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Abstract. This paper fundamentally investigates the performance of
evolutionary multiobjective optimization (EMO) algorithms for compu-
tationally hard 0—1 combinatorial optimization, where a strict theoretical
analysis is generally out of reach due to the high complexity of the un-
derlying problem. Based on the examination of problem features from
a multiobjective perspective, we improve the understanding of the ef-
ficiency of a simple dominance-based EMO algorithm with unbounded
archive for multiobjective NK-landscapes with correlated objective val-
ues. More particularly, we adopt a statistical approach, based on simple
and multiple linear regression analysis, to enquire the expected running
time of global SEMO with restart for identifying a (14¢)—approximation
of the Pareto set for small-size enumerable instances. Our analysis pro-
vides further insights on the EMO search behavior and on the most
important features that characterize the difficulty of an instance for this
class of problems and algorithms.

1 Introduction

Black-box multiobjective combinatorial optimization problems are characterized
by a discrete solution space and by multiple objective functions, such as cost,
profit, or risk, that are ill-defined, computationally expensive, or for which an
analytical form is not available. Due to the black-box nature of the objective
functions, problem-specific algorithms are usually excluded to identify or ap-
proximate the Pareto set, so that an increasing number of general-purpose evo-
lutionary multiobjective optimization (EMO) algorithms and other randomized
search heuristics have been proposed in recent years [3]. However, the overall
amount of understanding about the pros and cons of different EMO algorithm
designs and configurations with respect to a given problem structure is rather
scarce. Due to the increasing number and complexity of black-box multiobjec-
tive optimization problems and algorithms, one of the most difficult challenges
is to devise and exhibit a number of general-purpose problem characteristics and
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statistical methodologies allowing to explain the dynamics and the performance
of EMO algorithms.

Recently, a few attempts to explain the performance of randomized search
heuristics based on relevant fitness landscape features have been proposed for
single-objective optimization problems of continuous and combinatorial nature;
see e.g. [4,6,12]. In this paper, we address the issue of feature-based performance
analysis for EMO algorithms according to the main characteristics of 0—1 multi-
objective optimization problems. We first extend our previous works by summa-
rizing a number of problem properties and fitness landscape features for black-
box 0-1 multiobjective optimization [11]. They include features extracted from
the problem input data, like variable correlation, objective correlation, and objec-
tive space dimension [17], as well as features from the Pareto set [1, 8], the Pareto
graph [14] and the ruggedness and multimodality of the fitness landscape [17].
Then, we analyze the correlation between those features and the performance of
an EMO algorithm. More particularly, we investigate the expected running time
of the global SEMO algorithm [9] with restart to identify a (1+&)—approximation
of the Pareto set on a large number of small-size enumerable multiobjective NK-
landscapes with objective correlation, i.e. pMNK-landscapes [17]. Our analysis
shows the relative influence of each individual problem feature on the algorithm
performance. In particular, the running time of global SEMO appears to be pre-
dominantly impacted by the ruggedness of the fitness landscape, more than other
features like the number of Pareto optimal solutions. Additionally, we investigate
different formulations of a multiple linear regression model. This allows us to dis-
cuss the joint effect of different subsets of features in capturing the dynamics
of the algorithm. The ruggedness and the multimodality, but also the number
of objectives, the correlation between them, and the hypervolume of the Pareto
front turn out to be the most impactful characteristics that allow to explain the
performance of global SEMO for pMNK-landscapes.

The remainder of the paper is organized as follows. Section 2 details the
problem and algorithm settings of our analysis. Section 3 summarizes the prob-
lem features under consideration in the paper. Section 4 introduces different
regression models to explain the performance of global SEMO for enumerable
pMNK-landscapes. Section 5 concludes the paper and suggests further research.

2 Problem and Algorithm Settings

In this paper, we are interested in the ability of evolutionary multiobjective opti-
mization (EMO) algorithms to identify a Pareto set approximation for black-box
multiobjective combinatorial optimization problems. In particular, we investi-
gate the (estimated) running time of global SEMO [9] with restart to identify a
(14 e)—approximation of the Pareto set on a large bench of enumerable pMNK-
landscapes with different structural properties. We consider the maximization of
an objective function vector f = (f1,..., fm) over the discrete set of solutions
X = {0,1}", where m is the number of objectives, and n is the problem size.
X is the solution space, and Z = f(X) C R™ is the objective space. A solution
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x € X is dominated by a solution ' € X if Vi € {1,...,m}, fi(z) < fi(2)
and 3i € {1,...,m} such that f;(z) < fi(2'). The set of solutions that are not
dominated by any other is the Pareto set, and its image in the objective space
is the Pareto front.

