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ABSTRACT

This paper extends greedy methods to simultaneous sparse

approximation. This problem consists in finding good esti-

mation of several input signals at once, using different linear

combinations of a few elementary signals, drawn from a fixed

collection. The sparse algorithms for which simultaneous ver-

sions are proposed are namely CoSaMP, OLS and SBR. These

approaches are compared to Tropp’s S-OMP algorithm using

simulation signals. We show that in the case of signals ex-

hibiting correlated components, the simultaneous versions of

SBR and CoSaMP perform better than S-OMP and S-OLS.

Index Terms— Simultaneous sparse approximation,

Greedy algorithms, Orthogonal Matching Pursuit

1. INTRODUCTION

Sparse representation has become widely used in recent years,

to solve many ill-posed problems in several domains such as

compressive sensing, denoising, audio processing [1, 2] and

spectral unmixing [3]. This is a linear inverse problem in

which we seek to represent an input signal using the min-

imum number of vectors from an overcomplete dictionary.

The problem of finding the sparsest vector x corresponding

to a given observation vector y is a NP-hard problem so it

can not be solved in a polynomial time [4]. Thus, several

sub-polynomial approaches have been explored and have

shown a good reconstruction performance. Typically, those

approaches are based on convex relaxation, non-convex local

optimization or greedy pursuit strategy. Indeed, exploiting

the sparsity constraint in such problems ensure that when

the signal x is sufficiently sparse, it can be uniquely deter-

mined from a set of known measurements y = Φx where

the dictionary Φ is a finite collection of elementary sig-

nals. The potential of this type of representation motivated

many researchers to consider several extensions of sparse

representation models. In this context, simultaneous sparse

approximation appeared as a natural extension of the standard

single measurement vector (SMV) approaches. This sparse

representation allows a good approximation of a set of sparse

signal vectors sharing common non-zeros support.

The simultaneous sparse representation models, called

also multiple measurement vectors (MMV) has been studied

from several angles of view [5], and different approaches

have been proposed, using greedy strategies [6] such as

S-OMP [7], convex relaxation methods [8], randomized al-

gorithms such as REduce MMV and BOost (ReMBo) [9].

The MMV problem has also been approached using non

parametric algorithm, namely M-FOCUSS [10], and with

bayesian strategy using M-SBL (Multiple Sparse Bayesian

Learning) [11], as well as other union of subspace models

such as block sparsity and tree structured sparsity [12–14].

In this paper we focus on greedy pursuit approaches.

This choice was motivated by the fact that methods based on

greedy pursuit are in general more practical in terms of com-

putational demands and it has been proven that this type of

approaches leads to correct solution under well-defined con-

ditions. Thus, we present extension of some methods known

for their efficiency in solving standard sparse approximation

to the simultaneous case. These methods are S-CoSaMP,

S-OLS and the forward-backward method S-SBR (Simulta-

neous Single Best Replacement, see [15] for standard SBR).

The remainder of this paper is as follows. Section 2 presents

the simultaneous sparse approximation problem. In section 3,

we introduce the simultaneous versions of the aforementioned

algorithms. Simulation results are presented in section 4 and

the conclusions are drawn in section 5.

2. PROBLEM FORMULATION

Let Y ∈ C
M×K be the observation matrix and Φ ∈ C

M×N

a sensing matrix (called overcomplete dictionary when M <
N ) such that Y = ΦX for some X ∈ CN×K . The simulta-

neous sparse approximation problem is formulated as:

min
X

||X||0 s.t. ΦX = Y (1)

where X = [x1,x2, . . . ,xK ] and xi is the i-th column of X.

||X||0 = |Ω|, where Ω = supp(X) = {1 ≤ i ≤ N |xi 6= 0}
is the set of active atoms, and xi stands for the i-th row of X.

Thus, the simultaneous sparse approximation problem

consists in recovering the matrix X knowing the signal ma-

trix Y and dictionary Φ under the assumption that all the

columns xi of X have the same sparsity profile. This can



be formulated in the coefficient matrix X having a mini-

mum number of non-zeros rows. One of the first algorithms

developed to solve the simultaneous sparse approximation

problem is S-OMP [7]. This is an iterative procedure that

selects an atom at each iteration and updates the residual.

