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Abstract

We de�ne feasible, posterior individually rational solutions for two-
person Bayesian games with a single informed player. Such a solution
can be achieved by direct signalling from the informed player and
requires approval of both players after the signal has been sent. With-
out further assumptions on the Bayesian game, a solution does not
necessarily exist. We show that, if the uninformed player has a �uni-
form punishment strategy�against the informed one, the existence of
a solution follows from the existence of Nash equilibrium in in�nitely
repeated games with lack of information on one side. We consider the
extension of the result when both players have private information.
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1 Introduction

The classical folk theorem states that the set of Nash equilibrium payo¤s of
an undiscounted in�nitely repeated game with complete information coin-
cides with the set of feasible and individually rational payo¤s of the one-shot
game. As emphasized in Myerson (1991), Kalai et al. (2010) and Tennen-
holtz (2004), the latter set describes meaningful solutions for one-shot games
with commitment, namely, cooperative solutions of the one-shot game. In
this paper, we investigate the possible relationship between noncooperative
solutions of the in�nitely repeated game and cooperative solutions of the
one-shot game when information is incomplete.
We mostly consider a two-person Bayesian game with a single informed

player. In such a model, feasibility and individual rationality can take various
forms. We introduce feasible, posterior individually rational solutions, which
can be achieved by direct signalling from the informed player (i.e., by cheap
talk, without the help of a mediator) and are approved by both players after
the informed player has sent his signal (i.e., given the posterior belief of the
uninformed player). This set is smaller than the set of mediated, incentive
compatible, interim individually rational solutions of Myerson (1991), which
is always nonempty.
Without further assumptions on the Bayesian game, we show that a fea-

sible, posterior individually rational solution (which will just be referred to
as a �solution�when there is no confusion) does not necessarily exist. If the
informed player has no decision to make, the problem reduces to a sender-
receiver game and there always exists a nonrevealing solution. If the un-
informed player knows his own payo¤ (private values), then there always
exists a completely revealing solution. We propose another, more interest-
ing, assumption that guarantees the existence of a solution: the uninformed
player has a �uniform punishment strategy�(UPS) against the informed one,
namely, the uninformed player has a strategy that keeps the informed player
at his type-dependent individually rational level, whatever his type. In this
case, we show on an example that there may be only partially revealing
solutions.
The existence of a feasible, posterior individually rational solution under

UPS can be deduced from the existence of a Nash equilibrium in every two-
person undiscounted in�nitely repeated game with lack of information on
one side. This class of games was introduced by Aumann, Maschler and
Stearns (1968, 1995) who identi�ed a particular kind of Nash equilibrium,
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the joint plan equilibrium, in which there is a single phase of information
transmission from the informed player to the uninformed one. Simon et al.
(1995) established the existence of a joint plan equilibrium by making use of
sophisticated mathematical tools. Sorin (1983) �rst proved the result under
the assumption that the informed player has two possible types. In the case
of private values, the existence of a completely revealing Nash equilibrium is
straightforward, as shown by Shalev (1994) (see Forges (1992), Hart (1985),
Renault (2000), Simon (2002) and Simon et al. (2008) for further results on
nonzero sum repeated games with incomplete information).
We can interpret our result as an extension of the folk theorem to two-

person games with a single informed player: under UPS, a set of noncoopera-
tive solutions of the in�nitely repeated game (i.e., the joint plan equilibrium
payo¤s) coincides with a set of feasible, individually rational solutions of the
one-shot game (feasibility being understood without a mediator and indi-
vidual rationality being understood a posteriori). However, when the UPS
assumption does not hold, such solutions may not exist in the one-shot game,
while joint plan equilibria always exist in the in�nitely repeated one.
There is a large literature on cooperative solutions to Bayesian games and

we will not try to survey it here. The main di¤erences between the present
paper and others is that we consider situations in which

(i) the informed player(s) can only transmit information by cheap talk

(ii) both players can decline participation at the very last stage of the con-
tracting process, i.e., after information has been transmitted.

In Myerson (1991)�s approach, individual rationality is formulated at the
interim stage, i.e., before mediated information transmission, but further
properties are imposed, e.g., appropriate forms of Pareto e¢ ciency. Peters
and Celik (2011) and Peters and Szentes (2012) extend Bayesian games by
means of speci�c (noncooperative) negotiation schemes, in which the players
simultaneously exchange information and partially commit; posterior indi-
vidual rationality need not hold. A. Kalai and E. Kalai (2013) propose the
cooperative �coco�solution, which, under suitable assumptions, can be im-
plemented by direct information transmission, with participation constraints
at the ex ante or interim stage.
The paper is organized as follows: in section 2, we de�ne feasible, posterior

individually rational solutions; in section 3, we address the question of the
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existence of posterior individually rational solutions in two-person Bayesian
games and we show that UPS guarantees it by making the connection with
in�nitely repeated games; in section 4, we propose further elements of com-
parison between the one-shot game and the repeated game and we consider
the possible extension of our results to two-person Bayesian games in which
both players have private information.

2 Individually rational solutions in Bayesian
games with a single informed player

2.1 Basic framework and feasible solutions

Our basic framework is a two-person Bayesian game in which only player 1
has private (nonveri�able) information. Let K be a �nite set. A type k is
chosen in K according to p 2 �(K) at a virtual initial stage of the game and
only player 1 is informed of k.1 Unless speci�ed otherwise, we assume that
pk > 0 for every k 2 K. Player 1 and player 2 choose simultaneously an action
in �nite sets A1 and A2 respectively. If the pair of actions a 2 A = A1 � A2
is chosen, they get the respective payo¤s Uk(a) and V k(a). We refer to this
game as B(p).
We are going to de�ne a solution for B(p), which will be cooperative in the

sense that it speci�es a binding agreement between the players.2 A solution
is described by a �nite set S of signals, a signalling strategy � : K ! �(S)
for the informed player and a joint decision function � : S ! �(A), which
associates a correlated strategy �(s) = xs 2 �(A) with every signal s 2 S.
The interpretation is that after player 1 has sent the signal s, actions are
chosen in A on behalf of the players, according to the lottery xs.
The description of a solution in terms of mappings � and � incorporates

basic feasibility conditions. Meaningful feasibility also requires that the in-
formed player�s signalling strategy be incentive compatible. For every k 2 K,
let �(k) = �(� j k) be the probability distribution over S associated with the
signalling strategy �. Together with the prior probability p over K, � induces
the probability distribution (p � �)(s) =

P
k2K p

k�(s j k) over K � S. Let
1For any �nite set E, �(E) denotes the set of probability distributions over E.
2The word �solution�may look too strong and is just used for convenience. As will

become clear below, we do not make a list of all properties that a solution should satisfy
but concentrate on two of them.
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ps = (p
k
s)k2K be the posterior probability induced by p and � over K; ps is

well-de�ned as soon as (p��)(s) > 0, i.e., given our assumption that pk > 0
for every k 2 K, as soon as 9k : �(s j k) > 0. By restricting S, we can
assume that (p��)(s) > 0 for every s 2 S. We still use the notation Uk and
V k to denote the extension of the payo¤ functions to �(A).