2.1 pMNK-Landscapes

The family of pMNK-landscapes constitutes a problem-independent model used
for constructing multiobjective multimodal landscapes with objective correla-
tion [17]. They extend single-objective NK-landscapes [7] and multiobjective
NK-landscapes with independent objective functions [1]. Feasible solutions are
binary strings of size n, i.e. the solution space is X = {0,1}". The parameter k
refers to the number of variables that influence a particular position from the
bit-string. The objective function vector f = (f1,..., fi,-.., fm) is defined as
f:{0,1}™ — [0,1]™ such that each objective function f; is to be maximized.
The problem can be formalized as follows.

1« ,
max fi(z):ﬁZfij(:cj,le,...,xjk), ie{l,...,m}
=1

> 0
s.t. :L'jE{O,l} s jE{l,...,n}

As in the single-objective case, each separate objective function value f;(x)
of a solution =z = (z1,...,%j,...,2,) is an average value of the individual
contributions associated with each variable x;. Indeed, for each objective f;,
i € {1,...,m}, and each variable z;, 7 € {1,...,n}, a component function
fij : {0,1}kF1 — [0, 1] assigns a real-valued contribution for every combination
of x; and its k epistatic interactions {x;1,...,x;5}. These f;j-values are uni-
formly distributed in the range [0, 1]. As a consequence, the individual contribu-
tion of a variable z; depends on the value of z;, as well as on the values of k < n
other variables {z;,,...,z;, }. In this work, the epistatic interactions, i.e. the
k variables that influence the contribution of x;, are set uniformly at random
among the (n — 1) variables other than x;, following the random neighborhood
model from [7]. By increasing the number of epistatic interactions k from 0
to (n — 1), problem instances can be gradually tuned from smooth to rugged. In
pMNK-landscapes, f;;-values additionally follow a multivariate uniform distribu-
tion of dimension m, defined by an m x m positive-definite symmetric covariance
matrix (cpq) such that ¢,, =1 and ¢,q = p for all p,q € {1,...,m} with p # ¢,
were p > J—fl defines the objective correlation degree; see [17] for details. The
positive (respectively negative) data correlation p allows to decrease (respectively
increases) the degree of conflict between the objective function values. The same
correlation coefficient p is then defined between all pairs of objectives, and the
same epistatic degree k and epistatic interactions are set for all the objectives.

2.2 Global SEMO

Global SEMO [9], or G-SEMO for short, is a simple elitist steady-state EMO
algorithm for black-box 0-1 optimization problems dealing with an arbitrary
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objective function vector defined as f : {0,1}" — Z such that Z C R™, like
in pMNK-landscapes. It maintains an unbounded archive A of non-dominated
solutions found so far. The archive is initialized with one random solution from
the solution space. At each iteration, one solution is chosen at random from
the archive x € A. Each binary variable from x is independently flipped with a
rate of % in order to produce an offspring solution z’. This mutation operator
is ergodic, meaning that there is a non-zero probability of jumping from any
point to any other point in the solution space. The archive is then updated by
keeping the non-dominated solutions from A U {z'}. In its general form, the G-
SEMO algorithm does not have any explicit stopping rule [9]. In this paper, we
are interested in its running time, in terms of a number of function evaluations,
until an (1 4+ ¢)—approximation of the Pareto set has been identified and is
contained in the internal memory A of the algorithm, subject to a maximum
budget of function evaluations.

2.3 Performance Measure

Let € be a constant value such that ¢ > 0. The (multiplicative) e-dominance
relation (<) can be defined as follows. For all z,2’ € X, z <. 2/ if f;(z) <
(1+¢e)- fi(2)), Vie{l,...,m}. A set X¢ C X is an (1 + ¢)—approximation of
the Pareto set if for any solution x € X, there is one solution ' € X¢ such that
x <. 2. This is equivalent to finding an approximation set whose multiplicative
epsilon quality indicator value with respect to the (exact) Pareto set is lower
than (1 + ¢), see e.g. [18]. Interestingly, under some general assumptions, there
always exists an (1 + ¢)-approximation, for any given £ > 0, whose cardinality
is both polynomial in the problem size and in é [13].

