Can we determine what controls the spatio-temporal distribution of d-excess and O-17-excess in precipitation using the LMDZ general circulation model?

C. Risi, A. Landais, R. Winkler, F. Vimeux

To cite this version:

C. Risi, A. Landais, R. Winkler, F. Vimeux. Can we determine what controls the spatio-temporal distribution of d-excess and O-17-excess in precipitation using the LMDZ general circulation model?. Climate of the Past, European Geosciences Union (EGU), 2013, 9 (5), pp.2173-2193. 10.5194/cp-9-2173-2013. hal-01091225

HAL Id: hal-01091225
https://hal.archives-ouvertes.fr/hal-01091225
Submitted on 6 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

C. Risi1, A. Landais2, R. Winkler2, and F. Vimeux2,3

1Laboratoire de Météorologie Dynamique UMR8539, IPSL/CNRS/UPMC, 4, place Jussieu, 75252 Paris Cedex 05, France
2Institut Pierre Simon Laplace (IPSL), Laboratoire des Sciences de Climat et de l’Environnement (LSCE), UMR8212 (CEA-CNRS-UVSQ), CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette, Cedex, France.
3Institut de Recherche pour le Développement (IRD), Laboratoire HydroSciences Montpellier (HSM), UMR5569 (CNRS-IRD-UM1-UM2), Montpellier, France

Correspondence to: C. Risi (camille.risi@lmd.jussieu.fr)

Received: 17 September 2012 – Published in Clim. Past Discuss.: 8 November 2012
Revised: 12 July 2013 – Accepted: 7 August 2013 – Published: 16 September 2013

Abstract. Combined measurements of the H_{2}^{18}O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H_{2}^{18}O isotopic ratio alone. More recently, measurements of H_{2}^{17}O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood.

We use the isotopic general circulation model (GCM) LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD) and during the last glacial maximum (LGM). The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity), Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature.

In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower D-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O-excess by LMDZ suggest that general circulation models are not yet the perfect tool to quantify with confidence all processes controlling 17O-excess.

1 Introduction

Water-stable isotopic measurements in ice cores have long been used to reconstruct past climates. In particular, the H_{2}^{18}O and HDO isotopic ratio (expressed, respectively through δD and δ^{18}O) in polar ice cores have long been used as a proxy of past polar temperature (Johnsen et al., 1972; Lorius et al., 1979; Jouzel, 2003). Combined measurements of H_{2}^{18}O and HDO isotopic ratio in precipitation, leading to second-order parameter D-excess (d-excess = δD – 8δ^{18}O, Dansgaard, 1964), have provided additional constraints on past climates compared to the H_{2}^{18}O or HDO ratios alone. Its interpretation is however more complex. First interpreted as a tracer of relative humidity conditions at the moisture source (Jouzel et al., 1982), it was later interpreted in terms of the...
temperature at the moisture source or of shifts in moisture origin (Stenni et al., 2001; Vimeux et al., 2002; Masson-Delbrotte et al., 2005). It is also impacted by mixing along trajectories (Hendricks et al., 2000; Sodenmann et al., 2008) and local temperature (Masson-Delbrotte et al., 2008). In models, its representation is very sensitive to a poorly constrained empirical parameter determining the supersaturation in polar clouds (Jouzel and Merlivat, 1984).

More recently, measurements of $H_2^{17}O$ have led to the definition of another second-order parameter: ^{17}O-excess=$\ln(\delta^{17}O/1000+1)−0.528 \times \ln(\delta^{18}O/1000+1)$ (Landais et al., 2006). Since magnitudes of ^{17}O-excess are very small, they are multiplied by 10^6 and expressed in per meg (Landais et al., 2008). Recent studies suggest that ^{17}O-excess may provide information on evaporative conditions at the source of moisture (Barkan and Luz, 2007; Landais et al., 2008; Risi et al., 2010c; Uemura et al., 2010). Potentially, the combination of $\delta^{18}O$, d-excess and ^{17}O-excess may thus enable us to describe more comprehensively past climate changes, including local temperature, moisture origin and conditions at the moisture source. However, processes controlling ^{17}O-excess appear even more complex than those controlling d-excess. As d-excess, ^{17}O-excess is strongly sensitive to the empirical parameter determining the supersaturation in polar clouds (Winkler et al., 2012; Landais et al., 2012a,b). In addition, its logarithmic definition makes it very sensitive to mixing between vapors of different origins: for example, mixing vapors of same ^{17}O-excess and different $\delta^{18}O$ leads to lower ^{17}O-excess in the mixture (Risi et al., 2010c). In Central Antarctica, ^{17}O-excess may also be affected by stratospheric intrusions (Winkler et al., 2013). Indeed, the ^{17}O-excess in the stratospheric vapor is so high (of the order of 3000 ppmeg, Franz and Roeckmann, 2005; Zahn et al., 2006) relatively to that in the tropospheric vapor (a few tens of per meg maximum) that even a small flux of stratospheric vapor into the troposphere may affect significantly the tropospheric ^{17}O-excess.

