Partial clones containing all Boolean monotone self-dual partial functions
Miguel Couceiro, Lucien Haddad, Ivo G. Rosenberg

To cite this version:

HAL Id: hal-01093942
https://hal.archives-ouvertes.fr/hal-01093942
Submitted on 6 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PARTIAL CLONES CONTAINING ALL BOOLEAN MONOTONE SELF-DUAL PARTIAL FUNCTIONS

MIGUEL COUCEIRO, LUCIEN HADDAD, AND IVO G. ROSENBERG

Abstract. The study of partial clones on $\mathbb{2} := \{0, 1\}$ was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial functions are both maximal partial clones on $\mathbb{2}$.

Several papers dealing with intersections of maximal partial clones on $\mathbb{2}$ have appeared after Freivald work. It is known that there are infinitely many partial clones that contain the set of all monotone self-dual partial functions on $\mathbb{2}$, and the problem of describing them all was posed by some authors.

In this paper we show that the set of partial clones that contain all monotone self-dual partial functions is of continuum cardinality on $\mathbb{2}$.

1. Preliminaries

Let A be a finite non-singleton set. Without loss of generality we assume that $A = k := \{0, \ldots, k - 1\}$. For a positive integer n, an n-ary partial function on k is a map $f : \text{dom}(f) \to k$ where $\text{dom}(f)$ is a subset of k^n called the domain of f. Let $\text{Par}(n)(k)$ denote the set of all n-ary partial functions on k and let

$$\text{Par}(k) := \bigcup_{n \geq 1} \text{Par}(n)(k).$$

This work was done while the first named author was a Research Assistant at the Mathematics Research Unit at the University of Luxembourg, Luxembourg, and an Associate Professor at LAMSADE at Université Paris-Dauphine, France.

The second named author wishes to acknowledge the financial support by ARP grants.

Les trois auteurs veulent rendre hommage à Maurice Pouzet. Maurice est un mathématicien brillant et respecté, ses contributions scientifiques sont immenses. Tous ceux qui le connaissent apprécient non seulement sa profonde culture scientifique mais aussi ses grandes qualités humaines. Maurice est plein d’égards pour son entourage, il est généreux et très d’événu envers ses amis. Il prend plaisir à encourager, aider et rendre service aux autres. Nous avons la chance et le privilège d’avoir Maurice comme collaborateur et ami. Merci pour tout Maurice!
For $n, m \geq 1$, $f \in \text{Par}^{(n)}(k)$ and $g_1, \ldots, g_n \in \text{Par}^{(m)}(k)$, the composition of f and g_1, \ldots, g_n, denoted by $f[g_1, \ldots, g_n] \in \text{Par}^{(m)}(k)$, is defined by

$$\text{dom } (f[g_1, \ldots, g_n]) := \{ \bar{a} \in k^n \mid \bar{a} \in \bigcap_{i=1}^m \text{dom } (g_i) \text{ and } (g_1(\bar{a}), \ldots, g_m(\bar{a})) \in \text{dom } (f) \}$$

and

$$f[g_1, \ldots, g_n](\bar{a}) := f(g_1(\bar{a}), \ldots, g_n(\bar{a})),$$

for all $\bar{a} \in \text{dom } (f[g_1, \ldots, g_n])$.

For every positive integer n and each $1 \leq i \leq n$, let e^n_i denote the n-ary i-th projection function defined by

$$e^n_i(a_1, \ldots, a_n) = a_i$$

for all $(a_1, \ldots, a_n) \in k^n$. Furthermore, let

$$J_k := \{ e^n_i : 1 \leq i \leq n \}$$

be the set of all (total) projections.

Definition 1. A partial clone on k is a composition closed subset of $\text{Par}(k)$ containing J_k.

Remark 1. There are two other equivalent definitions for partial clones. One definition uses Mal’tsev’s formalism and the other uses the concept of one point extension. These definitions can be found in chapter 20 of [7].

