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Abstract. In many applications and in many fields, algorithms can con-
siderably be speed up if the underlying arithmetical computations are
considered carefully. In this article, we present a theoretical analysis of
discrete affine transformations in higher dimension. More precisely, we
investigate the arithmetical paving structure induced by the transforma-
tion to design fast algorithms.

1 Introduction

In many computer vision and image processing applications, we are facing new
constraints due to the image sizes both in dimension with 3-D and 3-D+t med-
ical acquisition devices, and in resolution with VHR (Very High Resolution)
satellite images. This article deals with high performance image transformation
using quasi-affine transforms (QATs for short), which can be viewed as a dis-
crete version of general affine transformations. QAT can approximate rotations
and scalings, and in some specific cases, QAT may also be one-to-one and onto
mappings from Z

n to Z
n, leading to exact computations. A similar approach has

been proposed in [1] with the notion of Generalized Affine Transform. The au-
thor demonstrated that any isometric transform (equivolume affine transform)
in dimension n can be decomposed into (n2 − 1) fundamental skew transforma-
tions which parameters can be optimized to obtain a reversible transformation.
Note that the bound has been improved to (3n − 3) in [2]. This approach is a
generalization of the decomposition of rotations in dimension 2 into three shears
(see for example [3]). In this paper, we focus on QATs since they provide a wider
class of transformation (contracting and dilating transformations are allowed).
Furthermore, we investigate direct transformation algorithms without the need
of intermediate computations.

In dimension 2, the QAT appeared in several articles [4,5,6,7,8]. To sum-
marize the main results, the authors have proved several arithmetical results
on QAT in 2-D leading to efficient transformation algorithms. More precisely,
thanks to periodic properties of pavings induced by the reciprocal map, the
image transformation can be obtained using a set of precomputed canonical
pavings. In this paper, we focus on a theoretical analysis of n-dimensional QAT.
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The idea is to investigate fundamental results in order to be able to design ef-
ficient transformation algorithms in dimension 2 or 3 as detailed in [9]. More
precisely, we demonstrate the arithmetical and periodic structures embedded in
n−dimensional QAT. Due to the space limitation, we only details the proofs of
the main theorems (other proofs are available in the technical report [9]).

During the reviewing process of the paper, the article [10] was brought to our
attention. Even if the framework differs, some results presented here can also be
found in [10]. However, the closed formulas for the paving periodicity presented
in Section 3.2 make our contribution complementary.

In Section 2, we first detail preliminary notations and properties. Then, Sec-
tion 3 contains the main theoretical results leading to a generic n-D transforma-
tion algorithm sketched in Section 4.

2 Preliminaries

2.1 Notations

Before we introduce arithmetical properties of QAT in higher dimension, we first
detail the notations considered in this paper. Let n denote the dimension of the
considered space, Vi denote the ith coordinate of vector V , and Mi,j denote the
(i, j)th coefficient of matrix M . We use the notation gcd(a, b, . . .) for the greatest
common divisor of an arbitrary number of arguments, and lcm(a, b, . . .) for their
least common multiple.

Let
[

a
b

]

denote the quotient of the euclidean division of a by b, that is the
integer q ∈ Z such that a = bq+ r satisfying 0 ≤ r < |b| regardless of the sign of
b1. We consider the following generalization to n−dimensional vectors:

[

V

b

]

=









[

V0

b

]

...
[

Vn−1

b

]









and

{

V

b

}

=









{

V0

b

}

...
{

Vn−1

b

}









. (1)

2.2 Quasi-Affine Transformation Definitions

Defined in dimension 2 in [4,5,6,7,8], we consider a straightforward generalization
to Z

n spaces.

Definition 1 (QAT). A quasi-affine transformation is a triple (ω,M,V ) ∈
Z×Mn(Z)× Z

n (we assume that det(M) 6= 0). The associated application is:

Z
n −→ Z

n

X 7−→

[

MX + V

ω

]

.

1
{

a

b

}

denotes the corresponding remainder
{

a

b

}

= a− b
[

a

b

]

.



And the associated affine application is:

R
n −→ R

n

X 7−→
MX + V

ω
.

In other words, a QAT is the composition of the associated affine application
and the integer part floor function.

Definition 2. A QAT is said to be contracting if ωn > |det(M)|, otherwise it
is said to be dilating.

In other words, a QAT is contracting if and only if the associated affine
application is contracting. Note that if ωn = |det(M)|, the QAT is dilating, even
if the associated affine application is an isometry.

