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Reduced Order Model in Cardiac Electrophysiology
with Approximated Lax Pairs

Jean-Frédéric Gerbeau∗†, Damiano Lombardi∗†, Elisa Schenone∗†

Abstract

A reduced-order method based on Approximated Lax Pairs (ALP) is applied
to the integration of electrophysiology models. These are often high-dimensional
parametric equation systems, challenging from a model reduction standpoint. The
method is tested on two and three dimensional test-cases, of increasing complexity.
The solutions are compared to the ones obtained by a finite element. The reduced-
order simulation of pseudo-electrocardiograms based on ALP is proposed in the last
part.

1 Introduction

This work 1 is devoted to application of a reduced-order method based on Approximated
Lax Pairs (ALP, see [12]) to cardiac electrophysiology. The ability of this method to
handle propagation phenomena was considered in [12]. In the present paper, we focus
more specifically on its behavior for parametric problems.

From a Reduced-Order Modeling (ROM) standpoint, cardiac electrophysiology is a
challenging context. Indeed, the systems describing the electrical activation of tissues are
nonlinear, they exhibit front propagations, and they depend on many parameters. For
example, the possible presence of infarcted regions requires a modification of the space
dependence of some reaction parameters. Similarly, the possible initiation of ectopic
stimulations yields source terms which can change in space and in time. Consequently, a
very large space of parameters has to be visited in order to cover all the possible scenarios.

The ability to deal with parametric systems is one of the main issues in model re-
duction. We refer for instance to [19] for a discussion on affinely parametrized elliptic
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partial differential equation systems. The standard methods of model reduction are often
based on the construction of a database of pre-computed simulations. Proper Orthogonal
Decomposition is a paradigmatic example, which is widely used in many applications (see
e.g.[1, 13, 15, 23]). The need of a database can become an issue when dealing with high
dimensional parametric spaces, since the construction of the database can be extremely
demanding both in time and memory. The method ALP considered in this work does
not rely on a database. It therefore avoids the need of an off-line exploration of a large
parametric space. Instead, it makes a basis evolve in a way dependent on the dynamics
of the solution. In all the examples given in this work, the method will be systemati-
cally compared to a full-order model obtained by finite element. For illustration purposes
only, it will also be compared to the POD computed from a “simple” set of precomputed
solutions.

The structure of the work is as follows. In Section 2 the equations of the cardiac
electrophysiology are introduced. In Section 3, the ALP method is detailed. The general
principle of the method is recalled in Section 3.1, useful complements are presented in
Section 3.2, then the necessary steps to apply the method to the monodomain and bido-
main equations are presented in Sections 3.3 and 3.4 respectively. In Section 4 various
numerical experiments are proposed. The first example is a 2D propagation in an isotropic
uniform medium. Then, a synthetic infarction is simulated and the problem of ectopic
stimuli is investigated. The last case is the 3D simulation of a pseudo-electrocardiogram.
Some perspectives of the present study are presented in the conclusion.

2 Electrophysiology

2.1 The bidomain equations

The electrical activity in the heart is modeled by the bidomain equations (see for instance
[18, 21, 25]). At the microscopic level, the cardiac muscle is subdivided into an intracellular
and an extracellular domain. The bidomain equations are obtained at the macroscopic
level through a homogenization process which leads to the definition of an intra- and
an extra-cellular electrical potential, denoted by uI and uE respectively. The bidomain
equations read

Am
(
Cm

∂vm
∂t

+ Iion(vm, w)
)
− div(¯̄σI∇vm)− div(¯̄σI∇uE) = AmIapp

−div((¯̄σI + ¯̄σE)∇uE)− div(¯̄σI∇vm) = 0
∂w

∂t
− g(vm, w) = 0

(1)

where vm = uI − uE is the transmembrane potential, w is a variable related to the
ionic activity, ¯̄σI,E denotes the intra- (resp. extra-) cellular conductivity tensor (see for
instance [24]), Am and Cm are the ratio of membrane area per unit volume and the
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membrane capacitance per area respectively. Finally, the term Iion denotes a nonlinear
function representing the ionic current through the cell membrane and the term Iapp is a
given source term. More details are given in the numerical experiments section.

The bidomain equations are coupled to a ionic model in order to define the current
Iion. For simplicity, in this study we use the FitzHugh-Nagumo model [11, 17] defined by

Iion(u,w) = su(u− a)(u− 1) + w
g(u,w) = ε(γu− w)

(2)

where 0 < a < 1, s, ε, γ are parameters. The FitzHugh-Nagumo model is only phe-
nomenological and too crude to describe the current in cardiac cells. But it is sufficient
to investigate our method in configurations close to what would be encountered in more
realistic settings.

2.2 The monodomain equations

The bidomain equations are useful for some specific applications where the extracellular
potential is needed. This is the case for example for electrocardiogram simulation (see
e.g. [3] and Section 4.6 below) or to model complex electrophysiological behaviors like
the virtual electrode phenomenon (see e.g. [9]). But in many cases, an approximation
called “monodomain equations” proves to be sufficient [10]. These equations will be used
in some of the numerical experiments presented below. They read:

Am(Cm
∂vm
∂t

+ Iion(vm, w))− div(¯̄σm∇vm) = AmIapp

∂w

∂t
− g(vm, w) = 0, (3)

where ¯̄σm is an electrical conductivity.

3 The ALP method in electrophysiology

In this section the reduced-order method used in the present work is detailed. It is
hereafter derived for a generic PDE of the form:

∂tu = F (u, ∂(n)
x u), (4)

where u(x, t), x ∈ Ω ⊆ Rd, t ∈ (0, 1) is the solution of the PDE, with specified initial and

boundary conditions. For simplicity, F (u, ∂
(n)
x u) will be denoted by F (u).

The basic idea of the method, first proposed in [12], is to define a time evolving modal
expansion of the form:

û(x, t) =

NM∑
i=1

βi(t)ϕi(x, t), (5)
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where û is the low dimensional approximation of the PDE solution, βi(t) is the repre-
sentation of û in the space defined by the NM modes ϕi(x, t). In order to completely
define the basis evolution, an equation and an initial condition for the modes have to
be specified. Other works in the literature deal with this type of decomposition: recent
examples are the dynamic low-rank decomposition (see for instance [14]), the orthogonal
field equations (see [22]) and the bi-orthogonal decomposition method presented in [7, 8]
to integrate stochastic PDEs.