The signalling strategy � : K ! S is incentive compatible (given �) i¤

i) 8k 2 K, 8s; s0 2 S such that �(s j k) > 0 and �(s0 j k) > 0,

Uk(xs) = U
k(xs0)

ii) 8k 2 K, 8s; s0 2 S such that �(s j k) > 0 and �(s0 j k) = 0,

Uk(xs) � Uk(xs0)

Conditions i) and ii) take into account that player 1 sends a random signal
by himself, without the help of a mediator; hence he randomizes over signals
s; s0 2 S if and only if he is indi¤erent between s and s0.
Incentive compatibility implies in particular that for all types k, all signals

s sent by type k (i.e., such that �(s j k) > 0) lead to the same payo¤. Let us
set

uk � Uk(xs) 8s 2 S such that �(s j k) > 0. (1)

The payo¤ uk is the �nal interim expected payo¤ of player 1 when his type
is k and it coincides with his posterior payo¤, given s, for every relevant s.

2.2 Individual rationality

We will require that, in addition to being feasible, a solution be acceptable,
namely, individually rational, for both parties. This means that each player
should get at least what he can guarantee to himself by playing the original
one-shot Bayesian game without cooperating. This motivates the following
de�nitions of individual rationality. For player 1, the vector payo¤ matters so
that the de�nition does not depend on the underlying probability distribution
over K.

De�nition 1 A payo¤ vector u = (uk)k2K is (interim) individually rational
for player 1 in B(�) if player 2 has a strategy in B(�) that prevents player 1
from getting more than uk when his type is k, namely

9� 2 �(A2)8k 2 K8� 2 �(A1) : Uk(�; �) � uk (2)

5



This de�nition reduces to

u � min
�2�(A2)

max
�2�(A1)

U(�; �)

in the case of complete information, namely, when j K j= 1.

In a similar way,

De�nition 2 Let q 2 �(K). A payo¤ v is individually rational for player 2
in B(q) if player 1 has a strategy in B(q) that prevents player 2 from getting
more than v, namely

9e� = (e�k)k2K 2 �(A1)K 8� 2 �(A2) :X
k

qkV k(e�k; �) � v (3)

Individual rationality can be de�ned in an equivalent but more tractable
way.3 Let, for every q 2 �(K),

f1(q) = maxe�2�(A1)K min
�2�(A2)

X
k

qkUk(e�k; �) = min
�2�(A2)

X
k

qk max
�2�(A1)

Uk(�; �)

= min
�2�(A2)

X
k

qk max
a12A1

Uk(a1; �) (4)

f1(q) is the value of the one-shot zero-sum Bayesian game �1(q) in which
player 1�s type k is chosen according to q and payo¤s are de�ned by Uk for
player 1 and �Uk for player 2.4 Of course, player 1 can make use of his
private information in �1(q). As a minimum of linear functions (of q), f1 is
concave over �(K).

Lemma 3 A payo¤ vector u = (uk)k2K is (interim) individually rational for
player 1 in B(�) if and only if

8q 2 �(K) q � u � f1(q) (5)

where f1 de�ned by (4).

3The properties detailed below are well identi�ed in Sorin (2002).
4The index 1 in f1(�) is for �one-shot�.
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Proof : We �rst observe that (2) is equivalent to

9� 2 �(A2)8q 2 �(K) :
X
k

qk'k(�) �
X
k

qkuk (6)

where 'k(�) is de�ned as 'k(�) = max�2�(A1) U
k(�; �), k 2 K.

On the other hand, from the de�nition of f1,

f1(q) = min
�2�(A2)

X
k

qk'k(�)

so that (5) is equivalent to

8q 2 �(K)9� 2 �(A2) :
X
k

qk'k(�) �
X
k

qkuk (7)

Using that 'k(�) is convex for every k, one shows that (6),(7), either by
using a separation argument (see Sorin (2002), proposition 2.7) or by using
Sion�s minmax theorem on an auxiliary game:

(7) , max
q
min
�

X
k

�
qk
�
'k(�)� uk

��
� 0

(6) , min
�
max
q

X
k

�
qk
�
'k(�)� uk

��
� 0 �

According to the new formulation (5), a vector payo¤ u is individually
rational for player 1 if the hyperplane de�ned by u, namely q � u, is above f1
over the whole simplex�(K). This property is much stronger than individual
rationality at every type. Let us denote as �k the kth extreme point of �(K)
(i.e., �kk = 1, �

`
k = 0 for ` 6= k) and let us set uk = f1(�k), namely,

uk = min
�2�(A2)

max
�2�(A1)

Uk(�; �) = max
�2�(A1)

min
�2�(A2)

Uk(�; �) (8)

A payo¤ uk is individually rational for every type k if uk � uk (i.e., assuming
complete information of type k). If u is individually rational for player 1, then
for every k 2 K, uk � uk. But the reverse is not true: the hyperplane de�ned
by the vector u = (uk)k2K might not be above f1, although uk � f1(�k) for
every k (see the example in section 3.1 below).
Let us proceed in a similar way for player 2. Let g1(q) be the value of

the one-shot5 zero-sum Bayesian game �2(q) in which player 1�s type k is

5As for the informed player, the index 1 in g1(�) is for �one-shot�.
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chosen according to q, player 1 can make use of his information and payo¤s
are de�ned by �V k for player 1 and V k for player 2, namely, for every
q 2 �(K),

g1(q) = mine�2�(A1)K max
�2�(A2)

X
k

qkV k(e�k; �) = max
�2�(A2)

X
k

qk min
�2�(A1)

V k(�; �)

= max
�2�(A2)

X
k

qk min
a12A1

V k(a1; �) (9)

As a maximum of linear functions (of q), g1 is convex over �(K). The next
result is immediate:

Lemma 4 A payo¤ v is individually rational for player 2 in B(q) i¤ v �
g1(q), where g1 is de�ned by (9).

2.3 Feasible, posterior individually rational solutions

We are now ready to de�ne a solution for B(p).