Definition 3. The inverse of a QAT (ω,M, V ) is the QAT:

(det(M), ω com(M)t,− com(M)tV ) , (2)

where t denotes the transposed matrix and com(M) the co-factor matrix of M2.

The associated affine application of the inverse of a QAT is therefore the
inverse of the affine application associated to the QAT. However, due to the
nested floor function, the composition f · f−1 is not the identity function in the
general case.

3 QAT Properties in Higher Dimensions

3.1 Pavings of a QAT

Without loss of generality, we suppose that the QAT is contracting. A key feature
of a QAT in dimension 2 is the paving induced by the reciprocal map of a discrete
point. In the following, we adapt the definitions in higher dimensions and prove
that a QAT in Z

n also carries a periodic paving.

Definition 4 (Paving). Let f be a QAT. For Y ∈ Z
n, we denote:

PY = {X ∈ Z
n | f(X) = Y } = f−1(Y ) , (3)

PY is called order 1 paving of index Y of f .

PY can be interpreted as a subset of Zn (maybe empty) that corresponds
to the reciprocal map of Y by f . We easily show that the set of pavings of a
QAT forms a paving of the considered space (see Fig. 1). In dimension 2, this
definition exactly coincides with previous ones [4,6,7,8,5].

2 Remind that M com(M)t = com(M)tM = det(M)In.



Fig. 1. Pavings of the QAT
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with their indexes (in

2D, these are the couples: Y = (x, y)).

Definition 5. PY is said arithmetically equivalent to PZ (denoted PY ≡ PZ) if:

∀X ∈ PY , ∃X
′ ∈ PZ ,

{

MX + V

ω

}

=

{

MX ′ + V

ω

}

. (4)

Again, this definition is equivalent (as shown below) to those given in the
literature.

Theorem 1. The equivalence relationship is symmetric, i.e.:

PY ≡ PZ ⇔ PZ ≡ PY . (5)

Proof. The proof is given [9].

Figure 1 illustrates arithmetically equivalent pavings: the pavings of index
(0, 1) and (5, 1) are arithmetically equivalent (see Table 1).

Definition 6. PY and PZ are said geometrically equivalent if:

∃v ∈ Z
n, PY = TvPZ , (6)

where Tv denotes the translation of vector v.

In Figure 1, the pavings of indexes (0, 1) and (1, 0) are geometrically equiva-
lent. In image processing purposes, when we want to transform a n−dimensional
image by a QAT, geometrically equivalent pavings will allow us to design fast
transformation algorithms.
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)

(
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6
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)
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)
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)

(
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)
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Table 1. Pavings of index (0, 1), (5, 1) and (1, 0) of the QAT
(

84,

(

12 −11
18 36

)

,

(

150
−500

))

Theorem 2. If PY ≡ PZ , then PY and PZ are geometrically equivalent. Since
PY ≡ PZ , there exists X ∈ PY and X ′ ∈ PZ such that:

{

MX + V

ω

}

=

{

MX ′ + V

ω

}

.

Then v = X −X ′ is the translation vector:

PY = TvPZ .

In dimension 2, this theorem is also proved in [7].

Proof. The proof is given in [9].

In a computational point of view, if a paving PY has been already computed,
and if we know that PY ≡ PZ , then PZ can be obtained by translation of PY .
In Figure 1, the pavings of index (0, 1) and (5, 1) are arithmetically equivalent
(see Table 1), therefore they are geometrically equivalent (as we can check on
the figure). Note that the inverse implication is false: in Figure 1, the pavings of
index (0, 1) and (1, 0) are geometrically equivalent but they are not arithmetically
equivalent (see Table 1).



3.2 Paving Periodicity

Definition 7. ∀0 ≤ i < n, We define the set Ai as follows:

Ai = {α ∈ N
∗ | ∃(βj)0≤j<i ∈ Z

i, ∀(y0, . . . , yn−1) ∈ Z
n,

Py0,...,yi+α,...,yn−1
≡ Py0+β0,...,yi−1+βi−1,yi,...,yn−1

}

Theorem 3 (Perdiodicity). The set of QAT pavings is n−periodic, in other
words

∀0 ≤ i < n,Ai 6= ∅

Proof. The proof is given in Sect. A.1.