The hypothesis and the governing equations of the ALP method are detailed in the
remainder of this section. It will be assumed that 〈ϕi, ϕj〉 = δij,∀t, where 〈·, ·〉 is the
standard L2(Ω) scalar product, δij is the Kronecker delta.

Among all the possible formalisms that allow us to define a time-travelling mode
expansion, an operator-based approach is chosen. The modes are retrieved in the set of
the eigenfunctions of a time varying operator Lχ which linearly depends upon the solution
of the partial differential equation. The operator is represented by its spectrum and its
eigenfunctions, which evolve under the action of an evolution operator (the same for all
the eigenfunctions), denoted by M. When applied to integrable systems of equations,
these operators are the representation of a Lax pair, as pioneered in [16].

3.1 The ALP method

In this section, we gather the main results presented in [12]. The modes are, at every
time instant, a subset of the eigenfunctions of a linear operator of Schrödinger-type:

Lχ(u)ϕ := Lϕ− χu(x, t)ϕ, (6)

where χ is a real scalar parameter and L is typically −∆, or any other linear selfadjoint
elliptic operator. Then, the modes ϕi are defined as the eigenfunctions of Lχ(u):

Lχ(u)ϕi = λiϕi. (7)

The choice of the operator is arbitrary (to some extent), and it will be commented
in the last part of this work. Let us assume that u has the regularity that justifies the
following steps of the derivation.

The operator evolves in time since it depends upon the solution of the PDE. This
has important consequences for parametric systems, as it will be investigated by means
of numerical experiments. Moreover, it is linear, selfadjoint with a compact inverse for
every time, i.e. it defines, for every time, an orthonormal basis which is a complete basis
of L2(Ω).

The basis evolution may be derived by taking the time derivative of the mode defini-
tion (7):

(Lχ − λiI)∂tϕi = λ̇iϕi + χFϕi. (8)

4



This equation defines the modes evolution. Remark that the PDE expression enters
explicitly in the modes evolution. Since the whole modal set is a complete basis, this
equation provides a way to compute a smooth change of basis and the representation of
this change may be represented on the basis itself, at each time. Let us write:

∂tϕi =M(u)ϕi. (9)

The following proposition shows that it is possible to compute an approximate rep-
resentation of M(u) and to derive an evolution equation satisfied by the eigenvalues of
Lχ(u).

Proposition 1 ([12]). Let u be a solution of equation (4). Let Lχ(u) be defined by (7).
Let NM ∈ N∗. For m ∈ {1, . . . , NM}, let λm(t) be an eigenvalue of Lχ(u(x, t)), and
ϕm(x, t) an associated eigenfunction, normalized in L2(Ω). Let M(u) be the operator
defined in (9). Then the evolution of λm is governed by

∂tλm = −χ〈F (u)ϕm, ϕm〉, (10)

and the evolution of ϕm satisfies, for p ∈ {1, . . . , NM},

〈∂tϕm, ϕp〉 = Mmp(u), (11)

with {
Mmp(u) =

χ

λp − λm
〈F (u)ϕm, ϕp〉, if p 6= m and λp 6= λm,

Mmp(u) = 0, if p = m or λp = λm.
(12)

We will denote by M(u) ∈ RNM×NM the skew-symmetric matrix whose entries are defined
by Mmp(u).

The proof of this proposition is based on a direct computation and it is shown in detail
in [12]. The matrix M is a representation of the operator M on the modes at time t.
This representation is convenient from a computational standpoint since it can easily be
obtained from the expression F (u) defining the PDE (4), without any a priori knowledge
ofM(u). With this approximation ofM(u), the evolution of the modes can be computed
according to the nonlinear dynamics of the system. This is an important difference with
standard reduced-order methods, like POD, where the modes are fixed once for all. To
set up a reduced order integration method, only a small number NM of modes will be
retained.

Equation (7) defines a Hilbert basis, which is used to approximate the solution u ∈
L2(Ω):

ũ(x) =

NM∑
m=1

βmϕm(x). (13)
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Proposition 1 gives an approximated way to propagate the eigenmodes and the eigenval-
ues. Function F (u) is approximated by F̃ (u) =

∑NM

m=1 γmϕm. Using these approximations
in the PDE (4), the following holds:

NM∑
m=1

β̇mϕm + βm∂tϕm =

NM∑
m=1

γmϕm.

Projecting this relation on ϕp, and using (11), the expression of the PDE on the reduced
basis is obtained:

β̇ +Mβ = γ

Defining Θij = 〈F̃ (u)ϕj, ϕi〉), (10) and (11) are approximated by

λ̇i = −χΘii,

and, for λi 6= λj,

Mij =
χ

λj − λi
Θij,

respectively. The third order tensor 〈ϕkϕj, ϕi〉 is denoted by Tijk. By definition:

Θij = 〈F̃ (u)ϕj, ϕi〉 =

NM∑
k=1

γkTijk.

Computing the time derivative of Tijk gives:

Ṫijk = 〈∂tϕkϕj, ϕi〉+ 〈ϕk∂tϕj, ϕi〉+ 〈ϕkϕj, ∂tϕi〉.

Thus
Ṫijk = {M,T}(3)

ijk, (14)

where

{M,T}(3)
ijk =

NM∑
l=1

(MliTljk +MljTilk +MlkTijl).

For the specific problem of interest, a relation linking γ and β will be also derived.
The set of equations which describes the dynamics in the reduced order space is:

β̇i +

NM∑
m=1

Mimβm − γi = 0,

λ̇i + χ

NM∑
m=1

Tiimγm = 0,

Ṫijk = {M,T}(3)
ijk,

Mij =
χ

λj − λi

NM∑
m=1

Tijmγm,

γi = γi(β),

(15)
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for i, j, k = 1 . . . NM .