This paper aims at better understanding what processes control the spatio-temporal distribution of d-excess and ^{17}O-excess, and what processes make $\delta^{18}O$, d-excess and ^{17}O-excess complementary tracers. These questions have so far been addressed using simple models: Rayleigh distillation models (Landais et al., 2008, 2012b) which can be coupled to a back-trajectory analysis (Winkler et al., 2012), a single column model (Risi et al., 2010c) or a bulk re-evaporation model (Landais et al., 2010). To take into account a broader range of processes controlling the water isotopic composition, we use the isotope-enabled general circulation model (GCM) LMDZ (Risi et al., 2010b), in which we have implemented $H_2^{17}O$. The added value of GCMs compared to simpler models is that they represent the integrated effects, along air mass trajectories, of boundary layer and convective processes, cloud and precipitation physics, evaporative recycling and mixing between different air masses. To investigate the effect of this combination of processes, isotopic GCMs are invaluable. For example, isotopic GCM simulations have been exploited to understand how $\delta^{18}O$ and d-excess relate to the origin of water vapor (e.g. Delaygue, 2000; Werner et al., 2001; Noone, 2008; Lee et al., 2008; Masson-Delbrotte et al., 2011). The drawback of these GCM studies is however the difficulty of GCMs to simulate some aspects of observed d-excess variability. For example, simulated daily d-excess variations in the water vapor or in the precipitation are too flat (Risi et al., 2010b; Steen-Larsen et al., 2013) and simulated d-excess variations at the paleo-climatic scale are always of opposite sign compared to $\delta^{18}O$ even when observed variations are of the same sign (Werner et al., 2001; Noone, 2008). This difficulty reflects the complexity of the d-excess variable and our lack of understanding of its major controlling factors. This difficulty is expected to be even more severe for ^{17}O-excess.

To our knowledge, this is the first time ^{17}O-excess simulations with a GCM are being documented. The first goal of this paper is thus to document the performance of GCMs in capturing observed spatio-temporal variations in ^{17}O-excess. This allows us to better assess the feasibility of using a GCM to investigate what controls ^{17}O-excess. For features that the model can capture well, we use the GCM to disentangle the different processes controlling ^{17}O-excess and contrast them with processes controlling $\delta^{18}O$ and d-excess. For features that the model cannot capture well, we suggest possible causes of mismatches. As a first study of ^{17}O-excess in a GCM, we focus on latitudinal gradients, seasonal variability and difference between the Last Glacial Maximum (LGM) and present-day (PD).

In Sect. 2, we describe the model simulations, data sets and methodology. In Sect. 3, we evaluate the model isotopic simulations. In Sect. 4, we quantify the factors controlling the $\delta^{18}O$, d-excess and ^{17}O-excess distributions simulated by LMDZ and discuss implications for the factors in the real world. In Sect. 5, we summarize our results and present perspectives for future work.

2 Model simulations, data sets and methodology

2.1 The LMDZ4 model and isotopic implementation

LMDZ4 (Hourdin et al., 2006) is the atmospheric component of the Institut Pierre-Simon Laplace coupled model (IPSL-CM4, Marti et al., 2005) used in CMIP3 (Coupled Model Intercomparison Project, Meehl et al., 2007). It is used here with a resolution of 2.5° in latitude, 3.75° in longitude and 19 vertical levels. The physical package includes the Emanuel convective scheme (Emanuel, 1991; Emanuel and Zivkovic-Rothman, 1999), coupled to a statistical cloud scheme (Bony and Emanuel, 2001) which diagnoses convective cloud fraction from a radiative point of view. Precipitation can be created either by the convective scheme or by a large-scale
condensation scheme. The large-scale condensation scheme is also based on a statistical cloud scheme (Letreut and Li, 1991). The impact of tuning parameters in this statistical cloud scheme on water isotopic compositions are limited to the upper troposphere (Risi et al., 2012). Water vapor and condensate are advected using a second-order monotonic finite volume advection scheme (Van Leer, 1977; Hourdin and Armengaud, 1999).