Following a conventional methodology from single-objective continuous black-
box optimization benchmarking [5], the expected number of function evaluations
to identify an (1 4 e)—approximation is here chosen as a performance measure.
However, as any EMO algorithm, G-SEMO can either succeed or fail to reach
an accuracy of € in a single simulation run. In case of a success, the running
time is the number of function evaluations until an (1 + ¢)—approximation was
found. In case of a failure, we simply restart the algorithm at random. We then
obtain a “simulated running time” [5] from a set of given trials of G-SEMO on
a given instance. Such a performance measure allows to take into account both
the success rate p; € (0,1] and the convergence speed of the G-SEMO algo-
rithm with restarts. Indeed, after (¢ — 1) failures, each one requiring 7'y evalu-
ations, and the final successful run with T evaluations, the total running time
isT = Zf;i Ty + T,. By taking the expectation value and by considering that
the probability of success after (¢t — 1) failures follows a Bernoulli distribution of
parameter p,, we have:

ir] = (-2 Biry] + BI7) @)

In our case, the success rate ps is estimated with the ratio of successful runs over
the total number of executions (ps), the expected running time for unsuccessful
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runs E[T}] is set to a constant limit on the number of function evaluation calls
Tnaz, and the expected running time for successful runs E[T}] is estimated with
the average number of function evaluations performed by successful runs.

N t

1—ps 1 O
t = Tmaz T T’z 3
er < ~ > +ts; (3)

Ps

where t4 is the number of successful runs, and T; is the number of evaluations
required for successful run 7. For more details, we refer to [5].

2.4 Parameter Setting

In the following, we investigate pMNK-landscapes with an epistatic degree k €
{2,4,6,8,10}, an objective space dimension m € {2,3,5}, and an objective cor-
relation p € {—0.9,-0.7,-0.4,-0.2,0.0,0.2,0.4,0.7,0.9}, such that p > —L.
The problem size is set to n = 18 in order to enumerate the solution space
exhaustively. The solution space size is then 2'®. A set of 30 different land-
scapes, independently generated at random, are considered for each parame-
ter combination: p, m, and k. They are made available at the following URL:
http://mocobench. sf.net.

We set a target ¢ = 0.1. The time limit is set to Tpae = 2" - 107! < 26215
function evaluations without identifying an (1 4+ &)—approximation. The G-
SEMO algorithm is executed 100 times per instance. For a given instance, the
success rate and the expected number of evaluations for successful runs are es-
timated from those 100 executions. However, let us note that G-SEMO was not
able to identify a (1 4+ ¢)—approximation set for any of the runs on one instance
with m = 3, p = 0.2 and k£ = 10, one instance with m = 3, p = 0.4 and k£ = 10,
ten instances with m =5, p = 0.2 and k = 10, six instances with m =5, p = 0.4
and k = 10, as well as two instances with m =5, p = 0.7 and k& = 10. Moreover,
G-SEMO was not able to solve the following instances due to an overload of
CPU resources available: m = 5 and p € {—0.2,0.0}. Those experiments have
then been discarded due to missingness. Overall, this represents a total amount
of 2980 instances times 100 executions, that is 298 000 simulation runs.

3 Features to Characterize Problem Difficulty

In Table 1, we give a number of general-purpose problem features, either directly
extracted from the problem instance (low-level features), or computed from the
enumerated Pareto set and solution space (high-level features). Obviously, since
the features require the solution space to be completely enumerated, they are
not practical for performance prediction purposes. However, we still include them
in order to examine their impact on the algorithm performance. For the case of
pMNK-landscapes, the neighborhood is induced by the bit-flip operator, which is
directly related to the Hamming distance between solutions. For the computation
of the hypervolume, the reference point is set to the origin z* = (0.0,...,0.0). For
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Table 1. Summary of low-level and high-level features investigated in the paper.

low-level features

(k) Number of variable (epistatic) interactions
(m) Number of objective functions
(p) Correlation between the objective function values

high-level features

(npo) Number of Pareto optimal solutions 1,8

(hv) Hypervolume value [18] of a the Pareto set 1]
(avgd) Average distance between Pareto optimal solutions [11]
(maxd) Maximum distance between Pareto optimal solutions [11]
(nconnec) Number of connected components in the Pareto set [14]
(1connec) Proportion of the largest connected component of the Pareto set [10]
(kconnec) Minimal Hamming distance to connect the Pareto set [14]
(nplo) Number of Pareto local optimal solutions [15]

a more comprehensive explanation of those features and a correlation analysis
between them, we refer to [11]. In the next section, we relate the value of those
features for enumerable pMNK-landscapes to the performance of G-SEMO.