Remark. The complexity of the resolution of system (15) scales with N3
M . As a conse-

quence, the method is only efficient when a small number of basis functions is sufficient to
reach the desired accuracy. This actually happens in many cases, as shown in Section 4.3.
For the cases when a higher number of modes is required, a less expensive variant of the
method is currently under investigation.

3.2 Complements on the ALP method

3.2.1 Evolution of more complex tensors

In the previous section, it was shown how the third order tensor Tijk evolves in time.
Depending on the partial differential equation of interest, other tensors may appear in
equation (15)5. For the electrophysiology problems considered in this work, it will be
useful to study the following type of tensor:

Ai1,...,ik :=

∫
Ω

`1(ϕ1) . . . `k(ϕk) dΩ, (16)

where the `i are linear operators which commute with time. The time evolution equation
for this tensor reads:

∂tAi1,...,ik =
k∑

h=1

∫
Ω

`i(∂tϕh) . . . `k(ϕk) dΩ =
k∑

h=1

NM∑
l=1

MhlAi1,...,il,...,ik . (17)

Let us consider an example with a fourth-order tensor:

Dijkh =

∫
Ω

`1(ϕiϕj)`2(ϕkϕh) dΩ. (18)

Then, differentiating in time

∂tDijkh = {M,D}(4)
ijkh =

NM∑
l=1

MilDljkh +

NM∑
l=1

MjlDilkh +

NM∑
l=1

MklDijlh +

NM∑
l=1

MhlDijkl. (19)

This will be used in Section 3.3.

3.2.2 Reconstruction in the high dimensional space

The reconstruction of the solution in the high dimensional space is now detailed. Contrary
to standard approaches, this step is not trivial since the basis is time-evolving.

7



The derivative of the modes can be approximated in the space defined by the modes
at the current time instant as follows:

∂tϕi ≈
NM∑
h=1

Mhiϕh, (20)

where the matrices M ∈ RNM×NM have been computed during the integration stage.
The practical implementation of the algorithm is the following. The modes are ex-

tracted at the very beginning by solving the spectral problem. The initial space is
Φ(0) := span{ϕ1(x, 0), ..., ϕNM

(x, 0)}.
Then, at every time instant a two-step scheme is applied. First, the modal space Φ is

updated:
Φ(n+1) = Φ(n) + ∆tH(M,∂tΦ), (21)

where Φ ∈ RN×NM and H denotes an integration scheme (that can be either explicit or
implicit).

For instance, if a second order Crank-Nicolson scheme is used, the update reads:

Φ(n+1) = Φ(n) +
∆t

2

(
Φ(n+1)M (n+1) + Φ(n)M (n)

)
. (22)

In general the scheme does not guarantee that the eigenfunctions at time t(n+1) are or-
thonormal. Hence, in a second step, a Modified Gram-Schmidt orthogonalization is ap-
plied to the space Φ. The cost of the operation scales as 2N × (NM)2 and therefore is
linear in the high order dimension N . In this work this simple reconstruction was adopted
and proved to be sufficiently precise.

Remark. For a better accuracy, the following alternative procedure could be used. An
orthogonal complement can be added to the approximation of the time derivative:

∂tϕi =

NM∑
h=1

Mhiϕh + ri, (23)

where 〈ri, φ〉 = 0. To compute it, the expression of the derivative is injected into the
equation governing the modes dynamics and projected on a basis orthogonal to the modes.
Let us introduce Ψ = span {ψ1, ..., ψNk

} such that Ψ ⊥ Φ. At initial time the orthogonal
basis is chosen as Ψ = span {ϕNM+1, ..., ϕNM+Nk

}. Then:

NM∑
h=1

Mhi(Lχ − λiI)ϕh + (Lχ − λiI)ri = λ̇iϕi + Fϕi. (24)

The linear system determining ri is obtained by projecting the equation onto Ψ:

〈(Lχ − λiI)ri, ψj〉 = 〈Fϕi, ψj〉. (25)
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When this correction is taken into account, the cost of the method is higher. Indeed,
at each time step, the set of [Φ,Ψ] have to be orthonormalized with the MGS method,
leading to a cost proportional to 2N ×(NM +Nk)

2. For the test cases of the present work,
this variant did not significantly improve the results.

3.3 ALP for the monodomain equations

We are now interested in applying the ALP method to the electrophysiology equations.
We first derive the ALP algorithm for the monodomain equations (3). In order to apply
the technique described above we couple (3) to the FitzHugh-Nagumo ionic model and
write it as

AmCm∂tvm = f(vm, w),

∂tw = g(vm, w), (26)

where

f(vm, w) = Amsvm(vm − a)(1− vm)− Amw + div(¯̄σm∇vm) + AmIapp, (27)

and
g(vm, w) = ε(γvm − w). (28)

The first step to apply the ALP method is to define a linear operator Lχ. For the
present work, the operator Lχ is defined as

Lχ(u)ϕ = −div(¯̄σm∇ϕ)− χuϕ, (29)

and the modes ϕi are solutions of the eigenproblem

Lχ(u)ϕi = λiϕi. (30)

Let us remark that the conductivity ¯̄σm being a tensor, the modes set can account for
some physical anisotropy due to the presence of cardiac fibers.

The eigenproblem is symmetric positive definite. In the examples presented below it
is solved using a Krylov-Schur method with a Lanczos decomposition (resp. B-Lanczos
for the generalized eigenproblem). Although only NM modes have to be computed, this
step may be expensive. But it is worth noticing that it is solved only once, before the
resolution of the reduced order model. In addition, the initial basis does not depend on
the PDE parameters (except the conductivity tensor ¯̄σm). Thus, the same initial basis
can be used for different sets of parameters.

Let us now approximate the solution of equations (26) in the low dimensional space
defined by the NM modes ϕi(x, t) which are the first NM eigenfunctions defined by (30).
The transmembrane potential vm can be approximated by

v̂m =

NM∑
i=1

βi(t)ϕi(x, t). (31)
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We choose to approximate the ionic variable in the same reduced order space and write

ŵ =

NM∑
i=1

µi(t)ϕi(x, t), (32)

where ŵ is the low dimensional approximation of w, µi(t) is the representation of ŵ in
the reduced order space Φ.