De�nition 5 Let B(p) be a two-person Bayesian game with a single in-
formed player. A (cooperative) solution (S; �; �) for B(p) consists of a set of
signals S, a signalling strategy � : K ! �(S) for the informed player and of
a joint decision function � : S ! �(A) such that � is incentive compatible
given �, player 1�s interim expected payo¤ is individually rational and for
every signal s 2 S, player 2�s payo¤ from �(s) = xs is individually ratio-
nal in B(ps), where ps denotes player 2�s posterior computed from p and �.
C [B(p)] � RK �R denotes the set of all interim expected payo¤s that can be
achieved by a solution of B(p).

Henceforth, we refer to a triple (S; �; �) satisfying de�nition 5 as a �fea-
sible, posterior individually rational solution�or simply as a �solution�. For
player 2, individual rationality is indeed readily stated in terms of the poste-
rior probability distribution given every signal. This participation condition
is appropriate if player 2 does not fully commit himself before observing the
type dependent signal of player 1. For the latter player, standard interim
individually rational is required but, given the strong incentive compatibility
conditions, the interim expected payo¤uk and the posterior payo¤Uk(xs) co-
incide as soon as the latter payo¤is relevant (namely, as soon as �(s j k) > 0).
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The next lemma states that every solution can be implemented as a Nash
equilibrium of a noncooperative game, in which player 1 sends a signal and
then both players agree on a joint decision, conditionally on the signal. This
implementation procedure o¤ers a justi�cation for the previous formulation
of feasibility (involving incentive compatibility) and individual rationality.

Given the basic game B(p), a set of signals S and a joint decision func-
tion � : S ! �(A), let G(p; S; �) be the noncooperative game described as
follows:

- Player 1�s type k is chosen in K according to p, only player 1 is informed
of k.

- Player 1 sends a signal s 2 S to player 2.

- The correlated strategy �(s) = xs 2 �(A) is proposed to both players.

- The players simultaneously accept or reject the correlated strategy xs.

- If both players accept xs, player 1 gets Uk(xs) and player 2 gets V k(xs).

- If at least one of the players rejects xs, player 1 chooses a1, player 2 chooses
a2, player 1 gets Uk(a1; a2) and player 2 gets V k(a1; a2).

Lemma 6 Let B(p) be a two-person Bayesian game with a single informed
player. (S; �; �) de�nes a solution for B(p) if and only if G(p; S; �) has an
equilibrium in which player 1 sends his signal according to � and both players
always accept the correlated strategy that is proposed to them.

Proof : To complete the description of strategies inG(p; S; �) in which player
1�s signalling strategy is � and both players always accept the correlated
strategy, let player 1�s decision strategy be � : K � S ! �(A1) in case
of rejection and let player 2�s decision strategy � : S ! �(A2) in case of
rejection.
Let us set

yks = max
a1
Uk(a1; �(s))

bs = max
a2

X
k

pksV
k(�k(s); a2)
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Player 1�s equilibrium conditions are, for every type k:
8s 2 S such that �(s j k) > 0, 8s0 2 S (even such that �(s0 j k) = 0):

Uk(xs) � Uk(xs0) and Uk(xs) � yks0.
Indeed, player 1 can consider any signal s0, and, having sent s0, can accept
or reject xs0; in the latter case, player 1 cannot do better than best replying
to �(s0). Player 1�s equilibrium conditions are thus equivalent to incentive
compatibility (as de�ned by i) and ii)) together with

uk � yks for every k 2 K, s 2 S (10)

where u = (uk)k2K is de�ned by (1). Let us check that u satis�es (10) if and
only if u is individually rational in the sense of de�nition 1.
Assume that u satis�es (10). For every s, ys = (yks )s2S is individually

rational in the sense of de�nition 1 (which is satis�ed with � = �(s)). Hence,
u � ys is also individually rational in the sense of de�nition 1.
Conversely, if u is individually rational in the sense of de�nition 1, there

is a strategy � of player 2 for which this de�nition is satis�ed. Let �(s) = �
for every s; then yks = y

k = maxa1 U
k(a1; �) � uk.6

Let us come to player 2�s equilibrium conditions. Given the signal s, he
updates his probability distribution over K to (pks)k2K . By rejecting xs and
best replying to �(s) : K ! �(A1), he gets bs. Hence player 2 accepts xs if
and only if X

k

pksV
k(xs) � bs.

This is equivalent to
P

k p
k
sV

k(xs) is individually rational for player 2 in
B(ps), in the sense of de�nition 2. �

Even if every solution can be seen as a Nash equilibrium of some game,
this equilibrium is a quite demanding one and we should not expect stan-
dard existence theorems to apply. We will turn to the existence issue in the
next section. Before that, we recall a standard approach to feasibility and
individual rationality, which is quite di¤erent from the previous one.

2.4 Mediated interim individually rational solutions

In the game G(p; S; �), the players only rely on a device (namely, �) to
perform the lottery over joint actions conditionally on the informed player�s

6This just shows that player 2�s decision strategy in case of rejection does not have to
depend on the signal s.
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signal but do not use any device to communicate. In other words, player 1
has to send his signal by himself (by means of �). Moreover, player 1 can
only make use of his private information in the �nal decision by sharing it
with player 2.
Myerson (1991, chapter 6, specially section 6.6) considers mediated solu-

tions, in which player 1 is invited to report his information k to a mediator,
who directly chooses a joint decision in �(A) on behalf of the players.7 The
mediator�s strategy can thus be described as a device � : K ! �(A). In-
centive compatibility just says that player 1 cannot bene�t from lying to the
mediator, namely

Uk(�(k)) � Uk(�(k0)) for every k; k0 2 K

At a mediated solution, both players accept the help of the mediator at the
interim stage, namely, before the mediator implements the device �. Myerson
(1991) thus requires that player 1�s interim expected payo¤

�
Uk(�(k))

�
k2K

be individually rational according to de�nition 1 (namely, satis�es (5)) and
player 2�s expected payo¤ be individually rational according to de�nition 2.

De�nition 7 Let B(p) be a two-person Bayesian game with a single in-
formed player. A mediated solution for B(p) consists of a device � : K !
�(A) such that � is incentive compatible, player 1�s interim expected payo¤
is individually rational and player 2�s expected payo¤

P
k p

kV k(�(k)) is indi-
vidually rational in B(p). M [B(p)] � RK �R denotes the set of all interim
expected payo¤s that can be achieved by a mediated solution in B(p).