The partial clones on k, ordered by inclusion, form a lattice L_{P_k} in which the infimum is the set-theoretical intersection. That means that the intersection of an arbitrary family of partial clones on k is also a partial clone on k. A maximal partial clone on k is a coatom of the lattice L_{P_k}. Therefore a partial clone M is maximal if there is no partial clone C over k such that $M \subset C \subset \text{Par}(k)$.

Example 1. The set of partial functions

$$\Omega_k := \bigcup_{n \geq 1} \{ f \in \text{Par}^{(n)}(k) \mid \text{dom } (f) \neq \emptyset \implies \text{dom } (f) = k^n \}$$

is a maximal partial clone on k.

Definition 2. For $h \geq 1$, let ρ be an h-ary relation on k and f be an n-ary partial function on k. We say that f preserves ρ if for every $h \times n$ matrix $M = [M_{ij}]$ whose columns $M_{si} \in \rho$, $(j = 1, \ldots, n)$ and whose rows $M_{is} \in \text{dom } (f)$ $(i = 1, \ldots, h)$, the h-tuple $(f(M_{1s}), \ldots, f(M_{hs})) \in \rho$. Define

$$p\text{Pol } \rho := \{ f \in \text{Par}(k) \mid f \text{ preserves } \rho \}.$$
PARTIAL CLONES CONTAINING BOOLEAN MONOTONE SELF-DUAL P. FUNCT.S

Notice that if there is no $h \times n$ matrix $M = [M_{ij}]$ whose columns $M_{ij} \in \rho$ and whose rows $M_{is} \in \text{dom}(f)$, then $f \in \text{pPol}(\rho)$.

Example 2. Let $2 := \{0, 1\}$ and let $\{(0, 0), (0, 1), (1, 1)\}$ be the natural order on 2. Consider the binary relation $\{(0, 1), (1, 0)\}$ on 2. Then

$$\text{pPol}\{0, 0\} \cup \{(0, 1), (1, 1)\}$$

is the set of all monotone partial functions and

$$\text{pPol}\{(0, 1), (1, 0)\}$$

is the set of all self-dual partial functions on 2.

For simplicity we will write $\text{pPol}(\leq)$ and $\text{pPol}(\neq)$ for

$$\text{pPol}\{\{(0, 0), (0, 1), (1, 1)\}\} \text{ and } \text{pPol}\{\{(0, 1), (1, 0)\}\},$$

respectively. It is not difficult to see that

$$\text{pPol}(\leq) := \{f \in \text{Par}(2) \mid [a, b] \in \text{dom}(f), a \leq b \implies f(a) \leq f(b)\}, \text{ and}$$

$$\text{pPol}(\neq) := \{f \in \text{Par}(2) \mid [a, a+1] \in \text{dom}(f) \implies f(a+1) = f(a) + 1\}$$

where the above sums are taken mod 2.

As mentioned earlier, Freivald showed that there are exactly eight maximal partial clones on 2. The following two relations are needed to state Freivald’s result. Set

$$R_1 := \{(x, x, y, y) \mid x, y \in 2\} \cup \{(x, y, y, x) \mid x, y \in 2\} \text{ and}$$

$$R_2 := R_1 \cup \{(x, x, x, y) \mid x, y \in 2\}.$$

Theorem 2 ([2]). There are exactly 8 maximal partial clones on 2, namely, $\text{pPol}\{0\}$, $\text{pPol}\{1\}$, $\text{pPol}\{(0, 1)\}$, $\text{pPol}(\leq)$, $\text{pPol}(\neq)$, $\text{pPol}(R_1)$, $\text{pPol}(R_2)$, and Ω_2.

Notice that the total functions in $\text{pPol}(R_2)$ (i.e., the functions with full domain) form the maximal clone of all (total) linear functions over 2 (see, e.g., chapter 3 of [7]).

An interesting and somehow difficult problem in clone theory is to study intersections of maximal partial clones. It is shown in [1] that the set of all partial clones on 2 that contain the maximal clone consisting of all total linear functions on 2 is of continuum cardinality (for details see [1, 4] and Theorem 20.7.13 of [7]). A consequence of this is that the interval of partial clones $[\text{pPol}(R_2) \cap \Omega_2, \text{Par}(2)]$ is of continuum cardinality on 2.