4 Problem Features vs. Algorithm Performance

In this section, we conduct a linear regression analysis on the correlation between
the problem features presented in the previous section and the performance
of G-SEMO. The algorithm performance is defined as the expected running
time ert, in terms of the number of evaluation function calls, required by the
algorithm to identify a (1 4 ¢)—approximation of the Pareto set. We first detail
our methodological setup. Then, we analyze the individual as well as the joint
impact of problem features on the algorithm performance. At last, we compare
the accuracy of regression models for different objective space dimensions.

4.1 Methodological Setup

Linear Regression. In order to provide an explanatory model for the algo-
rithm performance, we perform a linear regression, whose general model can be
formalized as follows:

y=PBo+pr-vi+B2-vat...+B,-v,+e (4)

where y is the response variable, (v1,v2,...,v,) are the explanatory variables,
and e is the usual error term. In our case, the response variable to be explained is
the expected running time of G-SEMO: log(ert), and the p explanatory variables
correspond to selected problem features as detailed in Section 3. The response of
the linear model is here log-transformed in order to better approach linearity; see
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Fig. 1 (top-left). Also, an order of magnitude is in general sufficiently relevant for
the running time of an EMO algorithm. Such linear regression models are usually
fitted using an ordinary least-square minimization. A least-square estimator Bl
is then produced for each regression coefficient f3;, i € {1,...,p}, by minimizing
the sum of squared residuals between the fitted and the observed values. The
case of a single explanatory variable (p = 1) is known as simple linear regression,
whereas the extension to more than one explanatory variables (p > 1) is known
as multiple linear regression. Notice that, although a linear regression model
might not be able to reliably catch the existing correlation between explanatory
variables as well as non-linear dependencies with the response variable, it has
the advantage of being simple and easily interpretable.

Regression Accuracy. In the following, when measuring the accuracy of a
linear regression model, we will be interested in the following statistics:

— The absolute correlation coefficient (1) measures the linear association be-
tween the predicted and the actually observed values (the conventional Pear-
son correlation coefficient is here used). Its absolute value ranges from 0 to 1.
The closer 7 to 1.0, the better the fitting. Actually, an r-value of 1.0 indicates
that the linear regression line perfectly fits the data.

— The mean absolute error (MAE) measures the average value of the absolute
difference between the values predicted by the regression model and the
values actually observed (the residuals). It aggregates the magnitudes of the
prediction errors into a single predictive power measure to compare different
models. Clearly, the lower the MAE, the better the regression model.

— The root mean-square error (RMSE) measures the square root of the average
squared difference between the values predicted by the regression model and
the values actually observed. Similarly, the lower the RMSE, the better the
regression model. Notice that the RMSE tends to favor a regression model
that avoids large errors even though it produces a less satisfactory fit overall,
whereas the MAE tends to favor a regression model that produces occasional
large errors while being reasonably good on average.

— The relative absolute error (%RAE) corresponds to the MAE relative to the
basic model that always predicts the mean, i.e. when no explanatory vari-
ables are used in the regression model (p = 0). As a consequence, smaller
values are better, and a RAE higher than 100% indicates that the corre-
sponding model is actually worse than this basic model in terms of MAE.

— The root relative squared error (%RRSE) corresponds to the RMSE relative
to the basic model that always predicts the mean.

For each of those statistics, we report the values observed on the training set,
i.e. the set of data used to build the model. In addition, we perform a 10-fold
cross-validation in order to assess how the results of the regression model gener-
alize to an independent data set. The original data set is randomly partitioned
into 10 samples of equal size. The cross-validation process is repeated 10 times,
with each of the samples being used exactly once as the validation data. For
each sample, the above statistics are computed, and then averaged in order to
produce a cross-validated r, MAE, RMSE, %7RAE, and %RRSE value.
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Fig. 1. Histogram of the distribution of log(ert)-values over all the instances (top-left),
as well as scatter plots and regression lines for each feature vs. log(ert).