M [B(p)] contains the set of Nash interim expected equilibrium payo¤s
of B(p) and is thus not empty.8 By proceeding as in the revelation principle
(see Myerson (1991)), one can show that C [B(p)] �M [B(p)], i.e., payo¤s to
unmediated posterior individually rational solutions can be achieved with the
help of a mediator. Forges (2013) shows thatM [B(p)] can be interpreted as
the set all Nash equilibrium payo¤s that the players can achieve by making
conditional commitments at the interim stage, a result that was established
by Kalai et al. (2010) in the case of complete information.

7As soon as there is a mediator, the revelation principle applies and without loss of
generality, player 1�s possible signals are just his possible types.

8Nonemptiness of M [B(p)] can also be checked directly, since a mediated solution
is de�ned by linear inequalities. Myerson starts by de�ning M [B(p)] but goes on by
imposing further requirements on cooperative solutions.
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3 Existence of feasible, posterior individually
rational solutions

3.1 A counter-example

Let us illustrate the properties de�ned above and let us show that without
further assumptions on the Bayesian game, incentive compatibility (in the
strong sense of section 2.1) and posterior individual rationality may contra-
dict each other.

Example 1: Let B(p) be de�ned by K = f1; 2g, A1 = fT;Bg, A2 = fL;Rg
and the following payo¤ matrices:

k = 1
L R

T 1; 1 2; 0
B 0; 1 0; 0

k = 2
L R

T 0; 0 0; 1
B 2; 0 1; 1

Let us �rst show that, even without taking account of player 2�s payo¤s,
there cannot be any nonrevealing joint decision that is individually rational
for player 1. Indeed, any distribution over A = fT;Bg � fL;Rg gives a sum
of expected payo¤s u1 + u2 � 2 to player 1. If the original Bayesian game
is played noncooperatively, player 2 plays L with some probability �. By
playing T when k = 1 and B when k = 2, player 1 gets � + 2(1 � �) when
k = 1 and 2�+ (1��) when k = 2 and the sum of his expected payo¤s is 3.
Similarly, if player 1 sends a signal s that leads to an interior poste-

rior probability distribution, by incentive compatibility, we must have uk =
Uk(xs), k = 1; 2, where xs is a distribution over fT;Bg � fL;Rg, and again
u cannot be individually rational for player 1.
The only way to possibly get an individually rational payo¤ vector for

player 1 is thus a completely revealing solution. Such a solution is individ-
ually rational for player 2 i¤ L has probability 1 when type 1 is reported,
and R has probability 1 when type 2 is reported. This can e.g. be seen
from de�nition 2 and lemma 4: an expected payo¤ v is individually ratio-
nal for player 2 in B(q) i¤ v � max fq; 1� qg. This implies that player 1
gets at most 1, whatever his type is. But (1; 1) is not an individually ra-
tional vector payo¤ for player 1, since we have seen above that player 1

12



could guarantee 3 as a sum of expected payo¤s. Actually, according to (4),
f1(q) = min fq + 2(1� q); 2q + (1� q)g; a vector payo¤ (u1; u2) is thus indi-
vidually rational for player 1 i¤ u1+ u2 � 3 but taking account of feasibility,
this reduces to u1 + u2 = 3.
Observe that, according to (8), u1 = u2 = 1 in this example, which

illustrates well that u1 � 1 and u2 � 1 is not enough for (u1; u2) to be
individually rational for player 1. Playing (T; L) if k = 1 and (B;R) if k = 2
is incentive compatible and naïvely individually rational for player 1. But
player 1 will not accept such a contract if he has the possibility of just playing
the original game by himself.

3.2 Particular cases where a solution is easily shown
to exist

3.2.1 Sender-receiver games

Let us assume that the informed player has no decision to make in the basic
Bayesian game B(p), namely, that A1 is a singleton (equivalently, the in-
formed player has several actions but they have no impact on the payo¤s).
In this case, we can set A2 = A and �(A) can be interpreted as the set of
mixed strategies of player 2 in B(p).
In this particular framework, a solution consists of a signalling strategy

� : K ! �(S) for the informed player and a strategy � : S ! �(A) of the
uninformed player. Furthermore,

f1(q) = min
�2�(A)

X
k2K

qkUk(�) = min
a2A

X
k2K

qkUk(a)

so that every feasible vector payo¤ is individually rational for player 1. For
the uninformed player, we have that

g1(q) = max
�2�(A)

X
k2K

qkV k(�) = max
a2A

X
k2K

qkV k(a)

and the individual rationality condition for this player reduces toX
k

pksV
k(�(s)) �

X
k2K

pksV
k(a) for every s 2 S, a 2 A

where ps is player 2�s posterior probability distribution on K given s. It just
says that given player 1�s signal, player 2 chooses an action that maximizes
his expected payo¤.
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It thus appears that (S; �; �) de�nes a solution for B(p) if and only if
(�; �) is a Nash equilibrium of the following, noncooperative, sender-receiver
game: player 1 is privately informed of his type k, then player 1 sends a
signal s 2 S to player 2 and �nally, player 2 makes a decision a 2 A; player 1
gets Uk(a) and player 2 gets V k(a). The uninformed player does not commit
at all.
It is well-known (and easy to check) that every sender-receiver game has

a nonrevealing equilibrium, namely, an equilibrium in which �(s j k) does
not depend on k. Hence, there always exists a nonrevealing solution in this
case.

3.2.2 �Known own�payo¤s (private values)

Being fully informed in B(p), player 1 obviously knows his own payo¤. In
this section, we further assume that player 2�s payo¤ does not depend on
player 1�s type and is just described by a mapping V , independent of k 2 K.
Let us de�ne

v� = min
�2�(A1)

max
�2�(A2)

V (�; �) = max
�2�(A2)

min
�2�(A1)

V (�; �)

In this simple framework, a joint decision x 2 �(A) induces an individually
rational payo¤ for the uninformed player in B(p) if and only if V (x) � v�.
A completely revealing solution in B(p) is easily constructed. Let us take

S � K, �(k j k) = 1 for every k 2 K (so that the posteriors correspond to
the extreme points �k of �(K)) and

�(k) = xk 2 argmax
�
Uk(x) : x 2 �(A); V (x) � v�

	
8k 2 K

It is immediate that any (S; �; �) de�ned in this way satis�es incentive com-
patibility and individual rationality for player 2 (V (xk) � v� for every k).
To show that it satis�es individual rationality for player 1, recalling (4), lete�(q) = ��k(q)�

k2K 2 �(A1)
K be a strategy of player 1 in the game �1(q) that

guarantees him f1(q), let � 2 �(A2) be a strategy of player 2 that guarantees
him v� in the one-shot game V and let yk(q) = �k(q) 
 � . By construction,
V (yk(q)) � v� for every k 2 K. Hence, Uk(xk) � Uk(yk(q)) 8k 2 K and
q � u =

P
k q

kUk(xk) �
P

k q
kUk(yk(q)) � f1(q).