A similar result, (but slightly easier to prove) is established in [3] where it is shown that the interval of partial clones $[\text{pPol}(R_1) \cap \Omega_2, \text{Par}(2)]$ is also of continuum cardinality. Notice that the three maximal partial clones $\text{pPol}(R_1)$, $\text{pPol}(R_2)$ and Ω_2 contain all unary functions (i.e., maps) on 2. Such partial clones are called *Słupecki type* partial clones in [4, 10]. These are the only three maximal partial clones of Słupecki type on 2.

For a complete study of the pairwise intersections of all maximal partial clones of Słupecki type on a finite non-singleton set k, see [4].
The papers [5, 6, 8, 12, 13] focus on the case $k = 2$ where various interesting, and sometimes hard to obtain, results are established.

For instance, the intervals

$$[\text{pPol } \{0\} \cap \text{pPol } \{1\} \cap \text{pPol } \{(0, 1)\} \cap \text{pPol } (\leq), \text{Par}(2)]$$

and

$$[\text{pPol } \{0\} \cap \text{pPol } \{1\} \cap \text{pPol } \{(0, 1)\} \cap \text{pPol } (\neq), \text{Par}(2)]$$

are shown to be finite and are completely described in [5]. Some of the results in [5] are included in [12, 13] where partial clones on 2 are handled via the one point extension approach (see Section 20.2 in [7]).

In view of results from [1, 3, 5, 12, 13], it was thought that if $2 \leq i \leq 5$ and M_1, \ldots, M_i are non-Słupecki maximal partial clones on 2, then the interval

$$[M_1 \cap \cdots \cap M_i, \text{Par}(2)]$$

is either finite or countably infinite.

Now it was shown in [6] that the interval of partial clones $[\text{pPol } (\leq) \cap \text{pPol } (\neq), \text{Par}(2)]$ is infinite. This result is mentioned in Theorem 20.8 of [7] (with an independent proof given in [8]) and in chapter 8 of the PhD thesis [11]. However, it remained an open problem to determine whether $[\text{pPol } (\leq) \cap \text{pPol } (\neq), \text{Par}(2)]$ is countably or uncountably infinite.

In this paper we settle this question by proving that the interval of partial clones

$$[\text{pPol } (\leq) \cap \text{pPol } (\neq), \text{Par}(2)]$$

is of continuum cardinality on 2.

2. The Construction

For $n \geq 5$ and $n > k > 1$ we denote by $\sigma^n_k \subseteq 2^{2n}$ the $(2n)$-ary relation defined by

$$\sigma^n_k := \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \in 2^{2n} \mid \forall i = 1, \ldots, n, \quad x_i \neq y_i, \quad \text{and} \quad \forall i = 1, \ldots, n, \quad y_{i+1} \leq x_i \quad \text{and} \quad y_{i+2} \leq x_i \quad \text{and} \quad y_{i+k} \leq x_i\}.$$

where the subscripts $i + j$ in the above definition are taken modulo n. It is not difficult to see that

$$\sigma^n_k := \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \in 2^{2n} \mid \forall i = 1, \ldots, n, \quad x_i \neq y_i, \quad \text{and} \quad \forall i = 1, \ldots, n, \quad x_i = 0 \implies [x_{i+1} = x_{i+2} = \cdots = x_{i+k} = 1]\}.$$

By the Definability Lemma established by B. Romov in [9] (see also Lemma 20.3.4 in [7] and [4, 5, 6] for details), we have that

$$\text{pPol } (\leq) \cap \text{pPol } (\neq) \subseteq \text{pPol } (\sigma^n_k)$$

for all $n \geq 5$ and all $k \geq 1$.