Data Preparation. Although features might usually have to be normalized ap-
propriately in order to get rid of scaling issues and for a fair comparison between
them, we here chose not to normalize them in order to ease the interpretation of
the different models. Notice that normalizing the features would only result in
a change on the value of the estimated regression coefficient Bi, ie{l,...,p}
Moreover, this is not an issue within our experiments since we explicitly generate
instances of the same size (n = 18) that takes their objective values in the same
hyper-box [0, 1]™.

4.2 Individual Impact of Problem Features

The scatter plots between each feature and the log-transformed estimated run-
ning time of G-SEMO log(ert) is reported in Fig. 1. Notice that some features
(npo, nconnec, nplo) have been log-transformed in order to better approach lin-
earity. Additionally, the statistics of all possible simple linear regression models,
one for each feature, are reported in Table 2, from the lowest to the highest abso-
lute correlation value. The individual impact of each feature is analyzed below.

First of all, four features are not directly linearly correlated to the expected
running time of G-SEMO: the number of objective functions m, the objective
correlation p, the cardinality of the Pareto set log(npo), and the hypervolume hv.
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Table 2. Summary statistics of simple linear regression models, each one being based
on a single problem feature. Values are rounded to 1072,

training set 10-fold cross validation
feature r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE
p 0.03 1.52 1.89 99.66 99.94| 0.01 1.53 1.88 99.75 100.00
hv 0.04 1.52 1.89 99.66 99.94( 0.02 1.53 1.89 99.73 99.99
log(npo) 0.08 1.54 1.88 100.61 99.70( 0.07 1.54 1.88 100.66 99.74
m 0.21 1.51 1.85 98.63 97.86( 0.20 1.51 1.85 98.69 97.91
kconnec 0.37 1.38 1.76 89.99 93.03| 0.37 1.38 1.76 90.01 93.06
log(nconnec)| 0.40 1.44 1.73 94.21 91.47| 0.40 1.44 1.73 94.27 91.52
log(nplo) 0.46 1.41 1.67 92.53 88.56| 0.46 1.42 1.67 92.57 88.59
maxd 0.47 1.30 1.67 85.07 85.07| 0.47 1.30 1.67 85.09 88.36
lconnec 0.49 1.31 1.65 85.67 87.35| 0.49 1.31 1.65 85.69 87.37
avgd 0.60 1.15 1.51 75.31 79.95| 0.60 1.15 1.51 75.33 80.00
k 0.85 0.77 1.00 50.67 52.95| 0.85 0.78 1.00 50.67 52.96
none 0.00 1.53 1.89 100.00 100.00| 0.04 1.53 1.89 100.00 100.00

For each of these features, the absolute correlation coefficient value is under 0.25,
and the prediction error is around the one of the most basic model that always
predicts the mean. Surprisingly, there is no direct connection with the two main
low-level features from problem input data m and p. At least, the link between
the running time and those features is not a direct linear correlation, but a more
complex model will be analyzed in the next section. As well, the cardinality and
the hypervolume of the Pareto set, features closely related to the final goal of
the search process, do not explain the variance of log(ert) by themselves.

The features related to the connectedness of the Pareto set are all weakly
correlated to log(ert). The absolute correlation coefficients of the number of con-
nected components log(nconnec), the proportional size of the largest connected
component lconnec, and the minimum distance to be connected kconnec are
between 0.37 and 0.49. The more connected the Pareto set, the smaller the run-
ning time of G-SEMO. The algorithm performance is also moderately correlated
with the average and maximal distance between Pareto optimal solutions, avgd
and maxd (the absolute correlation coefficient values are 0.60 and 0.47, respec-
tively). The larger the distance between Pareto optimal solutions in the solution
space, the larger the running time of G-SEMO. Interestingly, the cardinality of
the Pareto set has a smaller impact on the performance of G-SEMO than the
distance between solutions in the Pareto set. Moreover, the multimodality of the
landscape, in terms of the number of Pareto local optimal solutions log(nplo),
is moderately correlated to the running time of G-SEMO: the more Pareto local
optima, the longer the running time (the correlation coefficient is 0.46).