14



3.3 Uniform punishment strategy

Let us come back to the basic game B(p) and introduce a property of player
1�s one-shot game payo¤s Uk(:), k 2 K. Recall that for every k 2 K, uk
is de�ned as the individually rational level of player 1 of type k, when k is
complete information (see (8)).

De�nition 8 � � 2 �(A2) is a uniform punishment strategy (UPS) of the
uninformed player i¤

8k 2 K 8� 2 �(A1) : Uk(�; � �) � uk

The property means that the uninformed player can punish the informed
one in the harshest way, namely, as if he knew the informed player�s type, even
without knowing it (see Forges and Salomon (2014)). UPS is satis�ed in many
games derived from economic applications: auctions, duopoly, contribution
to a public good, etc. We will show that under UPS, there always exists a
solution.9

As observed before, if a payo¤ vector u = (uk)k2K is individually rational
for player 1 in B(�) (see de�nition 1), it is always true that uk � uk 8k 2 K.
If player 2 has a uniform strategy, the converse also holds, so that

Lemma 9 If the uninformed player has a uniform punishment strategy, a
payo¤ vector u = (uk)k2K is individually rational for player 1 in B(�) i¤
uk � uk 8k 2 K.

This characterization of player 1�s individual rationality is familiar in
principal-agent problems. Example 1 above shows that the existence of a
uniform punishment strategy is crucial for the �if�part of the lemma.
Let u = (uk)k2K be player 1�s interim expected payo¤ at a solution

(namely, (1)): u is individually rational for player 1 i¤ Uk(xs) � uk for
every k 2 K and for every s 2 S such that �(s j k) > 0, namely, if, at every
signal s, the joint decision xs is posterior individually rational for player 1.
Individual rationality for player 1 can still be written equivalently by making

9UPS guarantees the existence of an equilibrium of the form described in lemma 6 but
does not ensure that this equilibrium be Bayesian perfect. To see this, it su¢ ces to modify
example 1 by giving player 2 an additional action whose payo¤ is always negative for both
players. Player 2 has then a strictly dominated uniform punishment strategy. Eliminating
it recreates the non-existence problem.
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use of the mapping f1 de�ned in (4), which, under UPS, takes the simple
form

f1(q) =
X
k2K

qkuk 8q 2 �(K)

Indeed, by (4) and (8), f1(q) �
P

k2K q
kuk. Conversely, player 1 can guar-

antee himself
P

k2K q
kuk by playing an optimal strategy in the (one-shot,

zero-sum) game with payo¤s Uk(�) when he is of type k, for every k.

We are now ready to state our main result (which holds without any
restriction on player 2�s payo¤s):

Proposition 10 Let B(p) be a two-person Bayesian game with a single in-
formed player in which the uninformed player has a uniform punishment
strategy. For every p 2 �(K), B(p) has a feasible, posterior individually
rational solution.

We show below that one way to establish proposition 10 is to see that it
can be deduced from the existence of special Nash equilibria (namely, Au-
mann and Maschler (1968, 1995)�s joint plan equilibria) in the undiscounted
in�nitely repeated version B1(p) of the basic Bayesian game (see Simon et
al. (1995)).

A proof of proposition 10 relying on Simon et al. (1995)
Let B1(p) be the following in�nitely repeated game: at stage 0, player

1�s type k is chosen once and for all according to p; at every stage t =
1; 2; :::, player 1 and player 2 choose simultaneously an action in A1 and A2
respectively; the actions chosen at every stage are revealed to both players
stage after stage; the stage payo¤s are evaluated by Uk(:) and V k(:) and only
known to player 1. Payo¤s in B1(p) are evaluated through (Banach) limits
of means (see Hart (1985) and Forges (1992)).
In B1(p), player 1 can reveal his information through his actions. A sim-

ple signalling strategy � for player 1 in B1(p) can thus be described as in
section 2.1, with S = (A1)t for some stage t. According to Aumann, Maschler
and Stearns (1968, 1995) (see also Forges (1992)) a joint plan equilibrium in
B1(p) consists of a signalling strategy � for player 1 and for every signal s,
of a nonrevealing equilibrium of B1(ps) to be played from stage t + 1 on,
given the posterior probability distribution ps that is achieved through sig-
nalling. The nonrevealing equilibrium of B1(ps) is described by a correlated

16



strategy10 xs � �(s) 2 �(A) which induces individually rational payo¤s for
both players in B1(ps).
To formally de�ne individual rationality in B1(q), q 2 �(K), let �1;NR(q)

(resp., �2;NR(q)) be the one-shot expected game based on player 1 (resp.,
2)�s payo¤ and let fNR(q) (resp., gNR(q)) be the value of �1;NR(q) (resp.,
�2;NR(q)), namely,

fNR(q) = min
�2�(A2)

max
�2�(A1)

 X
k2K

qkUk(�; �)

!
(11)

= max
�2�(A1)

min
�2�(A2)

 X
k2K

qkUk(�; �)

!

gNR(q) = min
�2�(A1)

max
�2�(A2)

 X
k2K

qkV k(�; �)

!
(12)

= max
�2�(A2)

min
�2�(A1)

 X
k2K

qkV k(�; �)

!

In both fNR and gNR, it is understood that player 1 does not make use of
his information, i.e., chooses his strategy independently of his type.
Let p be any prior in the interior of �(K); following Blackwell (1956)

and Aumann and Maschler (1968, 1995), a vector payo¤ u = (uk)k2K is
individually rational for player 1 in B1(p) if and only if

8q 2 �(K) q � u � fNR(q) (13)

where fNR is de�ned by (11). In other words, the latter condition is necessary
and su¢ cient for player 2 to have a strategy �1 in B1(p) which guarantees
that player 1�s payo¤ in B1(p) does not exceed uk when his type is k, what-
ever the type k is.
Similarly, a payo¤ v is individually rational for player 2 in B1(p) if and

only if
v � vexgNR(p) (14)

10In the context of B1(p), a correlated strategy in �(A) is interpreted as a limit fre-
quency of moves.
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where vexgNR is the convexi�cation of g, i.e., the largest convex mapping
that is below gNR over the simplex. In other words, (14) is necessary and
su¢ cient for player 1 to have a (type dependent) strategy �1 in �1(p) which
guarantees that player 2�s payo¤ in B1(p) does not exceed v.
Using the previous notions of individual rationality, we can give a fully

precise de�nition: (S; �; �) is a joint plan equilibrium in B1(p) i¤

(S; �; �) satis�es the incentive compatibility conditions i) and ii) of section
2.1, with Uk(xs) � Uk(�(s)) for every k, s such that �(s j k) > 0.