The isotopic version of LMDZ is described in detail in Risi et al. (2010b). Equilibrium fractionation coefficients between vapor and liquid water or ice are calculated after Merlivat and Nief (1967), Majoube (1971a) and Majoube (1971b). The isotopic composition of the ocean surface evaporation flux is calculated following Craig and Gordon (1965). We take into account kinetic effects during the evaporation from the sea surface following Merlivat and Jouzel (1979) and during snow formation following Jouzel and Merlivat (1984), with the supersaturation parameter λ set to 0.004 to optimize the simulation of d-excess over Antarctica (Risi et al., 2010b). This λ value is consistent with that found to optimize the simulation of both d-excess and 17O-excess in both Antarctica and Greenland in simpler models (Landais et al., 2012a,b). We make the simplifying assumption that over land, all evapotranspiration occurs as transpiration (e.g. Hoffmann et al., 1998), which is non-fractionating (Washburn and Smith, 1934; Barnes and Allison, 1988). Specifically for 17O, equilibrium fractionation coefficients are equal those for 18O at the power 0.529 (Van Hook, 1968; Barkan and Luz, 2005; Landais et al., 2012b). The diffusivity of 17H$_2$O relatively to that of 16H$_2$O is assumed to be that for 18H$_2$O at the power 0.518 (Barkan and Luz, 2007).

We do not consider the effect of methane oxidation on the stratospheric water isotopic composition (Johnson et al., 2001; Zahn et al., 2006). This is a reasonable approximation since we focus on the isotopic composition of the precipitation and of low-level vapor. It has been shown that in Central Antarctica, stratospheric intrusions may play a role in the inter-annual variability of Vostok precipitation 17O-excess, but the role of these intrusions in the spatial and seasonal distribution of 17O-excess and in its LGM-to-present variation is unclear.

The implementation of stable water isotopes in the convective scheme has been extensively described in Bony et al. (2008). In convective updrafts, condensation is assumed to be a closed process (i.e. vapor-condensate equilibrium) for the liquid phase (above -40°C) and an open process (i.e. Rayleigh distillation) for the ice phase (below 0°C). We pay particular attention to the representation of the re-evaporation and diffusive exchanges as the rain falls, which is significantly more detailed compared to other GCMs: at each time step and at each level, the model takes into account the evolution of the compositions of both the rain and the surrounding vapor as the rain drops re-evaporate (Bony et al., 2008), whereas most GCMs take into account the evolution of the composition in the rain only. The relative proportion of evaporative enrichment and diffusive equilibration is calculated at each level depending on surrounding relative humidity following Stewart (1975). The surrounding relative humidity is calculated as $\phi + (1 - \phi) \cdot \phi_{diff}$ with ϕ_{diff} being the relative humidity in the environment of the rain drops, i.e. in the unsaturated downdraft that collects the precipitation for convective precipitation, or in the large-scale environment for large-scale precipitation. The parameter ϕ was set to 0.9 to optimize the simulation of 18O and d-excess in tropical rainfall and their relationship with precipitation rate (Risi et al., 2010b), although $\phi = 0.8$ is in better agreement with some 17O-excess data (Landais et al., 2010). When the relative humidity is 100%, we simply assume total reequilibration between raindrops and vapor, contrary to Stewart (1975) and Lee and Fung (2008), who take into account the raindrop size distribution in this particular case. To calculate fractionation coefficients, the temperature at each level in the environment of the rain drops is used, i.e. in the unsaturated downdraft for convective precipitation or in the large-scale environment for large-scale precipitation.

Our calculation of isotopic exchanges during rain re-evaporation involves in the general case the numerical solution of an integral (Bony et al., 2008). The number of iterations used in this solution was chosen to be sufficient to accurately predict 18O and d-excess, but was found to be insufficient to predict 17O-excess. The number of iterations was thus multiplied by 2, which makes the simulation with 17H$_2$O computationally slower than usual.

2.2 Model simulations

Due to computational limitations, all simulations are short (2–3 yr) but use as initial states outputs of simulations that have already been equilibrated for several years for all isotopes.