At last, the only strong correlation appears with the feature related to the
ruggedness of the landscape. Indeed, the number of epistatic interactions k
is highly correlated to the efficiency of G-SEMO (the correlation coefficient
is 0.85). The more rugged the landscape, the longer it takes to identify a (1 +
¢)—approximation of the Pareto set. In other words, by taking the features in-
dividually, the model based on k is the one that gives the highest accuracy. On
average, it allows to predict the logarithm of the runtime of G-SEMO within
+0.77 of the observed value. Since the RMSE is much larger (1.00), this sug-
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gests that the deviation to this average value might be large, as we can see
also on Fig.1 (first line, second column). Such a regression accuracy is around
twice better than the most basic model that always predicts the mean (£1.53),
and largely better than the second more accurate simple linear regression model
based on avgd (+1.15).

Having the ruggedness of the landscape k as a more important (individual)
feature than the number of objectives m and the objective correlation p might
be surprising at first sight. Indeed, the number of Pareto optimal solutions is
known to increase exponentially with the number of objectives and the degree of
conflict between them; see e.g. [17]. However, let us remind that the algorithm
under consideration in the paper (G-SEMO) actually handles an unlimited ap-
proximation set size. It is then only slightly affected by the minimum number of
solutions required to obtain a (1 + ¢)—approximation of the Pareto set [13]. Ac-
tually, depending on p, the estimated expected running time of G-SEMO is 23 to
118 times larger for rugged two-objective instances than smoother five-objective
instances. For instance, when p = 0.2, the average ert—value is equal to 61 836
for k = 10 and m = 2 while it is equal to 2691 for k£ = 2 and m = 5. Similarly,
for p = 0.9, the average ert—value is 33922 for £k = 10 and m = 2, and only 287
for K = 2 and m = 5. In accordance with known results from single-objective
optimization [2], the ruggedness of the landscape k seems to largely impact the
running time of EMO algorithms.

Overall, analyzing the individual impact of problem features supports the hy-
pothesis that the structural properties identified in the previous section can help
to understand the performance of a simple dominance-based EMO algorithm
like G-SEMO for pMNK-landscapes. In the next section, different multiple lin-
ear regression models are examined in order to better explain the running time
of G-SEMO, based on the joint effect of these problem-related characteristics.

4.3 Joint Impact of Problem Features

We start by fitting the response variable log(ert) against all the low-level and
high-level features presented in Section 3. The statistics related to the model
accuracy are provided in Table 3 (line 1). For this complete multiple linear
regression model, the correlation coefficient is over 0.9. Overall, it allows to
explain the performance of G-SEMO with a much higher accuracy compared
to the simple linear regression model based on k only, and outperforms the
basic model that always predicts the mean by around 60%. Moreover, the model
has a high degree of generalization. Indeed, the RMSE and the cross-validated
RMSE are very close to each other. The same happens with the MAE (the
difference between both is always under 1072). The scatter plot of the actual
vs. the predicted performance values is given in Fig. 2 (left). This allows us
to visualize how the model accuracy varies depending on the hardness of the
problem instance: The model seems to slightly underestimate the runtime for
easier and harder instances whereas it rather overestimates it for an intermediate
instance difficulty.
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Table 3. Summary statistics of the multiple linear regression model with backward-
elimination feature selection. Values are rounded to 1072,

training set 10-fold cross validation

r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE
all features 0.91 0.58 0.76  37.74 40.34] 0.91 0.58 0.76 37.86 40.48
\ maxd 0.91  0.58 0.76  37.73 40.38[ 0.91 0.58 0.76 37.84 40.50
\ log(nconnec)| 0.91 0.58 0.76  37.73 40.49| 0.91  0.58 0.77  37.83 40.60
\ log(npo) 0.91  0.58 0.77  37.72 40.53| 0.91  0.58 0.77  37.80 40.62
\ lconnec 0.91 0.58 0.77  37.74 40.54| 0.91  0.58 0.77  37.81 40.61
\ avgd 0.91  0.58 0.77  37.83 40.58| 0.91  0.58 0.77  37.90 40.64
\ kconnec 0.91  0.58 0.77  37.95 40.66| 0.91  0.58 0.77  38.00 40.71
\ p 0.91  0.61 0.80  39.98 42.20| 0.91 0.61 0.80  40.04 42.26
\ hv 0.89  0.67 0.87  43.59 46.29| 0.89  0.67 0.87  43.63 46.33
\ log(nplo) 0.88  0.70 0.91  45.83 48.19] 0.88  0.70 0.91 45.86 48.21
\ m 0.85 0.77 1.00  50.67 52.95| 0.85 0.78 1.00  50.67 52.96
\ k 0.00 1.53 1.89 100.00 100.00| 0.04 1.53 1.89 100.00 100.00