Player 1�s interim expected payo¤ (uk)k2K , which can be de�ned as in (1),
namely, by uk = Uk(xs) for every k, s such that �(s j k) > 0, is
individually rational in the sense of (13).

Player 2�s conditional expected payo¤ given s, namely, vs =
P

k p
k
sV

k(xs),
where ps is the posterior probability distribution overK at s (computed
from p and �), is individually rational in B1(ps), in the sense of (14).

According to Simon et al. (1995), for every p, there exists a joint plan
equilibrium (S; �; �) in the in�nitely repeated game B1(p), which, by de�-
nition, is feasible (in particular, incentive compatible) in the one-shot game
B(p). To complete the proof of the proposition, we still have to check that
(S; �; �) is individually rational for both players in B(p).
For player 2, the result is immediate. By lemma 4, individidual rationality

for player 2 in B(p) can be formulated in terms of the mapping g1 (see (9)).
By the de�nitions of g1 and gNR, g1 � gNR and g1 is convex. Hence, for
player 2, individidual rationality in B1(ps) implies individidual rationality
in B(ps), at every s.
Let us show that, thanks to UPS, (S; �; �) is also individually rational

for player 1 in B(p). To see this, let � � be a uniform strategy of player 2; by
the de�nition of fNR (namely, (11)),

fNR(q) � max
�2�(A1)

 X
k2K

qkUk(�; � �)

!
�
X
k2K

qk max
�2�(A1)

Uk(�; � �) �
X
k2K

qkuk.

This implies that under UPS, cavfNR(q) �
P

k2K q
kuk, where cavfNR is

the concavi�cation of fNR, i.e., the smallest concave mapping that is above
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fNR over the simplex. On the other hand, recalling that �k denotes the kth
extreme point of �(K),

cavfNR(q) = cavfNR

 X
k2K

qk�k

!
�

X
k2K

qkcavfNR(�k) =
X
k2K

qkfNR(�k) =
X
k2K

qkuk.

Hence, under UPS,

cavfNR(q) =
X
k2K

qkuk 8q 2 �(K)

and, using (13), u = (uk)k2K is individually rational for player 1 in B1(p) i¤

uk � uk 8k 2 K:
From lemma 9, under UPS, individual rationality for player 1 in the one-shot
game B(p) reduces to the same condition. �

The previous proof shows that when UPS holds, cavfNR is linear.11 The
latter property greatly simpli�es the study of in�nitely repeated games with
lack of information on one side since it allows to dispense with Blackwell�s
approachability theorem in the de�nition of individual rationality for the
informed player. However, another look at example 1 shows that the linearity
of cavfNR is weaker than UPS and does not guarantee the existence of a
solution in B(p).

Example 1 (continued): Recall that, in this example,

f1(q) = min fq + 2(1� q); 2q + (1� q)g
so that a vector payo¤ (u1; u2) is individually rational for player 1 in B(�)
i¤ u1 + u2 � 3. Given player 2�s payo¤s, there is no cooperative solution in
B(p), 0 < p < 1. One computes that

fNR(p) = 1� p if p � 1

3

= 3p(1� p) if 1
3
� p � 2

3

= p if p � 2

3
11More precisely, recalling the de�nition of the concave mapping f1 (i.e., (4)) and lemma

9, under UPS, cavfNR(q) = f1(q) =
P

k2K q
kuk.

19



Hence, cavfNR(p) = 1 for every p. In particular, cavfNR is linear, even if UPS
is not satis�ed. For every p, B1(p) has a completely revealing equilibrium
achieving the vector payo¤ (1; 1) for player 1. This example illustrates that
when UPS does not hold, individual rationality for player 1 is weaker in
B1(�) than in B(�).

In the next example, UPS is veri�ed and a cooperative solution exists.
However, for some values of the prior probability distribution over states,
there does not exist any nonrevealing solution and there does not exist any
completely revealing solution either. In particular, the revelation principle
does not hold in our framework. In the partially revealing constructed so-
lution, the informed player of type k just gets his individually rational level
uk.

Example 2: Let K = f1; 2g, A1 = fT;Bg, A2 = fFL, L, C, R, FRg.
Player 1�s payo¤ matrices are:

U1(�) =
FL L C R FR

T 4 3 4 3 4
B 0 3 0 3 8

U2(�) =
FL L C R FR

T 8 3 0 3 0
B 4 3 4 3 4

We check that u1 = u2 = 3 and that L and R are uniform punishment
strategies of player 2. Player 2�s payo¤s are exactly as in Forges (1990); in
particular, they depend on player 1�s type but they do not depend on player
1�s action:

V 1(�) =
FL L C R FR

T 10 9 7 4 0
B 10 9 7 4 0

V 2(�) =
FL L C R FR

T 0 4 7 9 10
B 0 4 7 9 10

Let us denote as p 2 [0; 1] the probability that k = 1. It is immediate that
FR is optimal for 0 � p � 1

5
, R is optimal for 1

5
� p � 2

5
, C is optimal for

2
5
� p � 3

5
, L is optimal for 3

5
� p � 4

5
, FL is optimal for 4

5
� p � 1.
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Let p = 1
2
. Let us �rst show that there is no nonrevealing solution. A

nonrevealing solution consists of x 2 �(A) such that U1(x) � 3, U2(x) � 3
and 1

2
V 1(x) + 1

2
V 2(x) � g1(12) = 7. The latter condition implies that player

2 must take the action C, namely that

x =

�
0 0 � 0 0
0 0 1� � 0 0

�
for some 0 � � � 1

U1(x) � 3 ) � � 3
4
and U2(x) � 3 ) � � 1

4
so that there is indeed no

nonrevealing solution.
Let us show next that there is no completely revealing solution at p = 1

2
. A

completely revealing solution is described by xk 2 �(A), k = 1; 2, xk being
interpreted as the joint decision when player 1 reports type k. Individual
rationality for player 2 means that V 1(x1) � g1(1), i.e., player 2 chooses FL
when he gets signal 1 and similarly, V 2(x2) � g1(0), i.e., player 2 chooses FR
when he gets signal 2.

x1 =

�
� 0 0 0 0

1� � 0 0 0 0

�
for some 0 � � � 1

x2 =

�
0 0 0 0 1� �
0 0 0 0 �

�
for some 0 � � � 1

Individual rationality for player 1 means that Uk(xk) � 3, k = 1; 2, i.e.,
U1(x1) = 4� with � � 3

4
and U2(x2) = 4� with � � 3

4
. Incentive compatibil-

ity for player 1 means that U1(x1) � U1(x2) and U2(x2) � U2(x1) , 4� �
4(1� �) + 8� and 4� � 8�+ 4(1� �), � � 1 + � and � � 1 + �, which is
of course impossible.
Let us show that there exists a partially revealing solution at p = 1

2
. Let

player 1 send signals r and s so as to reach the posteriors pr = 1
4
and ps = 3

4
.