To compare with data sets, LMDZ is forced by observed sea surface temperatures (SST) and sea ice following the AMIP (Atmospheric Model Inter-comparison Project) protocol (Gates, 1992) for the year 2005–2006. The year 2005–2006 was chosen to allow daily collocation with the vapor data set of Uemura et al. (2010). Horizontal winds at each vertical level are nudged by ECMWF reanalyses (Uppala et al., 2005) as detailed in Risi et al. (2010b). This ensures a realistic large-scale circulation. When comparing with the other data sets, some of the model-data difference could be attributed to the differences in the meteorological conditions between 2005–2006 and the year of the measurement. Ideally, the full period 2000–2010 should have been simulated and outputs should have been collocated with each measurement for a perfectly rigorous comparison. However, for the first GCM evaluation for 17O-excess, we focus on broad latitudinal gradients and seasonal variations that are robust with respect to inter-annual variability.
To investigate controls at paleo-timescales, we focus on the LGM period for which a large number of paleo-climate proxies are available (e.g. Farrera et al., 1999; Bartlein et al., 2010) and the forcing is relatively well-known (Braconnot et al., 2007) and strong. For the PD control simulation, LMDZ is run without nudging and forced by climatological AMIP SSTs averaged over 1979–2007. For the LGM simulation, the PMIP1 protocol is applied (Joussaume and Taylor, 1995). LMDZ is forced by SSTs and sea ice from the LongRange Investigation, Mapping, and Prediction (CLIMAP, CLIMAP, 1981) forcing. Orbital parameters and greenhouse gas concentrations are also set to their LGM values. ICE-5G ice sheet conditions are applied (Peltier, 1994). This simulation is described in Risi et al. (2010b). We use CLIMAP rather than the SSTs simulated by a coupled model (as in the PMIP2 protocol, Braconnot et al., 2007), because the SSTs and sea ice simulated by the IPSL model at LGM are unrealistically warm in the Southern Ocean (Risi et al., 2010b). As a consequence, evaporative recycling over high latitude oceans is too strong and $\delta^{18}O$ is unrealistically enriched at LGM (though d-excess is in slightly better agreement with observations) (Risi et al., 2010b). We are aware of the caveats of the CLIMAP forcing. In particular, the warm tropical SSTs and the extensive sea ice of the CLIMAP reconstruction have been questioned (MARGO project members, 2009). However, since our LGM evaluation will focus on Antarctica, where most of the ^{17}O so far have been available for LGM, we prefer the caveats of CLIMAP than those of the IPSL model.

2.3 Data sets for model evaluation

To evaluate the present-day nudged simulation of $\delta^{18}O$ and d-excess, we use the GNIP (Global Network of Isotopes in Precipitation) data set (Rozanski et al., 1993) as is done in all basic isotopic modelling publications (Hoffmann et al., 1998; Risi et al., 2010b). This data set was complemented with Antarctica (Masson-Delmotte et al., 2008) and Greenland (V. Masson-Delmotte, personal communication, 2008) data and was regridded on the LMDZ grid by attributing to each LMDZ grid the average of all measurements falling into this grid.

For ^{17}O-excess, we use a set of meteoric water measurements compiled by Luz and Barkan (2010). This includes measurements in precipitation, snow, rivers and lakes (Table 1). We compare observed composition in the precipitation and in the snow to the simulated composition in the precipitation for the particular month of sampling. For the snow, we neglect post-depositional effects (e.g. Taylor and Renshaw, 2001; Gurney and Lawrence, 2004; Ekaykin et al., 2009; Lee et al., 2010). This is a reasonable assumption since seasonal cycles of $\delta^{18}O$, d-excess and ^{17}O-excess measured in shallow cores compare well with those measured directly in the precipitation (Landais et al., 2012b). We compare observed composition in river water to the simulated annual-mean composition in the precipitation. In reality, river water composition integrates precipitation water over the previous months and over the entire watershed (Kendall and Coplen, 2001). It is additionally affected by evaporative enrichment (Gibson et al., 2005; Risi, 2009) and by temporal variations in drainage and runoff (Dutton et al., 2005). Coupling LMDZ with the land surface model ORCHIDEE (Krinner et al., 2005), equipped with a routing scheme (Polcher, 2003) and enabled with water isotopes (Risi, 2009), would be necessary to rigorously compare the model to river observations. This is beyond the scope of this paper, and this is why we simply assume that river water is representative of the annual-mean precipitation. This assumption is justified by the fact that the isotopic seasonality in river water is usually strongly dampened relatively to that in the precipitation (Kendall and Coplen, 2001).