If we consider α = |det(M)| as in Sect. A.1, we have demonstrated the
periodic structure of QAT pavings since PY ≡ PY+αei for each i. We investigate
now the quantities αi which are minimal for each dimension i,

Definition 8. ∀0 ≤ i < n, let us consider αi = min(Ai). We define {βi
j}0≤j<i ∈

Z
i and Ui ∈ Z

n such that

∀(y0, . . . , yn−1) ∈ Z
n, Py0,...,yi+αi,...,yn−1

= TUi
Py0+βi

0
,...,yi−1+βi

i−1
,yi,...,yn−1

.

Thanks to Theorem 2 and using notations of Def. 8, letX ∈ Py0,...,yi+αi,...,yn−1

and X ′ ∈ Py0+βi
0
,...,yi−1+βi

i−1
,yi,...,yn−1

, such that
{

MX+V
ω

}

=
{

MX′+V
ω

}

. Then,

we have Ui = X −X ′.
The quantities αi, β

i
j and Ui can be computed in dimension 2 and 3 (see [9])

by using greatest common divisors and Euclide’s algorithm. The computation of
α2 in 3D already involves a consequent number of intermediate variables, that
is why these computations seem to be hard to generalize in arbitrary dimension.
Therefore, we will suppose here that quantities αi, β

i
j and Ui are given.

To paraphrase above results, αi and its associated Ui and {βi
j} allows us to

reduce the ith component of Y while preserving the geometrically equivalence
relationship. If we repeat this reduction process to each component from n − 1
down-to 0, we construct a point Y 0 such that PY and PY 0 are geometrically
equivalent. The following theorem formalizes this principle and defines the initial
period paving PY 0 .

Theorem 4. ∀(y0, . . . , yn−1) ∈ Z
n, we have Py0,...,yn−1

= TWPy0
0
,...,y0

n−1
with

W =
n−1
∑

i=0

wiUi

and ∀n > i ≥ 0,















wi =

[

yi+
∑n−1

j=i+1
wjβ

j

i

αi

]

y0i =

{

yi+
∑n−1

j=i+1
wjβ

j

i

αi

} .

Proof. The proof is given in Sect. A.2.

Therefore, if we already computed the pavings Py0
0
,...,y0

n−1
for 0 ≤ y0i < αi,

we can obtain any paving by translation of one of these pavings.



3.3 Super-paving of a QAT

We now describe how to compute these initial period pavings based on the notion
of super-paving (see Fig. 2).

Definition 9. A super-paving of a QAT is the set P such that

P =
⋃

0≤Y 0<(α0,...,αn−1)

PY 0

In other words, the super-paving is the union of all pavings of the initial
period. In dimension 2, this definition coincides with definitions given in [7,6,8].

Theorem 5. P is the paving P(0,...,0) of the QAT defined by:






ω lcm0≤i<n(αi),







θ0 · · · 0
...
. . .

...
0 · · · θn−1






M,







θ0 · · · 0
...
. . .

...
0 · · · θn−1






V






, (7)

with ∀0 ≤ i < n,

θi =
lcm0≤j<n(αj)

αi

.

Proof. The proof is given in [9].

Fig. 2. Super-paving decomposition of the QAT defined in Fig. 1. Arrows illus-
trate a basis of the periodic structure, numbers on white background are the yi,
and numbers on black background are the wi.

Hence, we can associate a canonical paving to each point of the super-paving.
More precisely, the super-paving allows us to compute the equivalence classes
for the arithmetical equivalence relationship between two pavings.



3.4 Paving Construction

In this section, we focus on an arithmetic paving construction algorithm. Hence,
using the results of the previous section, such a construction algorithm will be
used to compute canonical pavings in the super-paving.

Definition 10. The matrix T is the Hermite Normal Form of the QAT matrix
M if:

– T is upper triangular, with coefficients {Tij} such that Tii > 0;
– ∃H ∈ GLn(Z),MH = T .

If M is nonsingular integer matrix, the Hermite Normal Form exists. Note
also that if H ∈ Mn(Z), then H ∈ GLn(Z) ⇔ |det(H)| = 1.

For example, given

(

12 −11
18 36

)

, we have:

(

12 −11
18 36

)(

2 1
−1 0

)

=

(

35 12
0 18

)

.

