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†Math & Info, Collège militaire royal du Canada
B.P 17000, STN Forces, Kingston ON, K7K 7B4 Canada.

Email: haddad-l@rmc.ca

Abstract—We survey known results and present some new ones
about intersections of maximal partial clones on a 2-element set.

I. PRELIMINARIES

Let A be a finite non-singleton set. Without loss of generality
we assume that A = k := {0, . . . , k−1}. For a positive integer
n, an n-ary partial function on k is a map f : dom (f)→ k
where dom (f) is a subset of kn called the domain of f . Let
Par(n)(k) denote the set of all n-ary partial functions on k
and let Par(k) :=

⋃
n≥1

Par(n)(k). An n-ary partial function g

is said to be a total function if dom (g) = kn. Let Op(k) be
the set of all total functions on k.

For n,m ≥ 1, f ∈ Par(n)(k) and g1, . . . , gn ∈
Par(m)(k), the composition of f and g1, . . . , gn, denoted by
f [g1, . . . , gn] ∈ Par(m)(k), is defined by

dom (f [g1, . . . , gn]) :=

{~a ∈ km | ~a ∈
m⋂

i=1

dom (gi), (g1(~a), . . . , gm(~a)) ∈ dom (f)},

and f [g1, . . . , gn](~a) := f(g1(~a), . . . , gn(~a)), for all ~a ∈
dom (f [g1, . . . , gn]).

For every positive integer n and each 1 ≤ i ≤ n,
let en

i denote the n-ary i-th projection function defined by
en
i (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn. Furthermore,

let Jk := {en
i : 1 ≤ i ≤ n} be the set of all (total) projections.

Definition 1. A partial clone on k is a composition closed
subset of Par(k) containing Jk. If a partial clone is contained
in the set of all total functions Op(k), then it is called a clone
on k.

Remark 1. There are two other equivalent definitions for
partial clones. One definition uses Mal’tsev’s formalism and
the other uses the concept of one point extension. These
definitions can be found in chapter 20 of [12].

The partial clones on k (clones on k), ordered by inclusion,
form a lattice LPk

(LOk
, respectively) in which the infinimum

is the set-theoretical intersection. That means that the intersec-
tion of an arbitrary family of partial clones (clones) on k is

also a partial clone on k (clone on k, respectively). A maximal
partial clone on k is a coatom of the lattice LPk

. Therefore
a partial clone M is maximal if there is no partial clone C
over k such that M ⊂ C ⊂ Par(k). Similarly a clone M is
called a maximal clone if there is no clone C on k such that
M ⊂ C ⊂ Op(k). We say that a partial clone C0 on A is
covered by a partial clone C1 on A if there is no partial clone
C such that C0 ⊂ C ⊂ C1. Therefore a maximal partial clone
is a partial clone covered by Par(k).

Example 2. Let

Ωk :=⋃
n≥1

{f ∈ Par(n)(k) | dom (f) 6= ∅ =⇒ dom (f) = kn} =⋃
n≥1

{f ∈ Par(n)(k) | dom (f) 6= ∅ =⇒ f ∈ Op(k)}.

Then Ωk is a maximal partial clone on k.

An interesting and somehow difficult problem in clone
theory is to study intersections of maximal clones and maximal
partial clones. The lattice LO2 is known and was completely
described by E. Post in [14]. In chapter 14 of [12] are listed
all submaximal elements of LO3 , i.e., all clones on 3 covered
by the maximal elements of LO3 . Several results dealing with
intersection of maximal clones can be found in the literature,
we refer the reader to the list of reference in [12] for details.

In this paper we focus on LP2 , the lattice of partial clones
of Boolean functions. We survey the known results and present
some new results concerning the intersections of the maximal
elements of LP2 .

With one exception, every maximal partial clone is the
polymorphism of a relation. We have:

Definition 3. For h ≥ 1, let ρ be an h-ary relation on k and f
be an n-ary partial function on k. We say that f preserves ρ
if for every h × n matrix M = [Mij ] whose columns
M∗j ∈ ρ, (j = 1, . . . n) and whose rows Mi∗ ∈ dom (f)
(i = 1, . . . , h), the h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ ρ. Define

pPol ρ := {f ∈ Par(k) | f preserves ρ}.