Using these Galerkin approximations, we can write:

f(vm, w) ≈ −Amsa
NM∑
i=1

βiϕi + Ams(a+ 1)

NM∑
i,j=1

βiβjϕiϕj − Ams
NM∑

i,j,k=1

βiβjβkϕiϕjϕk +

−Am
NM∑
i=1

µiϕi +

NM∑
i=1

βidiv(¯̄σm∇ϕi) + AmIapp(x, t). (33)

Using the approximation of vm in the reduced space Φ, from equations (29) we find

−div(¯̄σm∇ϕi)− χ
NM∑
j=1

βjϕjϕi = λiϕi, ∀i = 1, . . . , NM . (34)

Let us substitute the first term of (34) in (33). Then the approximation of f(vm, w) writes

f ≈ −Amsa
NM∑
i=1

βiϕi −
NM∑
i=1

λiβiϕi + Ams(a+ 1)

NM∑
i,j=1

βiβjϕiϕj − χ
NM∑
i,j=1

βiβjϕiϕj +

−Ams
NM∑

i,j,k=1

βiβjβkϕiϕjϕk − Am
NM∑
i=1

µiϕi + AmIapp(x, t). (35)

We can now project expression (35) onto Φ. Then we define the projection of f , γp
∀p = 1, . . . , NM , as

γp := −Ama
NM∑
i=1

βi〈sϕi, ϕp〉 −
NM∑
i=1

λiβi〈ϕi, ϕp〉 − Am
NM∑
i=1

µi〈ϕi, ϕp〉+

+Am(a+ 1)

NM∑
i,j=1

βiβj〈sϕiϕj, ϕp〉 − χ
NM∑
i,j=1

βiβj〈ϕiϕj, ϕp〉+

−Am
NM∑

i,j,k=1

βiβjβk〈sϕiϕj, ϕkϕp〉+ Am〈Iapp, ϕp〉. (36)
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Let us assume that the applied stimulus is approximated by

Iapp(x, t) =
L∑
l=1

hl(t)zl(x).

If we use the orthonormality of Φ, equation (36) can be written as

γp = −λpβp − Amµp − Ama
NM∑
i=1

Bipβp + Am(a+ 1)

NM∑
i,j=1

βiβjWijp +

−χ
NM∑
i,j=1

βiβjTijp − Am
NM∑

i,j,k=1

βiβjβkYijkp + Am

L∑
l=1

hl(t)〈zl, ϕp〉, (37)

where we define the matrix B, and the third and fourth order tensors T , W , Y as

Bij := 〈sϕi, ϕj〉 ∀i, j = 1, . . . , NM ,
Tijk := 〈ϕi, ζjk〉 ∀i, j, k = 1, . . . , NM ,
Wijk := 〈sϕi, ζjk〉 ∀i, j, k = 1, . . . , NM ,
Yijkh := 〈sζij, ζkh〉 ∀i, j, k, h = 1, . . . , NM ,

(38)

and the functions ζ by
ζij := ϕiϕj ∀i, j = 1, . . . , NM .

Note that these tensors are computed once for all at the initialization phase. Then they
are simply propagated according to their respective evolution equation.

Dealing with the second equation of (26), we write the projection of the approximated
function g(vm, w) as

ηp := 〈g, ϕp〉 = ε(γβp − µp), ∀p = 1, . . . , NM . (39)

Then, to solve equations (26) with the ALP method we have to compute at each time
iteration the quantities

β̇i +

NM∑
j=1

βjMji = γi,

µ̇i +

NM∑
j=1

µjMji = ηi,

(40)

where γi, ηi, for i = 1, . . . , NM are defined by (37) and (39). The complete set of equations
that describe the dynamics is defined by (15)-(37)-(39), with equations (40) replacing the
first equation of (15).
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Remark. Note that in the derivation of the ALP equations presented above, the diffusion
term was eliminated in equation (35) by taking advantage of the modes definition in terms
of the Schrödinger operator. Roughly speaking, a third order tensor is introduced, whose
computation does not require modes differentiation. This is not the only possibility.
Indeed, if the second term of (34) is substituted in (33), the approximation of f(vm, w)
writes:

f ≈ −Amsa
NM∑
i=1

βiϕi −
Ams(a+ 1)

χ

NM∑
i=1

λiβiϕi −
Ams

χ2

NM∑
i=1

λ2
iβiϕi − Am

NM∑
i=1

µiϕi +

−Ams(a+ 1)

χ

NM∑
i=1

βidiv(¯̄σm∇ϕi)−
Ams

χ2

NM∑
i=1

λiβidiv(¯̄σm∇ϕi) +

NM∑
i=1

βidiv(¯̄σm∇ϕi) +

+
Ams

χ

NM∑
i,j=1

βiβjdiv(¯̄σm∇ϕi)ϕj + AmIapp(x, t). (41)

Equation (41) is then projected onto Φ. Let us make the same assumptions as below,
i.e. separable form space-time sources. Then, the projection of f , γp ∀p = 1, . . . , NM is
therefore defined as:

γp := −Amµp − Am
NM∑
i=1

(a+
a+ 1

χ
λi +

1

χ2
λ2
i )Bipβi +

NM∑
i=1

Am
(a+ 1

χ
+

1

χ2
λi
)
βiVip +

−
NM∑
i=1

βiEip −
Am
χ

NM∑
i,j=1

βiβjUijp + Am

L∑
l=1

hl(t)〈zl, ϕp〉, (42)

where we define the matrices B, E, V and the third order tensors U as

Bij := 〈sϕi, ϕj〉 ∀i, j = 1, . . . , NM ,
Eij := 〈¯̄σm∇ϕi,∇ϕj〉 ∀i, j = 1, . . . , NM ,
Vij := 〈s¯̄σm∇ϕi,∇ϕj〉 ∀i, j = 1, . . . , NM ,
Uijk := 〈¯̄σm∇ϕi,∇(ζjk)〉 ∀i, j, k = 1, . . . , NM .