Using the Hermite Normal Form, we can design a fast paving computation
algorithm formalized in the following theorem:

Theorem 6. ∀Y ∈ Z
n, let MH = T be the Hermite Normal Form of the QAT

matrix M , then

PY = {HX | ∀n > i ≥ 0, Ai(Xi+1, . . . , Xn−1) ≤ Xi < Bi(Xi+1, . . . , Xn−1)}
(8)

With

Ai(Xi+1, . . . , Xn−1) = −

[

−ωYi +
∑n−1

j=i+1 Ti,jXj + Vi

Ti,i

]

,

Bi(Xi+1, . . . , Xn−1) = −

[

−ω(Yi + 1) +
∑n−1

j=i+1 Ti,jXj + Vi

Ti,i

]

.

In [7,8], a similar result can be obtained in dimension 2. However, the Hermite
Normal Form formalization allows us to prove the result in higher dimension.
To prove Theorem 6, let us first consider the following technical lemma:

Lemma 1. Let a, b, q, x ∈ Z with q > 0, then

a ≤ qx < b ⇔ −

[

−a

q

]

≤ x < −

[

−b

q

]

.

Proof. The proof is detailed in [9].

We can now prove the Theorem 6 (cf Sect. A.3). The implementation of the
construction algorithm is straightforward: we just have to consider n nested loop
such that the loop with level i goes from Ai to Bi quantities. See [9] for details
in dimension 2 and 3.



Algorithm 1: Generic QAT algorithm for a contracting QAT

Input: a contracting QAT f := (ω,M,V ), an image A : Z
n → Z

Output: a transformed image B : Z
n → Z

Compute the Hermite Normal Form of the matrix M ;
Determine the minimal periodicities {αi} and vectors {U i};
Use Theorems 5 and 6 to compute the canonical pavings in the super-paving P;
foreach Y ∈ B do

Find Y 0 and W such that PY = TWPY 0 by using Theorem 4;
sum← 0;
foreach Z ∈ PY 0 do

c← A(TWZ); // we read the color in the initial image

sum← sum+ c;

B(Y )← sum/|PY 0 |; // we set the color

4 A Generic QAT Algorithm

In Algorithm 1, we give the generic algorithm applying a contracting QAT f to
an image A (see Fig. 3). The principle is that we give to each pixel Y of image
B the average color of the paving PY in image A. If f is a dilating QAT, we
obtain the very similar Algorithm 2 which principle is that firstly we replace f

with f−1, and then we give the color of each pixel Y of image A to each pixel
of PY in image B. In both algorithms, some elements cannot be computed

Algorithm 2: Generic QAT algorithm for a dilating QAT

Input: a dilating QAT f := (ω,M,V ), an image A : Z
n → Z

Output: a transformed image B : Z
n → Z

Replace f with f−1;
Compute the Hermite Normal Form of the matrix M ;
Determine the minimal periodicities {αi} and vectors {U i};
Use Theorems 5 and 6 to compute the canonical pavings in the super-paving P;
foreach Y ∈ A do

Find Y 0 and W such that PY = TWPY 0 by using Theorem 4;
c← A(Y ); // we read the color in the initial image

foreach Z ∈ PY 0 do

B(TWZ)← c; // we set the color

in arbitrary dimension n. Indeed, even if there exist algorithms to compute the
Hermite Normal Form of an arbitrary square integer matrix [11], there is no
generic algorithm to obtain the minimal periodicities {αi}.

In [9], we detail the computation of the minimal periodicities in dimension
2 and 3. We also demonstrate with a complete experimental analysis that algo-



(a) (b)

Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting
(a) and dilating (b). In both cases, we use the canonical pavings contained in
the super-paving to speed-up the transformation.

rithms 1 and 2 outperform classical techniques to transform an image by affine
functions.

5 Conclusion and Future Works

In this paper, we have demonstrated that in higher dimension, Quasi-Affine
Transformations contain arithmetical properties leading to the fact that the
induced pavings are n−periodic. Furthermore, thanks to the Hermite Normal
Form of the QAT matrix, we have presented efficient algorithms to construct a
given paving and to compute a set of canonical pavings. From all these theoret-
ical results, fast transformation algorithms have been designed in [9]. However,
several future works exist. First, as detailed in Sections 3.1 and 3.3, the super-
paving of a QAT contains a set of arithmetically distinct pavings. However, two
arithmetical distinct pavings may be geometrically equivalent. Hence, a subset
of the super-paving may be enough to design a fast algorithm. In dimension
2, in [4,6,7,8], the authors have investigated another structure, so-called gener-
ative strip, which removes some arithmetical distinct pavings whose geometry
are identical. Even if the generalization in higher dimension of this object is
not trivial, it may be interesting to investigate theoretical techniques to reduce
the canonical paving set. Finally, a generic algorithm to compute the minimal
periodicities is challenging.
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A Appendix: Proofs