Although the regression coefficients related to each feature are not inter-
pretable due to the different scaling of the metric values, not all regression coef-
ficients are statistically significant in a general multiple linear regression model.
In order to eliminate the influence of the less significant regression coefficients,
we proceed by backward elimination. Starting from the inclusion of all features,
we iteratively remove the feature that has the lowest impact on the increase of
the MAE until no feature remains. This allows us to produce a ranked list of
features by traversing the feature space from one side to the other and recording
the order that attributes are deleted. Hence, the attributes that are deleted in
the last steps have a more meaningful impact on the model. The steps of the
backward elimination are sketched in Table 3, where one feature is removed at
every line. Notice that a forward selection, that does the opposite procedure of
iteratively adding attributes, ends up with a similar ranking on the importance
of features, except that maxd is in the latter case more important than log(npo)
and log(nconnec) (detailed results are not reported due to space limitation).

This feature selection analysis allows us to gain further insights about which
subset of features obtains the highest accuracy. Indeed, the error increase is
almost insignificant until the deletion of p in the model (line 8 in Table 3),
where the correlation coefficient drops from 0.91 to 0.89, the MAE rises from
0.58 to 0.61 and the RMSE rises from 0.77 to 0.80. We can then conclude that p
and subsequent attributes constitute the most significant subset for explaining
the algorithm performance. Actually, a more compact model, with only the five
most significant features, constitute an acceptable alternative, and has almost
the same accuracy than the full model; see also Fig. 2 (right). Once again,
the most important feature seems to be k, now followed by m, log(nplo), hv
and p, in the order of importance. As a consequence, although they are not able
to catch all the variations of log(ert) individually (see Section 4.2), the joint
effect of all three low-level features from the problem input data (k, m and p)
is relevant for explaining the running time of G-SEMO. Moreover, there is one
high-level feature related to the hypervolume of the Pareto set hv and to the
multimodality log(nplo). As well, the number of Pareto optimal solutions is not
a significant addition to the regression model. We attribute this to the fact that
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Fig. 2. log(ert) vs. fitted values for (left) the model with all features; and (right) the
model with a selected subset of features (i.e. k,m,log(nplo),hv, p).

the hypervolume incorporates a more relevant information related to the Pareto
front for the algorithm behavior.

4.4 Explanatory Models vs. Objective Space Dimension

In this section, we build a separate regression model for each objective space di-
mension m € {2,3,5}. The statistics related to the model accuracy are provided
in Table 4. The information for the complete model mixing all m-values is also
given in the tables in order to facilitate the comparison between the different
models. Additionally, the scatter plot of the actual vs. the predicted performance
values is given in Fig. 3.

First of all, the regression model for a particular number of objectives is
always slightly more accurate than the global model for all m-values (whatever
the m-value, there is an improvement in terms of correlation, %RAE or %RRSE
over the complete model). Actually, the worsening in terms of MAE or RMSE for
larger m-values is only an artefact that the expected running time of G-SEMO
increases with the number of objectives; see Fig. 1 (first line, third column). This
means that constructing a regression model per objective space dimension only
allows to reduce the prediction error to a very small extent.

As reported in Table 5, by focusing on the five most relevant features iden-
tified in the previous section (k,m,log(nplo),hv and p, following the order of
importance), we are also able to construct a more compact regression model

Table 4. Summary statistics of the multiple linear regression models for all objective
space dimensions (Vm) and for each individual objective space dimension m € {2, 3, 5}.
All features are part of the models. Values are rounded to 1072,

training set 10-fold cross validation
r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE| #inst
vYm 0.91 0.58 0.76 37.74 40.34] 0.91  0.58 0.76 37.86 40.48] 2980
=2 0.92 0.52 0.68 35.86 38.62[ 0.92 0.53 0.68 36.15 38.95| 1350
0.92  0.52 0.69 36.12 39.02| 0.92 0.53 0.70 36.60 39.51| 1048
0.93 0.64 0.81 36.86 37.72] 0.92 0.65 0.83 37.62 38.53 582
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Fig. 3. log(ert) wvs. fitted values for (left) m = 2, (middle) m = 3, (right) m = 5. All
features are part of the models.

for each m-value with a satisfactory response compared to the model using all
features. The difference in the correlation coefficient and the average error be-
tween the models with all features and their compact counterpart is always less
than 2-1072. In fact, applying a feature selection procedure by backward elim-
ination for each of the models until the MAE increases by more than 102 ends
up with following subset feature selection, following the order of importance
(detailed results are omitted due to space restriction):

— k,hv and log(nplo) for m = 2;
— k,log(nplo) and hv for m = 3;
— k and p for m = 5.