(43)

This way to proceed is attractive from a reduced-order modeling standpoint, since it
allows to get rid of the fourth-order projection tensor appearing when the Galerkin pro-
jection of the FitzHugh-Nagumo ionic current is considered. For standard ROM based on
Galerkin projection the scalability is of the order of N4

M , while for ALP, by taking advan-
tage of the definition of the potential in the Schrödinger operator, the cost of the ROM is
of the order of N3

M . A discussion on the cost and scalability of other ROM approaches is
provided in [5, 20]. An effective method to deal with nonpolynomial nonlinearities and to
avoid the computation of high-order projection tensors could be inspired by the concept of
empirical interpolation methods [2, 6]. A comparison and an application of these methods
to ALP will be the object of future works.
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3.4 ALP for the bidomain equations

To discretize the bidomain equations in the low dimension space Φ and apply the ALP
method, as in section 3.3, we first choose the initial reduced order space. The operator
Lχ defined for this problem is given by

Lχ(u)ϕ = −div(¯̄σI∇ϕ)− χuϕ (44)

where ¯̄σI is the intracellular conductivity tensor, indicated in the following as σI .
The second step is the discretization of equations (1). We can write the system as

AmCm∂tvm = f(vm, uE, w),
∂tw = g(vm, w),

q(vm, uE) = 0,
(45)

where

f(vm, uE, w) = Amsvm(vm − a)(1− vm)− Amw + div(σI∇vm) + div(σI∇uE) + AmIapp,
g(vm, w) = ε(γvm − w),
q(vm, uE) = −div((σI + σE)∇uE)− div(σI∇vm).

(46)
The projection onto the space Φ of the first equation of (46) gives

γp := −λpβp − Amµp − λpξp − Ama
NM∑
i=1

βjBij + Am(a+ 1)

NM∑
i,j=1

βiβjWijp − χ
NM∑
i,j=1

βiβjTijp +

−χ
NM∑
i,j=1

βiξjTijp − Am
NM∑

i,j,k=1

βiβjβkYijkp + Am

L∑
l=1

hl(t)〈zl, ϕp〉, ∀p = 1, . . . , NM , (47)

and the projection of function g gives

ηp := ε(γβp − µp), ∀p = 1, . . . , NM . (48)

The projection of function q gives a low dimensional linear system defined by

NM∑
j=1

Qijξj = −
NM∑
j=1

Eijβj, ∀j = 1, . . . , NM , (49)

where matrices Q and E are defined as

Qij := 〈(σI + σE)∇ϕi,∇ϕj〉 ∀i, j = 1, . . . , NM

Eij := 〈σI∇ϕi,∇ϕj〉 ∀i, j = 1, . . . , NM .
(50)
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To summarize, the set of equations which describes the dynamics of system (1) in the
reduced order space is:

β̇ +Mβ − γ = 0,
µ̇+Mµ− η = 0,

λ̇i + χ

NM∑
m=1

Tiimγm = 0, i = 1 . . . NM

Ṫ = {M,T}(3),

Ẏ = {M,Y }(4),

Q̇ = [M,Q],

Ė = [M,E],

Mij =
χ

λj − λi

NM∑
m=1

Tijmγm, i, j = 1 . . . NM

γ = γ(β, ξ, µ),
η = η(β, µ),

Qξ = −Eβ.

(51)

4 Numerical experiments

This section is devoted to numerical experiments. First, we consider the propagation of
an electrical signal in a homogeneous tissue on a 2D domain. Then, some examples of
spatial and temporal heterogeneity in parameters and source terms are proposed. The
last application deals with pseudo-electrocardiograms and involve the bidomain equations
coupled to a diffusion problem on a 3D domain.

4.1 Preliminary comments about POD

In the following numerical simulations, our main objective is to compare ALP with the
finite element method (FEM). In some cases, we also compare ALP with the Proper
Orthogonal Decomposition (POD).

The POD method consists in defining an orthonormal basis that maximizes the L2

representation of a database of given snapshots, i.e. solutions computed in an off-line
stage. The approach proposed in [23] is used to generate the basis. Let us recall its main
steps. Consider an approximation of the solution in the form

u(x, ti) ≈
∑
j

âj(t)ϕj(x), (52)
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where ϕj is the j-th POD mode. The modes are such that 〈ϕi, ϕj〉 = δij and:

ϕi = arg min
ϕ̃

∫ T

0

∫
Ω

(
u(x, t)−

∑
j

âj(t)ϕj(x)

)2

dΩdt. (53)

Let ui(x) be a snapshot of the database of pre-computed solutions. The minimization
problem is solved by:

Aij := 〈ui, uj〉, (54)

AB = BS, (55)

ϕi :=

∑
j Bjiuj

s
1/2
i

. (56)

An important remark is in order. POD is a way to approximate a space spanned by
off-line solutions, and the result strongly depends on this space. When the parameters of
the problems vary, it is necessary to consider a large number of configurations in order
to build an off-line space as rich as possible. In electrophysiology, this strategy was
carried out for example in [4]. In the present work, we only consider a very simple set
of precomputed solutions: the ones obtained with nominal values of parameters. Thus,
our POD results correspond to a best case scenario when the nominal values are used to
run the reduced-order model, but to a (possibly) very bad scenario when the parameters
are modified. In the latter case, it would be clearly possible to improve the POD results
by enlarging the off-line dataset, but this would require to explore a huge number of
configurations in the off-line stage. Although possible, this was not done here since POD
was not the main topic of this paper.

4.2 A few comments on the choice of χ.

The ALP basis depends upon a real positive scalar parameter χ, that influences the spec-
trum and the eigenfunctions of the operator Lχ. The spectrum of the operator is discrete
(the domain is bounded), real, and it can be divided into two parts: one corresponding
to negative eigenvalues and one to positive (or null) eigenvalues. The larger the value
of χ, the higher is the number of negative eigenvalues. The larger the value of χ, the
more peaky the eigenfunctions corresponding to negative eigenvalues are. Thus, this pa-
rameter can be viewed as a characteristic length for the modes corresponding to negative
eigenvalues. Let us illustrate this with a 1D numerical test case.

