The first reason is that the subject did not enter a query
expressing what he was actually searching for. For example,
one subject entered the query "Where is method Nullpointerex-
ception" for task #7, so the tool obviously retrieved unwanted
information. This accounted for about 75% of all correctly
understood queries which did not yield the result the subject
was looking for. We assume that this is due to subjects being
not completely proficient with the vocabulary and concepts of
the programming language.

The second reason is that the subject made a spelling error.
For example, one subject entered the query "Where is field
lasid read?" for task "Print the value of field lastld right after
it is read." (task #9). The query was correctly translated to the
code query engine, but the search string lasid does not yield
any search results because there is no field with this name. This
accounted for about 25% of all correctly understood queries
which did not yield the result the subject was looking for.

Interestingly, we noticed that the subjects who did not find
an answer with the first query usually took more than 2 tries
to do so. We explain this phenomenon as follows. The main
reason is that many subjects seemed to ignore error messages
(according to our visual observations during the experiment).
For example, a subject entered the query "Where is parse
referenced" and the tool complained about missing information
on the element kind. The tool also displayed a hint (“Are
you looking for type or method?”). However, the subject (and
other subjects in similar situations), ignored the message and
changed something else in the query. For example instead of
just adding type or method to the query, they for example
changed it to "Where is parse defined", and started another
search. Also, it happened that the subjects forget what they
had already entered and repeated an incorrect query that they
already asked.

9) Qualitative Analysis: In this section, we present the
results derived from the second part of the interview as
described in section V-BS5.

The first observation we made was that all subjects had an
overall positive impression of the tool. No one said he did not
like the idea of code search with natural language queries. On
the question what they liked, the most important point was that
7/14 subjects thought the tool was flexible, both in the number
of different queries it could understand as well as the number
of different ways the respective queries could be phrased.

On the question what they did not like, 3/14 subjects pointed
out that they thought it was hard to think of a query the
tool would understand and 4/14 said the tool needs to be
more flexible, meaning it needs to be able to understand more
different queries. 5/14 subjects said the the user interface of the
tool needs to be improved, for example by making the input
line accessible through a keyboard shortcut and improving the
presentation of the feedback information. 4 subjects did not
have any negative points.

On the question whether they would use the tool in their
daily programming work, the results were split. 8 subjects
said that they would use the tool in big projects with lots
of code, projects which are unknown to them or for more

Experiment subject opinion %

I generally like the idea 14/14
I think it is flexible 7/14
I would use NLPSearch for my programming duties (for | 4/14
small projects)

I would use NLPSearch for my programming duties (for | 8/14
big projects)

I use the Eclipse Search Widget 5/14
I prefer NLPSearch over the Eclipse Search Widget 4/5
I think it should understand more forms of queries, it | 4/14
should be more flexible

I had to think to find correct queries, it was not intuitive | 3/14
I think the UI could be improved 5/14

TABLE IV
MAIN POINTS GATHERED FROM SUBJECT INTERVIEWS

complex queries like for example finding all catches of certain
exceptions. 4 subjects said they would also use the tool for
smaller projects or simpler tasks like finding references to a
type or a method declaration. The reason was that they think
that writing a natural language query for this is takes too
long and that for simple queries they feel good with existing
IDE tools they know and use (mainly the outline view or find
references shortcut).

We questioned the subjects about the standard Eclipse Java
search widget, which offers the same functionality as the
natural language search tool but with a standard graphical user-
interface. 9/14 of the subjects said that they did not know it. Of
the 5 subjects that knew the widget, 3 said they use it regularly.
We also asked whether they would prefer the search widget
that Eclipse offers or the natural language search tool. 4/5
subjects familiar with Eclipse Search said they would prefer
the natural language interface, because they think it is more
intuitive and easy to use.

Table IV gives an overview of these results. Overall, 7/14
subjects think that the system is not flexible/intuitive enough.
This percentage has to be put in perspective together with the
percentage of correctly understood queries (83%). This shows
that this lack of flexibility is not an incapacity to understand
queries. Those 7 subjects could not express queries in their
most natural and intuitive way, they had to perform a mental
translation before expressing a query. However, 3 subjects
complaining about flexibility would still use our tool for big
projects or prefer it over the Eclipse search widget. This shows
that that our approach reduces the translation gap between the
mental state and the actual interaction with the code query
engine.

C. Performance

We also measured the performance of the prototype im-
plementation to see whether it is fast enough to be used in
a real work environment, where it is crucial the the search
results come up as fast as possible. We have measured the
translation time for all queries of the test suite. The result us
that translating a natural language query to concrete search
API parameters takes between 1 and 2 milliseconds. Also,

during the experiment, no user complained about the response
time.

VI. RELATED WORK

A large body of work has been done on developing systems
and frameworks to query source code. There are several
approaches that use specialized query languages to retrieve in-
formation about source code (e.g., [4], [14]. These approaches
require learning the syntax of the query language before being
able to work with the tools, while with a natural language
interface there is almost no learning phase.

Queries are not only over source code. For instance, de
Alwis and Murphy [15] described different software mainte-
nance queries. Hill et al. [16] uses NLP based on program
identifiers to improve contextual code search (which pieces of
code are about this topic?). Ko et al. [17] presents a system
for querying program output, and not source code itself. Wang
et al.’s approach [18] detects duplicate bug reports using NLP.

There is also an interesting research thread on natural
language interfaces for databases. A excellent overview of
this field is given by Androutsopoulos et al. [19], an example
system is Query Builder [20]. The main difference with our
work is that we consider source code as “data”. However,
if one feeds a database having a code oriented data model
with source code, the approaches become comparable. This
requires a heavyweight infrastructure and poses a number of
performance issues. On the contrary, our approach translates
queries to an off-the-shelf code search component (the Eclipse
JDT query engine), that is optimized, mature and used in large-
scale projects.