In order to satisfy player 2�s individual rationality condition, we must have
that xr gives probability 1 to R and that xs gives probability 1 to L. Incentive
compatibility is trivially satis�ed since player 1 gets 3 no matter what. The
payo¤s at this partially revealing solution are (3; 3) for player 1 (i.e., just his
individual rationality level) and 31

4
for player 2.

To complete the analysis,

fNR(p) = 4max fp; 1� pg if
1

4
� p � 3

4
= 3 otherwise

21



so that cavfNR(p) = 3 for every p.
As another reference, the one-shot (noncooperative) Bayesian game has

a Nash equilibrium in which player 1 chooses T when k = 1 and B when
k = 2, while player 2 chooses C, which gives the payo¤s (4; 4) to player 1
and 7 to player 2. These payo¤s can be achieved by a centralized mechanism
à la Myerson (1991), i.e., they are inM

�
B(1

2
)
�
(see section 2.4) but are not

in C
�
B(1

2
)
�
because player 1 makes use of his private information without

sharing it with player 2.

4 Concluding remarks

4.1 Further insights when a single player is informed

Let us �rst summarize some properties that do not rely on UPS. In sec-
tion 2, we have de�ned two sets of cooperative payo¤s in the Bayesian game
B(p): the set C [B(p)] of unmediated, posterior individually rational pay-
o¤s (de�nition 5) and the set M [B(p)] of mediated, interim individually
rational payo¤s (de�nition 7). We have seen that C [B(p)] � M [B(p)] and
that this inclusion may be strict. Recalling the proof of proposition 10, let
NJP [B1(p)] � RK �R be the set of all interim expected payo¤ that can be
achieved in a joint plan equilibrium of B1(p). Simon et al. (1995)�s result
can be stated as NJP [B1(p)] 6= ;.
When UPS is satis�ed, the �ndings of section 3.3 can be rephrased as

follows:

Corollary 11 Let B(p) be a two-person Bayesian game with a single in-
formed player in which the uninformed player has a uniform punishment
strategy. NJP [B1(p)] = C [B(p)] � M [B(p)]. Furthermore, C [B(p)] is
nonempty and may be strictly included inM [B(p)].

The strict inclusion of C [B(p)] inM [B(p)] under UPS is illustrated on
example 2. Viewed as a result on NJP [B1(p)], the previous corollary can
be interpreted as an extension of the folk theorem to games with incomplete
information, since it makes a precise connection between a set of (noncooper-
ative) equilibrium payo¤s of the in�nitely repeated game and sets of feasible
individually rational payo¤s of the one-shot game. For the set C [B(p)] of
unmediated feasible, posterior individually rational payo¤s, we have a full
folk theorem, in the sense that NJP [B1(p)] coincides with C [B(p)]. For the

22



set M [B(p)] of mediated feasible, interim individually rational payo¤s, we
just have a partial folk theorem.
We have seen that when UPS does not hold, C [B(p)] can be empty, while

NJP [B1(p)] is still nonempty. The partial folk theorem property NJP [B1(p)] �
M [B(p)] can also fail when UPS is not satis�ed. This is illustrated in section
3.3: in example 1 (continued), B1(p) has a completely revealing equilibrium
which is obviously individually rational for player 1 in B1(p) (namely, sat-
is�es (13)) but is not interim individually rational for player 1 in B(p), in
spite of the fact that player 2�s approachability strategy is straightforward,
cavfNR being linear.

4.2 Solutions when both players are privately informed

Let us extend the basic Bayesian game so that both player 1 and player 2 have
private information. Let K and L be �nite sets. At a virtual initial stage of
the game, player 1�s type k is chosen in K according to p and, independently,
player 2�s type ` is chosen in L according to q. Only player 1 (resp., 2) is
informed of k (resp., `). Unless speci�ed otherwise, we assume that pk > 0
and that q` > 0 for every k 2 K, ` 2 L.
Player 1 and player 2 choose simultaneously an action in �nite sets A1

and A2 respectively. If the pair of actions a 2 A = A1 � A2 is chosen, they
get the respective payo¤s Uk(a) and V `(a). Each player thus knows his own
payo¤ (according to another terminology, �values are private�). We refer to
this game as B(p; q).
We will also assume that UPS holds for both players. Given the private

values assumption, we can still de�ne player 1�s type k individually rational
level by uk, exactly as in (8), for every k 2 K, and we can de�ne player 2�s
type ` individually rational level in the same way, by v`, for every ` 2 L.
Let S and T be sets of signals and let � : S � T ! �(A). As in section

2.3, we can introduce a noncooperative game G(p; q; S; T; �) to be played as
follows:

- Player 1�s type k is chosen in K according to p, player 2�s type ` is chosen
in L according to q, only player 1 (resp., 2) is informed of k (resp., `).

- Player 1 sends a signal s 2 S to player 2, and simultaneously, player 2
sends a signal t 2 T to player 1.

- The correlated strategy �(s; t) = xst 2 �(A) is proposed to both players.
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- The players simultaneously accept or reject the correlated strategy xst.

- If both players accept xst, player 1 gets Uk(xst) and player 2 gets V `(xst).

- If at least one of the players rejects xst, player 1 chooses a1, player 2 chooses
a2, player 1 gets Uk(a1; a2) and player 2 gets V `(a1; a2).

Let � : K ! �(S) be a signalling strategy for player 1 and let � :
L! �(T ) be a signalling strategy for player 2. By proceeding as in section
2.3, we say that (S; T; �; �; �) de�nes a solution for B(p; q) if and only if
G(p; q; S; T; �) has an equilibrium in which player 1 sends his signal according
to �, player 2 sends his signal according to � and both players always accept
the correlated strategy that is proposed to them.
Let us further say that (S; T; �; �; �) de�nes a completely revealing (coop-

erative) solution if S = K, T = L, � (resp., �) is the identity over K (resp.,
L). A completely revealing solution is thus just described by xk` 2 �(A)
for every (k; `) 2 K � L. It can be checked that (xk`)(k;`)2K�L de�nes a
completely revealing solution if and only if the following inequalities holdX

`2L

q`Uk(xk`) �
X
`2L

q`max
�
Uk(xk0`); u

k
	

8k; k0 2 K (15)X
k2K

pkV `(xk`) �
X
k2K

pkmax
�
V `(xk`0); v

`
	

8`; `0 2 L

Let C [B(p; q)] � RK � RL be the set of all interim payo¤s that can be
achieved at a solution of B(p; q). The next lemma states that all payo¤s
(u; v) =

�
(uk)k2K ; (v

`)`2L
�
in C [B(p; q)] are of the form

uk =
X
`2L

q`Uk(xk`), v` =
X
k2K

pkV `(xk`)

for some (xk`)(k;`)2K�L satisfying inequalities (15).