It is well known that pPol ρ is a partial clone called the partial
clone determined by the relation ρ.

Note that if there is no h × n matrix M = [Mij ] whose
columns M∗j ∈ ρ and whose rows Mi∗ ∈ dom (f), then
f ∈ pPol ρ.

Example 4. Let 2 := {0, 1}, let {(0, 0), (0, 1), (1, 1)} be
the natural order on 2 and consider the binary relation
{(0, 1), (1, 0)} on 2.

Then pPol {(0, 0), (0, 1), (1, 1)} is the set of all monotone
partial functions and pPol {(0, 1), (1, 0)} is the set of all self-
dual partial functions on 2. For simplicity we will write
pPol (≤) and pPol (6=) for pPol ({(0, 0), (0, 1), (1, 1)}) and
pPol ({(0, 1), (1, 0)}), respectively.

It is easy to see that if ρ is an h-ary relation on 2, then
pPol ρ = pPol (ρ ⊗ 2). This fact motivates the concept of
irredundant relation.

Let h ≥ 1 and let ρ be an h-ary relation on k. We
say that ρ is repetition-free if for all 1 ≤ i < j ≤ h,
there exists (a1, . . . , ah) ∈ ρ with ai 6= aj . Moreover, ρ
is said to be irredundant if it is repetition-free and has no
fictitious components, i.e., there is no i ∈ {1, . . . , h} such that
(a1, . . . , ah) ∈ ρ implies (a1, . . . , ai−1, x, ai+1, . . . , ah) ∈ ρ
for all x ∈ k.

It can be shown that if µ is a nonempty relation, then we
can find an irredundant relation ρ such that pPolµ = pPol ρ
(see, e. g. [4]) for details).

The following result, known as the Definability Lemma, was
first established by B. Romov in [15] (see Lemma 20.3.4 in
[12]) and has been widely used to handle maximal partial
clones via the relational approach.

Lemma 5. (The Definability Lemma) Let h1, . . . , hn, t ≥ 1
be integers, ρi be an hi-ary relation on k, i = 1, . . . , n, and
β be a t-ary irredundant relation on k. Then⋂

1≤i≤n

pPol ρi ⊆ pPolβ

if and only if there exists a family of hi-ary auxiliary relations
{%1, . . . , %n} whose vertex sets is {1, . . . , t}, and such that

β = {(x1, . . . , xt) ∈ kt | (ij1, . . . , i
j
hj

) ∈ %j ⇒
(xij

1
, . . . , xij

hj

) ∈ ρj , for j = 1, . . . , n}.

Example 6. Let ρ1 be a binary and ρ2 be a ternary relation
on k. Let β be the 4-ary relation defined by

β := {(x1, . . . , x4) ∈ k4 | (x1, x2) ∈ ρ1, (x3, x2) ∈ ρ1,

and (x1, x4, x3) ∈ ρ2}.

Then pPol ρ1 ∩ pPol ρ2 ⊆ pPolβ. (Here n = 2, %1 =
{(1, 2), (3, 2)} and %2 = {(1, 4, 3)}.)

As mentioned earlier, Freivald showed that there are exactly
eight maximal partial clones on 2. The following two relations
determine maximal partial clones. Set

R1 := {(x, x, y, y) | x, y ∈ 2} ∪ {(x, y, y, x) | x, y ∈ 2} and
R2 := R1 ∪ {(x, y, x, y) | x, y ∈ 2}.

Theorem 7. ([3]) There are exactly 8 maximal partial clones
on 2, namely: pPol {0}, pPol {1}, pPol {(0, 1)}), pPol (≤),
pPol (6=), pPol (R1), pPol (R2) and Ω2 .