The selected atom is the one that maximizes the correlation

with the current residual. This algorithm exhibits a very low

computational complexity but it lacks accuracy for highly

correlated signal components. The aim of this paper is to pro-

pose other alternatives (although based on the same principle

than S-OMP), which are extensions of CoSaMP, OLS and

SBR to the simultaneous case. It will be shown that these ap-

proaches performs better than S-OMP for signals containing

very correlated components.

3. EXTENSION OF SMV GREEDY ALGORITHMS

FOR SIMULTANEOUS SPARSE APPROXIMATION

3.1. Simultaneous CoSaMP and OLS

The CoSaMP [16] and OLS [17] algorithms are based on

greedy pursuit just like OMP. CoSaMP incorporates some

combinatorial techniques that guarantees speed of the solu-

tion and provides rigorous error bounds. We propose an ex-

tension of this approach to solve the simultaneous sparse ap-

proximation problem. The resulting algorithm is called Si-

multaneous CoSaMP (S-CoSaMP). OLS seems to be very

similar to OMP algorithm, in some way that a lot of confu-

sion has been made between the two [18]. Indeed, both al-

gorithms achieve the same steps, the difference is only in the

selection procedure. The greedy selection in OMP algorithm

is based on the inner products between residual and the col-

umn vector φn of Φ that leads to the minimal residual error.

In OLS, the selection is also greedy, but this step is performed

after orthogonal projection of the signal onto the selected el-

ements. Thus, the orthogonal projection of the elements φn

before the calculation of the inner products characterizes the

OLS procedure and guarantees to select the element resulting

in the smallest error after projection.The difference between

the standard algorithms and the simultaneous ones lies in the

selection and estimation steps. Indeed, in the selection step,

the simultaneous algorithms compute the correlation between

columns of Φ and the current residual using the Frobenius

norm instead of the Euclidean norm. The Frobenius norm is

also used in the estimation of the target signal to solve the

least-squares problem. A summary of the S-CoSaMP algo-

rithm and S-OLS are given in Fig. 1 and 2.

3.2. Simultaneous Single Best Replacement

In its single measurement form, single best replacement [15]

is an algorithm based on minimization of a cost function

I(x, λ), such that:

arg min
x∈CN

{I(x, λ) = E(x) + λ||x||0} (2)

Fig. 1. Simultaneous CoSaMP algorithm

• Input: Data matrix Y ∈ CM×K ; Dictionary Φ ∈ CM×N ; sparsity

parameter s; setting parameter µ; a stopping criterion.

• Output: Set of active atoms Ω; s−sparse matrix X ∈ CN×K and

the residual matrix R.

1. Initialization: R0 = Y, Ω0 = ∅, X0 = 0.

2. For i = 1; i = i+ 1 until the stopping criterion is satisfied do:

(a) Find the µs columns of Φ that are most correlated with residual:

Γ ∈ argmax
|T |≤µs

∑

n∈T

||Rt
i−1φn||

2

F

(b) Let T = Ωi−1 ∪ Γ. Determine the best coefficients for ap-

proximating the residual matrix: Ui = argU min ||Ri−1 −
ΦT U||F

(c) Save the s largest rows of Ui in the Euclidean norm sense:

Xi = [Ui]s
(d) Set Ωi = supp(Xi), and update the residual Ri = Y −

ΦΩi
Xi

3. Return Ωi and Xi and Ri.

Fig. 2. Simultaneous OLS algorithm

• Input: Data matrix Y ∈ CM×K ; Dictionary Φ ∈ CM×N ; sparsity

parameter s.

• Output: Set of active atoms Ω; s−sparse matrix X ∈ CN×K and

the residual matrix R. .