The notion of “conceptual queries” for software develop-
ment has been discussed by de Alwis and Murphy [15].
The system they describe supports a fixed number (36) of
queries. On the contrary, our system enables a wide range
of queries (supported by the underlying code query engine),
and especially a large number of variations in the manner to
formulate queries.

Wiirsch et al. [7] described a powerful system that is similar
to ours. Our technical contribution describes a completely
different algorithm using incomparable techniques. While they
use tools from ontology engineering, we use natural-language
processing techniques. Our user study also contributes with
first insights on how developers react on using such systems.
But apart from these technical differences, our approach is
novel in the sense that it supports completely free queries,
while theirs is based on guided input, i.e. the developers select
a query into an adaptive list of possible queries. This new
degree of freedom creates a whole new challenge, and our
paper aims at contributing to this new research direction.

VII. CONCLUSION

We presented our approach for querying source code with
natural language queries. The approach translates natural lan-
guage queries to concrete parameters of a third party code

query engine. Our approach uses a combination of natural lan-
guage processing techniques (Part-Of-Speech tagging, stem-
ming), as well as a custom algorithm that extracts statistical
data from manually annotated training queries. Our prototype
implementation uses as underlying code query engine an
unmodified off-the-shelf version of the Eclipse JDT code query
engine. We evaluated our approach using a user-study with
a total of 14 subjects. Our prototype was able to correctly
understand 83% of queries: 91% of 276 queries which have
been entered by subjects were recognized and 91% of them
correctly. Future work consists of conducting a controlled
experiment to compare our approach against related systems
on the same set of tasks.

Future work is guided by the feedback collected during
the user-study. First, we will integrate a system to handle
typos, which severely hinder the performance of the whole
system. Second, it has been recognized that the user-interface
can be much improved, in terms of interaction (keyboard
only must be supported too) and in terms of feedback (to
provide more guidance when the systems fails to correctly
understand a query). Third, a query completion system would
be appreciated, especially since users are used to interact with
code completion systems and with search engine suggestions.
Finally, we plan to adapt the approach to more powerful
query engines, in order to support more specific queries, such
as “Where are synchronized blocks?”. This will also be the
occasion to have a better view on the overall genericity of our
translation scheme.

REFERENCES

[1] G. C. M. J.Silito and K. D. Volder, “Questions programmers ask during
software evolution tasks,” in Proceedings ACM SIGSOFT Symposium
Foundations of Software Engineering, pp. 23-34, 2006.

[2] S. Paul and A. Prakash, “Querying source code using an algebraic query
language,” in Proceedings of the International Conference on Software
Maintenance, pp. 127-136, IEEE, 1996.

[3] S. Paul and A. Prakash, “A framework for source code search using
program patterns,” IEEE Transactions on Software Engineering, vol. 20,
pp. 463475, 1994.

[4] M. V. E. Hajiyev and O. de Moor, “Codequest: Scalable source code
queries with datalog,” in Proceedings of the European Conference on
Object-Oriented Programming, pp. 2-27, 2006.

[5] C. Lopes, P. Dourish, D. Lorenz, and K. Lieberherr, “Beyond aop:
toward naturalistic programming,” ACM SIGPLAN Notices, vol. 38,
no. 12, pp. 3443, 2003.

[6] R. Knoll and M. Mezini, “Pegasus: first steps toward a naturalistic
programming language,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, pp. 542-559, ACM, 2006.

[71 G. R. M. Wiirsch, G. Ghezzi and H. C. Gall, “Supporting developers
with natural language queries,” in Proceedings of the International
Conference on Software Engineering, pp. 165-174, 2010.

[8] Eclipse Foundation, “Java development tools (JDT).” http://www.eclipse.
org/jdt/, 2011. Accessed March 1, 2011].

[9] M. Kimmig, M. Monperrus, and M. Mezini, “Querying Source Code

with Natural Language,” in Proceedings of the 26th IEEE/ACM Inter-

national Conference On Automated Software Engineering, pp. 376-379,

2011.

C. M. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.

M. Kimmig, M. Monperrus, and M. Mezini, “Replication data.” http:

//www.monperrus.net/martin/nlsearch, 2011. Accessed December 2014.

Alias-i, “Lingpipe 4.0.1.” http://alias-i.com/lingpipe, 2008. Accessed

March 1, 2011.

[10]
(11]

(12]

[13]

[14]

[15]

[16]

(17]

M. Porter, “The porter stemming algorithm.” http://tartarus.org/~martin/
PorterStemmer/, 2008. Accessed March 1,2011.

D. Janzen and K. de Volder, “Navigating and querying code without
getting lost,” in Proceedings of the International Conference on Aspect-
oriented Software Development, pp. 178-187, 2003.

B. de Alwis and G. C. Murphy, “Answering conceptual queries with
ferret,” in Proceedings of the International Conference on Software
Engineering, pp. 21-30, 2008.

E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the International Conference on Software Engineering,
2009.

A.J. Ko and B. A. Myers, “Debugging reinvented: asking and answering

(18]

[19]

[20]

why and why not questions about program behavior,” in Proceedings of
the International Conference on Software Engineering, 2008.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution in-
formation,” in Proceedings of the International Conference on Software
Engineering, 2008.

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language
interfaces to databases - an introduction,” in Natural Language Engi-
neering, pp. 29-81, 1995.

T. O. J. Little, M. de Ga and R. Alhajj, “Query builder: A natural lan-
guage interface for structured databases,” in Computer and Information
Sciences - ISCIS 2004, Lecture Notes in Computer Science, pp. 470—
479, Springer Berlin / Heidelberg, 2004.