The three maximal partial clones pPolR1, pPolR2 and
Ω2 contain the unary functions Op(1)(2) (i.e., maps) on 2.
Such partial clones are called Słupecki type partial clones in
[8], [16]. They are the only three maximal partial clones of
Słupecki type on 2.

It is known that pPolR2 ∩Op(2) is the maximal clone of
all (total) linear functions over 2 (see, e.g., section 5.2.4 of
[12]). Alekzeev and Voronenko studied the classes of partial
clones of Boolean functions that contain pPolR2 ∩Op(2) on
2. From the main result of [1] we have:

Theorem 8. The interval of partial clones [pPolR2 ∩
Op(2),Par(2)] is of continuum cardinality on 2.

The proof of this result is quite complicated and is given in
([1]) (see also Theorem 20.8.1 of [12]). We refer the reader
to Theorem 19 of [8] and Theorem 20.7.13 of [12] for the
generalization of Theorem 8 to partial clones on k with k ≥ 3.
A consequence of Theorem 8 is that the interval of partial
clones [pPol (R2) ∩ Ω2,Par(2)] is of continuum cardinality
on 2.

On the other hand it is shown in [5] that pPolR1 ∩Op(k)
is the clone over k generated by Op(1)(k) for every k ≥ 2.
We present a result similar to Theorem 8 that is established
for pPolR1 in [5].

For n ≥ 3 define the 2n-ary relation τ2n on 2 by setting:
(x1, . . . , x2n) ∈ τn if and only if either x1 = · · · = x2n, or
each of 0 and 1 appears exactly n times in (x1, . . . , x2n).

It is shown in [5] that Op(1)(2) ⊆ pPol τ2n for all n ≥ 3.
Since

R1 = {(x1, x2, x3, x4) ∈ 24 |
(x1, . . . , x1, x2, x3, . . . , x3, x4) ∈ τ2n}

holds for all n ≥ 3, it follows from Lemma 5 that pPol τ2n ⊆
pPolR1 for all n ≥ 3.

Let P := {3, 5, 7, . . . } be the set of all odd prime numbers
and P(P) be its power set. It is shown in [5] that the map

χ : P(P)→ [pPolR1 ∩ Ω2,pPolR1]

defined by X 7−→ χ(X) :=
⋂

t∈P\X pPol τ2t is one-to-one.
Hence we have the following result:

Theorem 9. The interval of partial clones [pPol (R1) ∩
Ω2,Par(2)] is of continuum cardinality on 2.

Together with D. Lau, the second author studied several
intersections of Słupecki type partial clones on a non-singleton
finite set. The following result comes from [8]:

Theorem 10. The partial clone pPolR1∩pPolR2 is covered
by the maximal partial clone pPolR2.

The dual of the above result does not hold for pPolR1. It is
shown in [8] that there is at least one partial clone that strictly



lies between pPolR1 ∩ pPolR2 and pPolR1. Indeed, let

λ := {(x1, . . . , x7) ∈ 27 | (x1, x2, x5, x6) ∈ R1,

(x2, x4, x6, x7) ∈ R1, and (x1, x2, x3, x4) ∈ R2}.

Then it is shown in [8] that pPolR1∩pPolR2  pPolλ  
pPolR1. Therefore the partial clone pPolR1 ∩ pPolR2 is
not covered by the maximal partial clone pPolR1. To our
knowledge, little seems to be known about the interval of
partial clones [pPolR1 ∩ pPolR2,pPolR1].

Intersections of maximal partial clones that are not of
Słupecki type have been studied as well. Intersections of the
form pPol ρ∩ pPol θ where ρ, θ ∈ {{0}, {1}, {(0, 1)}, 6=,≤},
with the exception of {ρ, θ} = {≤, 6=}, have been studied in
[6], [7]. Almost all proofs given in [6], [7] are based on the
composition of partial functions. In the same direction, deeper
results were established in [10] and [9] where partial clones are
handled via relations, and all proofs are based on the Lemma
5. Let

CM := pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol (≤) and
CD := pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol (6=).