For $n \geq 5$ and $n > k \geq 1$, we denote by $\rho^n_k \subseteq 2^{4n}$ the $(4n)$-ary relation defined by

$$\rho^n_k := \{(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n}, y_1, \ldots, y_n, y_{n+1}, \ldots, y_{2n}) \in 2^{4n} \mid (x_1, \ldots, x_n, y_1, \ldots, y_n) \in \sigma^n_k, \quad \text{and} \quad (x_{n+1}, \ldots, x_{2n}, y_{n+1}, \ldots, y_{2n}) \in \sigma^n_k \}.$$
Again by the Definability Lemma, we have that
\[\text{pPol}(\sigma^g_1) \cap \text{pPol}(\sigma^g_k) \subseteq \text{pPol}(\rho^{n}_k), \]
and thus \(\text{pPol}(\leq) \cap \text{pPol}(\neq) \subseteq \text{pPol}(\rho^n_k) \) for all \(n \geq 5 \) and all \(k \geq 1 \).

Our goal is to construct an infinite set of odd integers \(X \) and an infinite family of partial functions \(\{g_t, \ t \in X\} \) so that for every \(t, t' \in X \), we have \(g_t \in \text{pPol}(\rho^{n(t')}_k) \) if and only if \(t \neq t' \).

Remark 3. Since every tuple in \(\sigma^g_k \) (resp. \(\rho^g_k \)) is completely determined by its first \(n \) entries (resp. \(2n \) entries), we will omit the second half of such tuples. We therefore denote by \(S^g_k \) and \(R^g_k \) the relations obtained from \(\sigma^g_k \) and \(\rho^g_k \), respectively, by deleting the second half of every tuple in \(\sigma^g_k \) and \(\rho^g_k \), i.e.,
\[S^g_k := \{(x_1, \ldots, x_n) \in 2^n \mid (x_1, \ldots, x_n, 1 + x_1, \ldots, 1 + x_n) \in \sigma^g_k\} \]
and
\[R^g_k := \{(x_1, \ldots, x_{2n}) \in 2^{2n} \mid (x_1, \ldots, x_{2n}, 1 + x_1, \ldots, 1 + x_{2n}) \in \rho^g_k\} \]
where the above sums are taken mod 2.

Note that \(S^n_k \) is the \(n \)-ary relation on \(2 \) whose members are tuples in which any two 0’s are separated by at least \(k \) symbols 1 (in particular, if the first position is 0, then the last \(k \) positions must be 1). Furthermore, \(R^n_k \) is the cartesian product \(S^n_1 \times S^n_k \).

As mentioned earlier we will use the relations \(S^n_1, S^n_k \) and \(R^n_k \) with the understanding that we are omitting the second parts of the relations \(\sigma^g_1, \sigma^g_k \) and \(\rho^g_k \) in order to simplify the notation.

Notations. In the sequel \(k \geq 4 \) stands for an even integer. Set \(n(k) := k(k + 1) + 1 \). We will write \(\rho^{n(k)}_k \) for \(\rho^{n(k)}_k \) and \(R^{n(k)}_k \) for \(R^{n(k)}_k \). Let \(M^k_1 \) be the \(n(k) \times n(k) \) matrix with columns in \(S^{n(k)}_1 \), the first being \(c_1 = [010101 \ldots 010]^T \) and the remaining columns are obtained by applying cyclic shifts to \(c_1 \), i.e.,
\[c_2 = [10110101 \ldots 010]^T, \]
\[c_3 = [01010101 \ldots 010]^T, \]
\[\ldots \]
\[c_{n(k)} = [110101 \ldots 010]^T. \]

Remark 4. Let \(r_i \) and \(r_j \) be two rows of \(M^k_1 \). If \(|i - j| \geq 2(\text{mod } n(k))\), then \(r_i \) and \(r_j \) have a 0 in the same position.

Lemma 5. If \(k' < k \), then there is no \(n(k') \times n(k) \) matrix \(N \) whose columns are in \(S^{n(k')} \) and whose rows are rows of \(M^k_1 \).