The domain is Ω = [0, 1], the potential is the Gaussian y = exp(−250(x − 0.5)2). A
piecewise linear finite element discretization is adopted, with N = 256. In Figure 1(a) the
number of negative eigenvalues is shown for several values of the parameter χ. For χ = 0,
there are no negative eigenvalues. The number of negative eigenvalues increases with χ.
In Figure 1(b) the relative L2 error in the reconstruction of the potential is shown when
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Figure 1: Properties when χ is varied.
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only the first mode is used, as a function of χ. There is a minimum for χ ≈ 2000. This is
related to the the fact that, for low values of χ the first mode has a characteristic length
much higher than that of the gaussian potential, so that the reconstruction is poor. On
the opposite, when χ is too large, the mode tends to a Dirac delta and it cannot represent
the potential in a good way. The behavior of the first mode, when χ is varied, is shown
in Fig. 2a.

Let us comment on the difference between the eigenfunctions corresponding to the
negative spectrum and the eigenfunctions corresponding to the positive one. In Figure 2b
the first four modes are shown when χ = 2000. The first two modes correspond to the
negative spectrum. Their shape is soliton-like: it is featured by a characteristic length
and localized in space. The modes 3 and 4 correspond to the positive spectrum. They
are sinus-like global modes, of increasing frequency, perturbed by the potential.

In practice, the value of χ is chosen after a preliminary numerical test, on a given
setup, and depends on the domain size as well as on the L2 norm of the potential. It is
chosen in such a way that the initial datum is represented with a low relative error in the
space spanned by few modes.

4.3 Homogeneous parameters 2D case

We consider a 2D square domain [0, 1]2, discretized with a P1 finite element mesh com-
posed of 5.878 vertices, and the monodomain equations (3) with the parameters reported
in Table 1. Concerning the ALP method, we solve the equations presented in Section 3.3.
ALP results are compared with those obtained with the full order model (FEM) and the
POD. The POD basis is generated by considering snapshots from the homogeneous 2D
tissue propagation. For FEM simulations a second order Backward Difference method
is used with time step δt = 0.1 ms, while in the reduced order cases an Explicit Euler
method is considered (time step δt = 0.01 ms).

First we run a FEM simulation with the applied stimulus defined as

Iapp(x, t) = h(t)z(x), (57)

where h is defined by
h(t) = H(t)−H(t− 5), (58)

H denotes the Heaviside function, and z is defined by

z(x) = 0.04 · 1Ωc , Ωc = {(x, y) s.t. ‖(x− 0.25, y)‖ ≤ 0.5}. (59)

A2D
m (Ω.mV−1) A3D

m (Ω.mV−1) Cm(mA.ms.cm−2) σm s a ε γ
2000.0 500.0 0.1 1 0.2 0.075 0.04 0.2

Table 1: Physical and ionic parameters.
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In order to build the initial time ALP basis Φ(0) we consider the solution vm of the FEM
simulation after 5 ms. The basis is computed solving equation (30) with χ = 15. POD
basis is generated by considering snapshots from the FEM simulation: 100 snapshots are
retained with a sampling time of 0.5 ms. The POD model is built by Galerkin projection.

Let us compare FEM and ROM solutions for ROM dimension space NM = 25. We
observe good agreement between FEM solution and POD one (see first and last columns
of Figure 3). ALP solution is in good accordance with FEM one, too (see first and second
columns of Figure 3).

Then, we compare the relative L2(RN ) norm errors between FEM solution and ROM
ones, computed by

error2(tn) =
|u(n)
FEM − u

(n)
ROM |2

|u(n)
FEM |2

(60)

for each time iteration tn, n ≥ 0, where | · |2 denotes the discrete norm |v|2 =
∑

i v
2
i ,

and u
(n)
FEM , u

(n)
ROM , represents the FEM, respectively ROM, solution at time tn in the high

dimensional space RN . We compute the errors varying the dimension of ALP space:
NM = 15, 20, 25, 30. In Figure 4 we observe the decreasing values of ALP error with
respect to the space dimension. In particular, each continuous curve (ALP errors) has a
relative minimum after 20 ms, i.e. when the depolarization front is already gone and the
repolarization has not started yet. The relative error increases for any value of NM after
30 to 35 ms, which represents the exit of the repolarization from the domain, this is due
to some boundary effects caused by the low dimensional approximation. We observe the
same behavior for the POD curve, too (dotted line). Finally, we remark that ALP relative
error with 25 − 30 modes is less than 10 percent during the whole simulation. We point
out that the POD method gives an optimal solution because of the basis is build ad hoc.
As we observe in next sections, the POD basis is not as efficient for any perturbation of
the signal.

Concerning the computational costs of the algorithm, the gain of the ALP method
for the monodomain equations (3) with NM = 25 modes was investigated. When a full
reconstruction in the physical space is performed, the gain is about 20% compared to the
FEM, including all the stages of the method. This speedup is clearly insufficient, and its
improvement is the object of an on-going work. However, it is worth noticing that, in
many applications, the reconstruction in the FE space is not necessary. As will be shown
in Section 4.6, this is for example the case when only an output of interest depending
linearly on the solution is needed. In this case, the update of the basis can be avoided
and the ALP method has a computational cost which is one order of magnitude smaller
than that of FEM (a speedup of about 8 was observed in our simulations).
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Figure 3: Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the center
and POD (NM = 25) on the right for the homogeneous tissue test case (section 4.3). Four
different times are considered, namely t = 5, 15, 20, 25 ms.
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Figure 4: Relative errors in L2 norm for the homogeneous tissue test case (section 4.3),
varying the number of modes used, for ALP method (continuous lines, χ = 15) and POD
(dotted line).

4.4 Heterogeneous ionic parameters

A test case with heterogeneous ionic parameter s is presented in this section, which is
challenging from a ROM point of view. Indeed, s(x) is a function of the space, it is a
distributed parameter that belongs to a high dimensional (infinite dimensional) space. For
the reduced-order techniques that rely on the pre-computation of solutions, this would
increase in a significant way the database dimension and the cost of the offline phase. In
particular, for the test case considered, the expression of s(x) reads:

s(x) = s0 · 1Ω/Ωs + s1(x) · 1Ωs , (61)

Ωs = {(x, y) | (0 ≤ x ≤ 0.5), (0.25 ≤ y ≤ 0.75)} , (62)

s1(x) = s0
36y − 7

20
. (63)

The value of the parameter s0 is reported in Table 1. There is a square subdomain in
which the ionic parameter s is modified, its value is linear with respect to y: being only
1/10 with respect to the nominal one in the inferior border (y = 0.25) and s0 in the upper
boundary (y = 0.75). This can be seen as a schematic representation of an obstacle for
the depolarization waves.