Lemma 12 Let B(p; q) be a two-person Bayesian game with private values
in which both players have a uniform punishment strategy. Every solution
for B(p; q) is payo¤ equivalent to a completely revealing solution.

Proof: Let (S; T; �; �; �) be a solution forB(p; q). Let us consider the variant
of G(p; q; S; T; �) in which both players are invited to reveal their types to a
mediator who selects x 2 �(A) according to the probability distribution

�(x j k; `) =
X

s2S;t2T
�(s j k)�(t j `)I(x = xst)
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and asks them whether they accept x or not; if they both accept, x is imple-
mented; otherwise, they choose their actions themselves. By proceeding in
the same way as to establish the revelation principle, it is a Nash equilibrium
for both players to reveal their type and to accept the outcome proposed by
the mediator.12 We thus have, for player 1,X
`2L

q`
X
x

�(x j k; `)Uk(x) �
X
`2L

q`
X
x

�(x j k0; `)max
�
Uk(x); uk

	
8k; k0 2 K

(16)
Let us set

xk` =
X
x

�(x j k; `)x � E�(ex j k; `)
Then, recalling that Uk is linear, the left hand side of (16) is

P
`2L q

`Uk(xk`).
By using that max is convex, and then again that Uk is linear, the right
hand side is larger than

P
`2L q

`max
�
Uk(
P

x �(x j k0; `)x); uk
	
, hence (16)

implies (15). One can proceed similarly for player 2. �

Equipped with the previous simple characterization of C [B(p; q)], we are
going to check whether an analog of corollary 11 holds in the current model.
Koren (1992) already proposed a characterization like lemma 12 for the undis-
counted in�nitely repeated version of B(p; q), which we denote as B1(p; q)
and which can be de�ned in the same way as B1(p). Assuming private values
but not UPS, Koren (1992) showed that every Nash equilibrium of B1(p; q)
is payo¤ equivalent to a completely revealing Nash equilibrium, so that it
can in particular be achieved as a joint plan equilibrium.
Let N [B1(p; q)] be the set of all interim expected Nash equilibrium pay-

o¤s of B1(p; q). De�ning NJP [B1(p; q)] in the same way as NJP [B1(p)] in
section 3.3, we have hereN [B1(p; q)] = NJP [B1(p; q)]. Forges and Salomon
(2014) further show that, when UPS holds, N [B1(p; q)] is characterized by
inequalities (15), i.e., that N [B1(p; q)] = C [B(p; q)].13
The set M [B(p; q)] of all mediated interim indivually rational payo¤s

when both players are informed can be de�ned as in section 2.4. A partial
analog of corollary 11 is as follows:

12Since values are private and utility functions are linear, a player only cares about his
own type and the expected distribution over actions.
13Koren (1992)�s characterization is more complex in that it makes use of Blackwell�s

approachability, i.e., individual rationality is de�ned as in (13).
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Proposition 13 Let B(p; q) be a two-person Bayesian game with private val-
ues in which both players have a uniform punishment strategy. N [B1(p; q)] =
C [B(p; q)] �M [B(p; q)].

As corollary 11, the previous result can be interpreted as a folk theorem.
However, there is an important di¤erence with the case of a single informed
player: N [B1(p; q)] - and thus also C [B(p; q)] - can be empty. Koren (1992)
provides a counter-example, which turns out to satisfy UPS (see Forges and
Salomon (2014) for further illustration).
Observe that the model in proposition 13 is both more general and more

restrictive than the one of corollary 11. In proposition 13, there is lack of
information on both sides but values are private, which was not necessarily
true (for player 2) above, except in section 3.2.2. The next example illus-
trates that even if player 1 is the only one to have private information and
player 2 knows his own payo¤ (as in section 3.2.2) the partial folk theorem
N [B1(p; q)] �M [B(p; q)] is not true without UPS.14

Example 3
Let jA1j = jA2j = 2 and the utility functions be described by

U1(�) =
�
1 0
0 0

�
U2(�) =

�
0 0
0 1

�

V (�) =
�
0 2
0 0

�
The assumption of uniform punishments is clearly not satis�ed: player 2
must play right in order to hold player 1 of type 1 at his value level u1 = 0
and must play left to hold him at u2 = 0. Recalling (11), the value of player
1�s expected one-shot game is

fNR(p) = val1

�
p 0
0 1� p

�
= p(1� p)

14The undiscounted in�nitely repeated version of the model of section 3.2.2. (namely,
lack of information on one side and private values) was studied by Shalev (1994). He
showed that all Nash equilibria are payo¤ equivalent to completely revealing ones (the
result that was extended by Koren (1992)) and that Nash equilibria always exist (the
reasoning in section 3.2.2 is similar to Shalev (1994)�s one).
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The probability distribution

x1 = x2 = x =

�
1
4

1
2

0 1
4

�
2 �(A)

de�nes a nonrevealing equilibrium of B1(q), for every p 2 (0; 1). Indeed,
player 1�s associated vector payo¤ (u1; u2) = (1

4
; 1
4
) satis�es the individual

rationality condition (13) and player 2�s payo¤ v = 1 is individually rational
since the value of player 2�s game is v� = 0. Hence ((1

4
; 1
4
); 1) 2 N [B1(p)]

for every p 2 (0; 1).
However, ((1

4
; 1
4
); 1) =2M [B(p)] because (1

4
; 1
4
) is not interim individually

rational. Let � = (�; 1 � �); maxa1 U1(a1; �) = � � 1
4
is incompatible with

maxa1 U
2(a1; �) = 1� � � 1

4
.

The example also allows us to recall that conditions (15) are not mean-
ingful when UPS does not hold. The probability distribution

x1 = x2 = x =

�
0 1
0 0

�
satis�es (15) but the vector payo¤ of player 1 is (0; 0) and is not individually
rational for player 1 (not only in the interim sense but even in B1(p)).
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