Proof. Suppose that \(k' < k \) and that \(N \) is an \(n(k') \times n(k) \) matrix whose columns are in \(S^{n(k')} \). Suppose, by way of contradiction, that the rows of \(N \)
are rows of M^k. By Remark 4, the only possible adjacent rows of a row r in N are exactly the predecessor and successor rows of r in M^k. Then $n(k')$ would be even, thus yielding the desired contradiction.

Let M^k_i be the $n(k) \times n(k)$ matrix with columns in $S^{n(k)}_k$, and such that the first is $c'_1 = [0 \ldots 0 1 \ldots 1 0 \ldots 0 1 \ldots 1]^T$ and the remaining columns are obtained by applying cyclic shifts to c'_1 as before.

Remark 6. Since $k \geq 4$ is even, if r_i is a row of M^k_i, and r'_j is a row of M^k_i, then r_i and r'_j have a 0 in the same position.

Lemma 7. If $k' > k$, then there is no $n(k') \times n(k)$ matrix N whose columns are in $S^{n(k')}_k$ and whose rows are rows of M^k.

Proof. Suppose that $k' > k$ and that N is an $n(k') \times n(k)$ matrix whose columns are in $S^{n(k')}_k$. Assume, by way of contradiction, that the rows of N are rows of M^k_i. Since each row of M^k_i has exactly k 0’s, we have that N has $k \times n(k')$ 0’s. Hence the matrix N has a column with at least $\frac{k \times n(k')}{n(k)}$ symbols 0. It is easy to verify that since $k' > k \geq 4$, we have that $\frac{k \times n(k')}{n(k)} > k'$. But this yields the desired contradiction, since all columns of N are members of $S^{n(k')}_k$, and each has at most k' 0’s.

Define M_k as the $2n(k) \times n(k)$ matrix given by

$$M_k = \begin{pmatrix} M^k_k \\ M^k_k \\ \end{pmatrix}.$$

Notice that each column of M_k is a tuple of $R^{n(k)}$.

Lemma 8. Let N be a $2n(k') \times n(k)$ matrix whose columns are in $R^{n(k')}$ and whose rows are rows of M^k. Then, either all rows of N are rows of M^k_i, or the first $n(k')$ are rows of M^k_i and the remaining $n(k')$ are rows of M^k_i.

Proof. By Remark 4 and the fact that $R^{n(k')} := S^{k'}_k \times S^{k'}_k$, there cannot be more than 2 rows of M^k_k among the last $n(k')$. In fact, by Remark 6 there can only be rows from M^k_k among the last $n(k')$ rows of N. Furthermore, from Remark 6 and the fact that $R^{n(k')} := S^{k'}_k \times S^{k'}_k$, it follows that either all of the first $n(k')$ rows of N are rows of M^k_k or all of the first $n(k')$ rows of N are rows of M^k_k.

Let f_k be the $n(k)$-ary partial function whose domain is the set of rows of M_k, and such that f_k is constant 0 on the rows of M^k_k and constant 1 on the rows of M^k_k.

Theorem 9. Let $k, k' \geq 4$ be even integers. Then $f_k \in \text{pPol} R^{n(k')}$ if and only if $k \neq k'$.
Proof. Since $[0\cdots 01\cdots 1]^T$ does not belong to $R^{n(k)}$, we see that $f_k \not\in \text{pPol } R^{n(k)}$.

So suppose that $k \neq k'$. If $k < k'$, then it follows from Definition 2 and Lemmas 7 and 8 that $f_k \not\in \text{pPol } R^{n(k')}$.

Suppose now that $k > k'$. If N is an $2n(k') \times n(k)$ matrix whose columns are in $R^{n(k')}$ and whose rows are rows of M^k (otherwise we are done for the domain of f_k is exactly the set of rows of M^k), then by Lemmas 5 and 8 it follows that all rows of N are rows of M^k. Since f_k is constant 1 on the rows of M^k, and since the constant 1 $2n(k')$ tuple belongs to $R^{n(k')}$, we conclude that $f_k \not\in \text{pPol } R^{n(k')}$.