A.1 Theorem 3

Proof. Given 0 ≤ i < n, let us suppose that ∀0 ≤ j < i, βj = 0 and α = |det(M)|.
Let Y ∈ Z

n, X ∈ PY , and

X ′ = X +
det(M)

|det(M)|
ω com(M)tei

with ei being the i−th vector of the canonical basis of Rn. We prove that Ai 6= ∅
since PY ≡ PY+αei :

MX ′ + V = MX + V +M
det(M)

|det(M)|
ω com(M)tei

= ωY +

{

MX + V

ω

}

+ ω
det(M)

|det(M)|
M com(M)tei

= ωY +

{

MX + V

ω

}

+ ω
det(M)

|det(M)|
det(M)ei

= ωY +

{

MX + V

ω

}

+ ω|det(M)|ei = ω(Y + αei) +

{

MX + V

ω

}

http://dpt-info.u-strasbg.fr/~jacob/articles/paving.pdf
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Hence,
{

MX′+V
ω

}

=
{

MX+V
ω

}

and thus X ′ ∈ PY+αei . Finally, PY+αei ≡ PY

which proves that α ∈ Ai.�

A.2 Theorem 4

Proof. Let us denote T (j) the proposition

Py0,...,yn−1
= T∑n−1

i=j
wiUi

Py0+
∑n−1

i=j
wiβ

i
0
,...,yj−1+

∑n−1

i=j
wiβ

i
j−1

,y0
j
,...,y0

n−1

.

We consider the following induction: given n > p ≥ 0, we suppose T (p+ 1) and
prove T (p). As a consequence of Def. 8,

∀(z1, . . . , zn−1) ∈ Z
n, Pz0,...,zp+αp,...,zn−1

= TUp
Pz0+β

p

0
,...,zp−1+β

p

p−1
,zp,...,zn−1

.

Hence, ∀k ∈ Z, we have

Pz0,...,zp+kαp,...,zn−1
= TkUp

Pz0+kβ
p

0
,...,zp−1+kβ

p

p−1
,zp,...,zn−1

.

With











k = wp

∀0 ≤ j < p, zj = yj +
∑n−1

i=p+1 wiβ
i
j

∀p ≤ j < n, zj = y0j

,we obtain

Py0+
∑n−1

i=p+1
wiβ

i
0
,...,yp−1+

∑n−1

i=p+1
wiβ

i
p−1

,y0
p+wpαp,y

0
p+1

,...,y0
n−1

= TwpUp
Py0+

∑n−1

i=p
wiβ

i
0
,...,yp−1+

∑n−1

i=p
wiβ

i
p−1

,y0
p,...,y

0
n−1

.

(9)

Since T (p+ 1) is true, and since yp +

n−1
∑

j=p+1

wjβ
j
p = y0p + αpwp , we have

Py0,...,yn−1
= T∑n−1

i=p+1
wiUi

Py0+
∑n−1

i=p+1
wiβ

i
0
,...,yp−1+

∑n−1

i=p+1
wiβ

i
p−1

,y0
p+αpwp,y

0
p+1

,...,y0
n−1

(10)
We can identify the left side of Eq. (9) to the right part of the right side of (10),
summing up the translation vectors leads to T (p). Since T (n) : Py0,...,yn−1

=
T0Py0,...,yn−1

is trivial, we prove T (0) and thus the theorem.�

A.3 Theorem 6

Proof. Let X,Y, Z ∈ Z
n such that X = H−1Z, then Z ∈ PY is equivalent to

[

MZ + V

ω

]

= Y ⇔

[

TX + V

ω

]

= Y ⇔ ∀0 ≤ i < n, ωyi ≤
n−1
∑

j=i

Ti,jXj + Vi < ω(yi + 1)

⇔ ∀0 ≤ i < n, ωyi −
n−1
∑

j=i+1

Ti,jXj − Vi ≤ Ti,iXi < ω(yi + 1)−
n−1
∑

j=i+1

Ti,jXj − Vi .

Thanks to Lemma 1, Z ∈ PY is equivalent to

∀0 ≤ i < n,Ai(Xi+1, . . . , Xn−1) ≤ Xi < Bi(Xi+1, . . . , Xn−1) .�
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