Then CM (respectively CD) is the set of all idempotent
monotonic partial functions on 2 (idempotent self-dual partial
functions on 2). We have:

Theorem 11. The interval [CM ,Par(2)] contains exactly 25
partial clones and the interval [CD,Par(2)] contains exactly
33 partial clones on 2.

The intervals of partial clones [CM ,Par(2)] and
[CD,Par(2)] are completely described in [10] (see also
[9]). D. Lau informed the second author that some of the
results in [10] exist in the unpublished manuscript [18] by B.
Strauch.

In view of results from [1], [5], [10], [18], [19], it was
thought that if 2 ≤ i ≤ 5 and M1, . . . ,Mi are non-
Słupecki maximal partial clones on 2, then the interval
[M1 ∩ · · · ∩ Mi,Par(2)] is either finite or countably infi-
nite. It is shown in [11] that the interval of partial clones
[pPol (≤) ∩ pPol (6=),Par(2)] is infinite. This result is men-
tioned in Theorem 20.8 of [12] (with an independent proof
given in [13]) and in chapter 8 of the PhD thesis [17].
However, it remained an open problem to determine whether
[pPol (≤) ∩ pPol (6=),Par(2)] is countably or uncountably
infinite.

The following relations, introduced in [2], are needed to
settle this question. For n ≥ 5 and n > k ≥ 1 we denote by
σn

k ⊆ 22n the (2n)-ary relation defined by

σn
k := {(x1, . . . , xn, y1, . . . , yn) ∈ 22n |
∀ i = 1, . . . , n, xi 6= yi, and ∀ k = 1, . . . , n, yi+k ≤ xi},

where the subscripts i + j in the above definition are taken
modulo n.

Now for n ≥ 5 and n > k ≥ 1, we denote by ρn
k ⊆ 24n

the (4n)-ary relation defined by

ρn
k := {(x1, . . . , x2n, y1, . . . , y2n) ∈ 24n |

(x1, . . . , xn, y1, . . . , yn) ∈ σn
1 , and

(xn+1, . . . , x2n, yn+1, . . . , y2n) ∈ σn
k }.

By Lemma 5 we have that for all n ≥ 5 and n > k ≥ 1

pPol (≤) ∩ pPol (6=) ⊆ pPolσn
k ∩ pPolσn

1 ⊆ pPol ρn
k .

Denote by E≥4 := {4, 6, 8, . . . } the set of all even integers
greater or equal to 4 and denote by P(E≥4) the power set of
E≥4. Furthermore, for every even integer k ≥ 4, let n(k) :=
k(k+1)+1. Since pPol (≤)∩pPol (6=) ⊆ pPol (ρn

k ) for every
n ≥ 5 and every n > k ≥ 1, we have that

pPol (≤) ∩ pPol (6=) ⊆
⋂

t∈E≥4\X

pPol ρn(t)

for every subset X of E≥4. It was shown in [2] that the map

χ : P(E≥4)→ [pPol (≤) ∩ pPol (6=),Par(2)]

defined by X 7−→ χ(X) :=
⋂

t∈E≥4\X

pPol ρn(t) is one-to-one.

Hence we have the following result:

Theorem 12. The interval of partial clones [pPol (≤) ∩
pPol (6=),Par(2)] is of continuum cardinality on 2.

We conclude this survey with the following new result,
which provides several examples of finite intervals of the form
above.

Theorem 13. Let ρ ∈ {{0}, {1}, {(0, 1)}, 6=,≤} and θ ∈
{R1, R2}. Then the partial clone pPol ρ∩pPol θ is covered by
the maximal partial clone pPol θ over 2. In particular, each
interval of partial clones of the form [pPol ρ∩pPol θ,Par(2)]
has size 2.

The proof is based on the following fact established after
Lemma 3 in [8].

Fact 14. Let pPol ρ and pPol θ be two distinct maximal partial
clones on k. Suppose that

[pPol ρ ∩ pPol θ ⊆pPolλ] =⇒
[pPolλ ⊆ pPol ρ or pPolλ = pPol θ]

holds for every irredundant relation λ. Then the partial clone
pPol ρ∩pPol θ is covered by the maximal partial clone pPol θ
on k.