The ALP method was applied to this scenario. It is worth noting that the initial
condition for this simulation is the same as for the homogeneous test case, so that the
initial modes set is exactly the same. The ALP ROM was integrated, taking χ = 15 and
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Figure 5: Relative errors in L2 norm for the heterogeneous ionic parameter test case
(section 4.4), varying the number of modes used, for ALP method (continuous lines,
χ = 15) and POD (dotted line).

a time step δt = 0.01 ms. In Figure 5 the L2 relative error between the FEM solution and
the reconstruction of the ALP-ROM one is shown as function of time, varying the number
of modes used. The errors are larger with respect to those observed for the homogeneous
test case presented in the previous section. This can be explained by considering that in
presence of an obstacle the dynamics is complex and a larger number of modes is needed
to render it. As expected the error decreases when the number of modes is increased
and it is less than 10% when NM = 30 modes are used. The error globally increases in
time, but it is not monotonically increasing. The peaks observed corresponds to boundary
interactions of the depolarization wave. The dashed lines are the relative errors of the
POD reduced-order model when N

(POD)
M = 30 and N

(POD)
M = 60. The error has peaks

larger than 100% in both cases, and for N
(POD)
M = 60 it is overall comparable to ALP

when NM = 15.
A qualitative comparison between ALP and POD solutions is proposed in Figure 6,

at four different instants: t = 15, 20, 25, 30 ms. The FEM solution is represented on
the left column, ALP is in the center and POD on the right. The POD model is not
accurate enough out of database and it is not able to account for the dynamics in the
presence of an obstacle, if this has not been taken into account in the database. The
POD modes number has to be increased up to N

(POD)
M = 60 in order to start having a

realistic behavior. On the contrary, ALP performance is remarkable, all the features of
the solution are represented. The errors mainly concern the front shape (which is often
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Figure 6: Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the center
and POD (NM = 25) on the right for the heterogeneous parameter test case (section 4.4).
Four different times are considered, namely t = 15, 20, 25, 30 ms.
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Figure 7: Evolution of the first mode for ALP-ROM when heterogeneous parameter test
case (section 4.4) is integrated, at four different times: t = 5, 15, 25, 30 ms.

less sharp than the FEM one) and the boundary interactions.
In Figure 7 the time evolution of the first Schrödinger mode is considered, at four

different times, t = 5, 10, 25, 30 ms. The mode basically evolves as the solution does.
Indeed, the modification in the ionic parameter s(x) makes the modal set evolve in order
to match the dynamics of the system.

4.5 Source terms

In this section space-time sources are considered. The synthetic test presented hereafter
is a schematized example of a realistic ectopic pacemaker. The proposed test case is as
follows. The wave starts from the same initial condition as for the previous test cases. At
t = 60ms a source term is applied of the form:

Iapp(x, t) = [H(t− 60)−H(t− 65)]z(x),
z(x) = 0.04 · 1Ωc ,

(64)

where H denotes the heaviside function and

Ωc = {(x, y) s.t. ‖(x, y − 0.75)‖2 ≤ 0.5}.

This is a challenging test case from a model-reduction point of view. Indeed, for a method
relying on a database construction, a large number of stimulation locations and times
should be pre-computed and the ROM usually performs poorly out-of-database.
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Figure 8: Relative error in L2 norm for ALP (χ = 25) and POD with NM = 30 for the
distributed source test case (see section 4.5).

The test was performed by varying the number of modes used. The initial condition
for the modal set was extracted by taking χ = 25.

The relative error in L2 norm was computed (see Figure 8). For t < 60 ms the curve is
the same as for the homogeneous tissue test case presented in section 4.3. Let us comment
the behavior of the scheme for t > 60 ms. The error increases when the current is applied.
After a transient phase the modal set adapts and the scheme is able to reproduce the
dynamics of the system. As for the previous test cases, the error decreases as the number
of modes is increased. The error is in general higher with respect to what observed in
the homogeneous test case, with the same number of modes. This is another case for
which the POD performances are poor. Indeed, when the sources are not precomputed
the POD is not able to reproduce the correct results even with a high number of modes
(see Figure 9). On the contrary, the ALP method errors are comparable to those obtained
in the homogeneous test case (section 4.3).

In Figure 9, the FEM solution (left column) was compared to the solutions obtained
with ALP (center column) and POD (right column) when NM = 25. Four different times
are considered, namely t = 65, 80, 85, 90 ms. Between t = 60 ms and t = 65 ms the
current source (dash-circle in the first row of the plots) has been applied. Its effect is
not represented in the POD modes space since the snapshots were computed without it.
Hence, at subsequent times, the polarization cannot propagate and the POD model is not
able to provide the solution of the system. In spite of some errors in the position and
the shape of the front, ALP is able to account for the wave propagation induced by the
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Figure 9: Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the center
and POD (NM = 25) on the right for the source test case (section 4.5). Four different
times are considered, namely t = 65, 80, 85, 90 ms. For the first part of the simulation,
t < 60 ms, see Figure 3 (test case of section 4.3).
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source.