Let \overline{M}_k be the $2n(k) \times n(k)$ matrix obtained by replacing every row of the matrix M_k by its dual tuple (obtained by interchanging 1’s and 0’s) and define L_k as the $4n(k) \times n(k)$ matrix given by

$$L_k = \begin{pmatrix} M_k \\ \overline{M}_k \end{pmatrix}.$$

Moreover, let g_k be the $n(k)$-ary partial function whose domain is the set of rows of L_k, and such that $g_k(\overline{u}) = f_k(u)$ if \overline{u} is a row of M_k and $g_k(\overline{u}) = 1 + f_k(u) \pmod{2}$ if \overline{u} is a row of \overline{M}_k. Then, Theorem 9 can be restated as follows:

Main Theorem. Let $k, k' \geq 4$ be even integers. Then $g_k \in \text{pPol } R^{n(k')}$ if and only if $k \neq k'$.

Let $E_{\geq 4} := \{ 4, 6, 8, \ldots \}$ be the set of all even integers greater or equal to 4 and denote by $\mathcal{P}(E_{\geq 4})$ the power set of $E_{\geq 4}$. Since

$$\text{pPol } (\leq) \cap \text{pPol } (\neq) \subseteq \text{pPol } (\rho^k)$$

for every $n \geq 5$ and every $n > k \geq 1$, we have

$$\text{pPol } (\leq) \cap \text{pPol } (\neq) \subseteq \bigcap_{t \in E_{\geq 4} \setminus X} \text{pPol } R^{n(t)}$$

for every subset X of $E_{\geq 4}$.

So let $X \subset E_{\geq 4}$ and fix $k \in X$. Then $g_k \in \text{pPol } R^{n(t)}$ for all $t \in E_{\geq 4} \setminus X$, i.e.,

$$g_k \in \bigcap_{t \in E_{\geq 4} \setminus X} \text{pPol } R^{n(t)}$$

On the other hand, if $k \in E_{\geq 4} \setminus X$, then we have

$$g_k \not\in \bigcap_{t \in E_{\geq 4} \setminus X} \text{pPol } R^{n(t)}$$

and

$$g_k \not\in \bigcap_{t \not\in X} \text{pPol } R^{n(t)}$$

since $g_k \not\in \text{pPol } R^{n(k)}$. Therefore the map

$$\chi := \mathcal{P}(E_{\geq 4}) \to [\text{pPol } (\leq) \cap \text{pPol } (\neq), \text{Par}(2)]$$

is a bijection.
defined by

\[\chi(X) := \bigcap_{t \in \mathbb{E}_2 \setminus \chi} \text{Pol}_\rho^{h(t)} \]

is one-to-one and we have shown the following result which answers our question on cardinality of the interval \([\text{Pol}(\leq) \cap \text{Pol}(\neq), \text{Par}(2)]\).

Corollary 10. The interval of partial clones \([\text{Pol}(\leq) \cap \text{Pol}(\neq), \text{Par}(2)]\) is of continuum cardinality on \(2\).

References

PARTIAL CLONES CONTAINING BOOLEAN MONOTONE SELF-DUAL P. FUNCT.S

(Miguel Couceiro) LORIA (CNRS - INRIA NANCY G.E. - UNIVERSITÉ DE LORRAINE), ÉQUIPE ORPAILLEUR, BATIMENT B, CAMPUS SCIENTIFIQUE, B.P. 239, F-54506 VANDOEUVRE-LÈS-NANCY
E-mail address: miguel.couceiro@inria.fr

(Lucien Haddad) DÉPARTEMENT DE MATHEMATICQUES ET D’INFORMATIQUE, COLLEGE MILITAIRE ROYAL DU CANADA, BOÎTE POSTALE 17000, STN FORCES, KINGSTON ON K7K 7B4 CANADA,
E-mail address: haddad-l@rmc.ca

(Ivo G. Rosenberg) DÉPARTEMENT DE MATHEMATIQUES ET STATISTIQUE, UNIVERSITÉ DE MONTRÉAL, MONTRÉAL, QUÉBEC, H3C 3J7 CANADA
E-mail address: rosenb@dms.umontreal.ca