We need the following notation. For v∼ = (v1, . . . , vt) ∈ 2t,
we define ker(v∼) := {(i, j) ∈ {1, . . . , t}2 | vi = vj}. Note that
ker(v∼) is a binary equivalence relation on the set {1, . . . , t}
with at most two blocks.

Proof of Theorem 13. Let θ ∈ {R1, R2}. We consider three
cases:

a) pPol {(0, 1)} ∩ pPol θ is covered by pPol θ. Let t ≥ 1
and λ be a t-ary irredundant relation such that



pPol {(0, 1)} ∩ pPol θ ⊆ pPolλ.
By Lemma 5, there is a binary relation %1 and a 4-ary

relation %2, with {%1, %2} covering the set {1, . . . , t} and such
that

λ = {(x1, . . . , xt) ∈ 2t |
∀ (j1, j2) ∈ %1, (xj1 , xj2) ∈ {(0, 1)}, and
∀ (i1, . . . , i4) ∈ %2, (xi1 , . . . , xi4) ∈ θ}.

Note that if %1 = ∅, then λ can be defined from θ and
by Lemma 5 pPol θ ⊆ pPolλ, thus pPol θ = pPolλ by the
maximality of pPol θ. So assume %1 6= ∅. Without loss of
generality, let (1, 2) ∈ %1, i.e., (x1, x2) = (0, 1) for every
tuple (x1, . . . , xt) ∈ λ. Fix v∼ = (0, 1, v3, . . . , vt) ∈ λ and set

µ := {(x1, x2) ∈ 22 | (x1, x2, xi3 , . . . , xit) ∈ λ}

where, for j = 3, . . . , t, ij = 1 if (1, ij) ∈ ker (v∼) and ij = 2
if (2, ij) ∈ ker (v∼). Then we have that pPolλ ⊆ pPolµ by
Lemma 5. As v∼ = (0, 1, v3, . . . , vt) ∈ λ we have (0, 1) ∈ µ
and since every (x1, . . . , xt) ∈ λ satisfies x1 = 0, x2 = 1,
we have that µ = {(0, 1)}. By Fact 14, pPol {(0, 1)}∩pPol θ
is covered by pPol θ. The proof of the claim that pPol {0} ∩
pPol θ and pPol {1} ∩ pPol θ are covered by pPol θ follows
similarly.

b) pPol {6=} ∩ pPol θ is covered by pPol θ. We proceed
as in case a), and choose v∼ = (v1, v2, . . . , vt) ∈ λ. Then
either (v1, v2) = (0, 1) or (v1, v2) = (1, 0). Suppose that
(v1, v2) = (0, 1) and consider the map ¬(0) = 1,¬(1) = 0.
Since ¬ ∈ pPol (6=) ∩ pPol θ, we have ¬ ∈ pPolλ and so
¬(v∼) := (¬(v1), . . . ,¬(vt)) ∈ λ. Again consider the relation
µ defined in a). It is easy to see that µ is the binary relation 6=
and the rest of the proof is as above. The case (v1, v2) = (1, 0)
follows similarly.

c) pPol ≤ ∩ pPol θ is covered by pPol θ. Again proceed
as in case a) with the assumption that (1, 2) ∈ %1. Note that in
this case we have (0, . . . , 0), (1, . . . , 1) ∈ λ. Moreover since
λ is irredundant, there is v∼ = (v1, v2, . . . , vt) ∈ λ such that
v1 6= v2. As v1 ≤ v2 we get (v1, v2) = (0, 1). Again consider
the relation µ as defined in case a). From v∼ ∈ λ we obtain
(0, 1) ∈ µ and as (i, . . . , i) ∈ λ we have (i, i) ∈ µ, for i =
0, 1. Note that (1, 0) 6∈ µ since for every (x1, x2, . . . , xt) ∈
λ, x1 ≤ x2. So µ is the binary relation ≤. The rest of the
proof is as in case a).
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