1. Initialization : R0 = Y, Ω0 = ∅
2. For: i = 1; i = i+ 1 until the stopping criterion is satisfied do:

(a) nmax = argn minΩn

i
=Ωi−1∪n ‖Y −ΦΩn

i
Φ

†
Ωn

i

Y‖F

(b) Ωi = Ωi−1 ∪ nmax

(c) XΩi
= Φ

†
Ωi

Y

(d) Ri = Y −ΦΩi
XΩi

3. Return Ωi and XΩi
and Ri.

where E is the corresponding least-squares error: E(x) =
||y −Φx||22 and λ is an hyperparameter controlling the level

of sparsity in the desired solution.

Unlike the previous approaches, the selection is not irre-

versible as it allows adding and removing a new atom to/from

the set of active ones. Indeed, SBR selects the index n that

minimizes the cost function in (2). So, at each iteration the

algorithm tests the N possible single replacements Ω • n,

n = 1, . . . , N then selects the one that yields to maximal

decrease of I(x, λ), i.e. IΩ•n(λ) = EΩ•n + λCard(Ω • n).
Thus, Ω • n may be an insertion or a removal of an index

in/from the set of active indices Ω such that:

Ω • n =

{

Ω ∪ {n} if n /∈ Ω

Ω \ {n} otherwise
(3)

The version proposed here, consists on adapting this algo-

rithm to solve simultaneous sparse approximation problem.

This is done by replacing the norm 2 in E by the Frobenius

norm taking advantage of the joint support of the columns of

X. In addition, the support of the coefficient matrix repre-



Fig. 3. Simultaneous SBR algorithm

• Input: Data matrix Y ∈ CM×K ; Dictionary Φ ∈ CM×N ; regu-

larization parameter λ.

• Output: Set of active atoms Ω; s−sparse matrix X ∈ CN×K .

1. Initialization: R0 = Y, Ω0 = ∅.

2. For i = 1; i = i+ 1 until the set Ωi is no longer updated do:

(a) ni ∈ argn min{IΩi−1•n(λ) = EΩi−1•n+λCard(Ω •n)}.

(b) if IΩi−1•ni
(λ) < IΩi−1

(λ) then

Ωi = Ωi−1 • ni.

End if

(c) XΩi
= Φ

†
Ωi

Y

3. Return Ωi and XΩi
.

sents in this version the number of non-zero rows in X. Thus

the simultaneous SBR seeks to minimize the following cost

function:

arg min
X∈CN×K

{I(X, λ) = E(X) + λ||X||0} (4)

where E(X) = ||Y −ΦX||2
F

and, again, λ is a hyperparam-

eter controlling the tradeoff between data-fitting and sparsity.

S-SBR terminates when no index yields to decreasing the cost

function in (4) anymore. This algorithm has been shown to

be very efficient for dictionary with high correlated atoms,

however it involves the calculation of the inverse of the Gram

matrix ΦT

Ω
ΦΩ so, instabilities may occurs when in case of

ill-conditioned dictionary for low λ [15]. The algorithm is

summarized in Fig. 3.

4. SIMULATION RESULTS

This section aims at evaluating the performances of the pro-

posed algorithms using simulated signal trying to mimic sit-

uations arising is spectroscopic mixture analysis. In order

to measure the quality of the reconstruction, we propose to

compare the reconstruction of the signal matrix with the best

sparse approximation obtained knowing exactly the position

and amplitudes of the s-largest entries of X (active atoms).

So, we propose to test the three developed algorithms to solve

simultaneous sparse approximation on 20 observation vectors

at different signal-to-noise ratios (SNR) levels and evaluate

the performances of each in comparison with the well known

S-OMP. The signal matrix Y ∈ R20×20 is built as follows:

Each column in Y is the sum of 3 Gaussian functions with

standard deviation 0.5. Their weights are drawn from 3 sinu-

soids with random frequencies and amplitude 1. The cen-

ters of the Gaussians are set to (8 − d, 8, 8 + 2d), where

d ∈ {0.66, 1, . . . , 5}. The variable d controls the correla-

tion between the signal components. This scheme is repre-

sented in figure 4 for 3 values of d. Then, the matrix Y is

perturbed by an additive white Gaussian noise E such that

the SNR defined by SNR = ‖ΦX‖2
F
/‖E‖2

F
varies between

−20 and 20 dB. The overcomplete dictionary Φ ∈ R20×60 is
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Fig. 4. Representation of the data matrix Y for d = 5, d = 2,

and d = 0.66. The signal is composed of 3 Gaussians with

sinusoidal amplitudes along x-axis

composed of 60 normalized Gaussian atoms with a standard

deviation of 0.5. Their centers are ranging from 0 to 19.66

with a step of 0.33. As a consequence, the correlation coeffi-

cient between two consecutive atoms (mutual coherence [4])

is about 0.93, meaning that the dictionary is far from orthog-

onality. The setting parameters are: s = 6, µ = 0.5 and

λ = 10−5. Here the objective is not to evaluate performances

in the worst case (using the RIP) but to localize the exact re-

covery regions (defined by d and the SNR) for each method.

So we use the detection rate (related to the number of signal

components correctly identified) as a measure of exact recov-

ery.

The results are shown in figure 5. It is obvious that all

the methods achieve exact recovery for large d and high SNR

(100% detection rate). However, detection rates differ from

one to another when the SNR is low and/or the signal compo-

nents are close one to the other (low d). S-OMP exhibits the

smallest exact recovery region as S-OLS, but the latter shows

better performances for moderate SNRs. S-CoSaMP leads

to better detection rates than S-OMP for high d and low SNR



S−OMP

 

 

1 2 3 4 5
−20

−10

0

10

20
S−CoSaMP

 

 

1 2 3 4 5
−20

−10

0

10

20

S−OLS

 

 

1 2 3 4 5
−20

−10

0

10

20
S−SBR

 

 

1 2 3 4 5
−20

−10

0

10

20

0.4

0.6

0.8

1

0.4

0.6

0.8

1

0.4

0.6

0.8

1

0.4

0.6

0.8

1

dd

dd

S
N

R
(d

B
)

S
N

R
(d

B
)

S
N

R
(d

B
)

S
N

R
(d

B
)

Fig. 5. Detection rate of the simultaneous methods versus SNR and d for 100 Monte Carlo simulations

scenario. Nevertheless, those three methods failed completely

to recover one right atoms for signal sorely corrupted as rep-

resented by the white region in figure 5. By contrast, S-SBR

exhibits the best behavior at low SNR and/or low d for suffi-

ciently small λ. Generally speaking, S-SBR and S-CoSaMP

show the best performances, as their SMV versions, but at the

cost of higher numerical demands. To show the advantage of

the simultaneous approximation, we present in figure 6 the re-

sults obtained for the same simulation using the standard SBR

on each column of Y independently. We observe that the per-

formances are dramatically increased by taking advantage of

the fact that all the columns Y have the same support.

The evolution of Frobenius norm of residual returned by

each method is represented in Fig. 7, for the following sce-

nario: SNR = 10 and d = 2.33. It appears that algorithms

such as S-OMP, S-CoSaMP and S-OLS failed to achieve the

desired accuracy for signal reconstruction even for a large

number of iterations, whereas the reconstruction error is de-

creasing using S-SBR. However, we note that S-CoSaMP al-

gorithm is much faster than others as it achieves the lowest

error after only eight iterations while S-OLS and S-SBR need

one more iteration and S-OMP two more iterations.

5. CONCLUSION

We presented extensions of greedy algorithms to solve the

simultaneous sparse approximation problem. In the case of

correlated signal components or low SNR, S-SBR and S-

CoSaMP, support recoveries than S-OLS and Tropp’s S-OMP

in terms of detection rates and thus reconstruction error.

Algorithms such as S-OLS and S-CoSaMP have stronger

capacities of exploration in comparison with S-OMP, while

the objective function of S-SBR is guaranteed to decrease

performing both insertion and removal of atoms in/from the

support. Furthermore, we found that for highly correlated dic-

tionaries they outperform S-OMP and require less iterations

to meet recovery conditions but at the expense of computa-

tional demands. As future work, we are planning to use these

algorithms in hyperspectral unmixing and multidimensional

harmonic retrieval of spectroscopy data [19].
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