4.6 Pseudo-electrocardiograms

We are now interested in an application related to electrocardiograms (ECG) computation.
ECG represents an convenient and efficient medical test to control the heart behavior, it
consists in measuring the electrical potential onto 9 skin points. From a mathematical
point of view, the bidomain equations (1) are coupled to a diffusion problem in the torso:

div(σT∇uT ) = 0, in ΩT , (65)

where uT represents the torso electrical potential and σT the torso conductivity, an hetero-
geneous parameter which takes into account for instance bones and lungs conductivities.
Equations (65) can be coupled to (1) by imposing the continuity of the extracellular po-
tential and current. In this study, we consider a weak coupling between heart and torso
potential, i.e. only the potential continuity is imposed. Then the boundary conditions
for (65) are

uT = uE, on Σ
σT∇uT · n = 0, on ∂Ωext

T

(66)

where Σ = ∂ΩH represents the external boundary of the heart domain and ∂Ωext
T indicates

the external boundary of the torso domain ΩT .
Since we now consider the bidomain equations, we have to treat the extracellular

variable. In section 3.3 the ionic variable w was approximated in the same reduced order
space as the transmembrane potential. We do the same for the extracellular potential uE
and write

ûE =

NM∑
i=1

ξi(t)ϕi(x, t), (67)

where ûE is the low dimensional approximation of uE, ξi(t) is the representation of ûE in
the reduced order space Φ.

We denote by y = (uT (xECG1 ), . . . , uT (xECGNECG
)) the values of uT at NECG locations on

the boundary of the torso. The measurement y is the output of interest of this problem.
It is related to uE by the relation

y = SΠu (68)

where Π : RN 7→ RNΣ denotes the boundary restriction operator, NΣ is the number of
vertices on heart/torso interface, S ∈ RNECG×NΣ denotes the heart-torso transfer matrix,
and u ∈ RN denotes the degrees of freedom of the extracellular potential uE in the finite
element space. If we consider the representation of u in the reduced-order space, u = Φξ,
then the ECG measurements can be written as

y = Xξ, (69)
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Figure 10: FEM heart-torso equations solution at time t = 25 ms.

where
X := SΠΦ ∈ RNECG×NM (70)

is a very small matrix. This linear operator X commutes with time, so we can apply the
same technique as in section 3.1 in order to compute its time derivative:

Ẋij =

NM∑
l=1

XilMlj. (71)

So, the ECG measurement y is computed at each time iteration using the low dimensional
vector ξ and the matrix X whose update is easily computed using (71), without any
reconstruction of the solution in the finite element space.

For the numerical simulations, we consider an ellipsoid, representing the heart, em-
bedded in a cylinder, represented the torso. The mesh of the ellipsoid has 22.140 vertices,
while the external one has 338.920 vertices, of which 7.572 are on the interface Σ between
the two domains.

We first solve the bidomain equations (1) in the ellipsoid using FEM and a second
order Backward Difference method to integrate in time. The conductivity tensors σI and
σE are considered isotropic, their values are σI = 1, σE = 4. Then, we solve the torso
diffusion problem (65) with boundary conditions (66) where the extracellular potential
is taken from the bidomain solution in the ellipsoid. A snapshot of the solution at time
t = 20 ms is shown in Figure 10. In particular we are interested in the torso potential
measured by 6 electrodes positioned in the black points of Figure 10.

Concerning the ALP resolution, we compute the initial basis Φ using the operator Lχ
defined in (44) where u is the FEM solution at time t = 5 ms and χ = 50. We solve then
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Figure 11: Comparison between FEM electrodes measures (blue line) and ALP ones (red
line) for χ = 50, NM = 60.

equations (51) and we compute by equation (69) the 6 torso measures we are interested
in. We remark that, as the only output we want to show are the 6 electrodes measures,
no reconstruction in the FEM space is needed.

Figure 11 compares FEM measures with ALP results run for NM = 60. We observe
that ALP curves (red lines) are in good accordance with FEM ones (blue lines), the signal
is well reproduced on every leads.

5 Conclusions and perspectives

The ALP method can be seen as a technique to propagate a basis in a way related to
the dynamics of the solution. In this paper, ALP was applied to the simulation of high-
dimensional parametric systems arising in cardiac electrophysiology. The approach was
assessed in a wide range of different situations, including 2D and 3D complex configura-
tions. The main advantage with respect to standard approaches consists in the fact that
no database of solutions has to be built to define the reduced-order model.

Several perspectives are in order. The first one is the choice of the basis to propagate,
that is, the choice of the operator Lχ. To derive the method, Lχ has to be selfadjoint,
with a compact inverse and linear in u. In this paper, we chose a specific expression for Lχ
but many others are possible and would lead to different results and performances. This
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aspect deserves further investigation. Another important perspective is the possibility to
deal with nonpolynomial nonlinearities. To do so, we are currently working on an exten-
sion of ALP using the concepts of empirical interpolation, as introduced in [2, 6]. This
approach will allow us to consider more realistic models of electrophysiology, including
physiological ionic models. The N3

M complexity, due to the propagation of tensor T , is
another limitation of the current version of ALP. It is expected that the use of empirical
interpolation will also overcome this issue. Last but not least, the analysis of the stability
and accuracy of the method is still missing and deserves to be addressed in future works.
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[18] M. Pennacchio, G. Savaré, and P. Colli Franzone. Multiscale modeling for the bioelec-
tric activity of the heart. SIAM Journal on Mathematical Analysis, 37(4):1333–1370,
2005.

[19] G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation and a pos-
teriori error estimation for affinely parametrized elliptic coercive partial differential
equations. Archives of Computational Methods in Engineering, 15(3):1–47, 2007.

[20] D. Ryckelynck, F. Vincent, and S. Cantournet. Multidimensional a priori hyper-
reduction of mechanical models involving internal variables. Computer Methods in
Applied Mechanics and Engineering, 225:28–43, 2012.

[21] F.B. Sachse. Computational Cardiology: Modeling of Anatomy, Electrophysiology
and Mechanics. Springer-Verlag, 2004.

31



[22] T.P. Sapsis and Lermusiaux P.F.J. Dynamically orthogonal field equations for con-
tinuous stochastic dynamical systems. Physica D, 238:2347–2360, 2009.

[23] L. Sirovich. Low dimensional description of complicated phenomena. Contemporary
Mathematics, 99:277–305, 1989.

[24] D.D. Streeter. Gross morphology and fiber geometry of the heart. Handbook
Physiology, The cardiovascular system, 1:61–112, 1979.

[25] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal, and A. Tveito. Computing
the Electrical Activity in the Heart, volume 1 of Monographs in Computational
Science and Engineering. Springer-Verlag, 2006.

32