Interestingly, this means that the objective correlation p is not a relevant fea-
ture for the models with m € {2,3}. We attribute this to the fact that the
number of Pareto local optimal solutions log(nplo) increases with p in these
cases, whereas the correlation between both is much lower for m = 5. For the
same reason, p is selected over hv in the latter case. In addition, given that the
proportion of Pareto local optimal solutions in the solution space increases ex-
ponentially with m (we know, for instance, that more than 95% of the solution
space correspond to Pareto local optimal solutions for p = —0.2 and m = 5 in
average [17]), the multimodality of the landscape, corresponding to log(nplo),
is not relevant anymore for larger objective space dimensions. However, in all
cases, the ruggedness of the landscape k is again the most relevant feature.

Table 5. Summary statistics of the multiple linear regression models for all objective
space dimensions (Vm) and for each individual objective space dimension m € {2, 3, 5}.
Only the subset of significant features (k,m, p,hv,log(nplo)) are part of the models.
Values are rounded to 1072

training set 10-fold cross validation
r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE| #inst
vYm 0.91 0.58 0.77 37.95 40.66] 0.91  0.58 0.77 38.00 40.71] 2980
m =2 0.92 0.53 0.69 36.14 39.17[ 0.92 0.53 0.69 36.25 39.29| 1350
m =3| 0.92 0.54 0.71 37.35 39.89| 0.92 0.55 0.71 37.62 40.14| 1048
m =5 0.92 0.64 0.82 37.30 38.23] 0.92 0.65 0.83 37.54 38.52 582
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5 Conclusions

In this paper, we investigated the impact of problem features on the running
time of a simple dominance-based EMO algorithm with restart, that maintains
an unbounded archive of non-dominated solutions found so far. The topology
of an arbitrary problem instance, in terms of ruggedness, multimodality, ob-
jective space dimension, objective correlation, cardinality and hypervolume of
the Pareto set, as well as distance and connectedness between non-dominated
solutions, has been examined for a large set of enumerable multiobjective NK-
landscapes with objective correlation. First, a simple linear regression analysis
revealed that the ruggedness of the landscape had the more critical effect on
the algorithm performance. Second, a more-advanced multiple linear regression
analysis allowed us to highlight the more significant subset of problem features.
As in the single-objective case [2,7], the ruggedness and the multimodality of
the landscape affect the algorithm running time to a large extent. Additionally,
the number of objectives, the correlation between them, and the hypervolume
of the Pareto front to be covered are all jointly impactful in the multiobjective
case. At last, although problem features have a different impact depending on
the objective space dimension, the degree of explanation they are able to pro-
vide together is always as meaningful for the algorithm performance. Overall,
our feature-based analysis was able to highlight the main relationships between
the structural properties of the landscape and the performance of the algorithm.
This allowed us to better understand the behavior and the performance of this
EMO algorithm class.

The problem characteristics under analysis in the paper validate the rele-
vance of our methodology for explaining the performance of EMO approaches.
However, it remains an open question if there exist supplementary features that
could better capture the problem difficulty for different problem and algorithm
classes, and if more general regression models would allow to better apprehend
the correlations among the features as well as their (non-linear) dependencies
with the algorithm performance. Furthermore, the goal of the paper was on
understanding the algorithm behavior and performance rather than blindly rec-
ommending the best-performing approach, but a natural extension for future
research is to investigate the prediction power of the regression models proposed
in the paper, based on existing works from single-objective optimization [6]. Fol-
lowing the algorithm selection problem formulated by Rice in the 1970s [16], this
would allow us to design a portfolio approach for selecting the most appropri-
ate algorithm configuration, based on a relevant structural characterization of
the multiobjective problem instance to be solved. For that purpose, extending
our paradigm with more-advanced regression models based on problem features
that can be estimated inexpensively for large-size instances is currently under
investigation.
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