We add to this set some ^{17}O-excess measurements made at LSCE (Table 2): monthly-mean precipitation in the Zongo Valley in Bolivia (Vimeux et al., 2005, unpublished for d-excess and ^{17}O-excess), in Niamey (Niger, Landais et al., 2010), in NEEM (Greenland, Landais et al., 2012b) and in Vostok (Antarctica, Winkler et al., 2012). In Vostok the flow is taken into account in the age scale, though this has little impact on the last glacial–interglacial transition. We also add $\delta^{18}O$, d-excess and ^{17}O-excess measurements along an Antarctica transect (Landais et al., 2008). To evaluate the composition of the water vapor, we use the $\delta^{18}O$, d-excess and ^{17}O-excess measurements made during Southern Ocean cruises in 2005–2006 (Uemura et al., 2008, 2010). Finally, we use the isotopic composition measured from PD to LGM in several Antarctica ice cores: Vostok (Landais et al., 2008), Taylor Dome and Dome C (Winkler et al., 2012) (Table 3). The precision of these measurements is about 5 per meg (Landais et al., 2006).

Although ^{17}O-excess measurements are now calibrated with respect to two international standards (Schoenemann et al., 2013), there are calibration issues affecting absolute measurements of ^{17}O-excess (Winkler et al., 2012; Landais et al., 2012a). In particular, there are ^{17}O-excess calibration uncertainties for large $\delta^{18}O$ variations. This effect leads to an uncertainty of 20 per meg for $\delta^{18}O$ variations of 50%o. Such an uncertainty is beyond measurement precision only for $\delta^{18}O$ variations larger than 12.5/o. Therefore, there is some uncertainty in the latitudinal variations of ^{17}O-excess through Antarctica, where $\delta^{18}O$ strongly varies. This calls for caution when interpreting ^{17}O-excess results. In contrast, other spatial patterns as well as seasonal and LGM-PD variations, which are characterized by smaller $\delta^{18}O$ variations, are not affected by this problem. For example, ^{17}O-excess variations associated with the seasonal cycle or with the last deglaciation are very similar when measured in different laboratories (Winkler et al., 2012; Landais et al., 2012a).
Table 1. Precipitation 17O-excess simulated by LMDZ, compared to data from (Luz and Barkan, 2010) collected in precipitation or rivers. We did not select lakes, caves or ponds in order to avoid samples affected by re-evaporation after rainfall. Based on land surface isotopic modelling (e.g. Fekete et al., 2006; Risi, 2009) and observations (Kendall and Coplen, 2001), we assume that river water is close to annual-mean precipitation. For rivers, we thus compare with annual mean simulated precipitation composition. When several samples are taken at the same location in the same season, we present averages.

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample type</th>
<th>Month</th>
<th>Latitude</th>
<th>Longitude</th>
<th>17O-excess obs</th>
<th>17O-excess LMDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vienna, Austria</td>
<td>river</td>
<td>April</td>
<td>48.23</td>
<td>16.33</td>
<td>18</td>
<td>16.9</td>
</tr>
<tr>
<td>Yang Shou, China</td>
<td>river</td>
<td>October</td>
<td>24.77</td>
<td>110.5</td>
<td>52</td>
<td>16.5</td>
</tr>
<tr>
<td>Montenegro</td>
<td>snow</td>
<td>June</td>
<td>42.9</td>
<td>19.3</td>
<td>−12</td>
<td>31.0</td>
</tr>
<tr>
<td>Altenahr, Germany</td>
<td>river</td>
<td>August</td>
<td>50.52</td>
<td>6.99</td>
<td>27</td>
<td>24.9</td>
</tr>
<tr>
<td>Köln, Germany</td>
<td>river</td>
<td>August</td>
<td>50.96</td>
<td>6.94</td>
<td>16</td>
<td>22.4</td>
</tr>
<tr>
<td>Bacharach, Germany</td>
<td>river</td>
<td>August</td>
<td>50.06</td>
<td>7.78</td>
<td>23</td>
<td>24.9</td>
</tr>
<tr>
<td>Heidelberg, Germany</td>
<td>river</td>
<td>August</td>
<td>49.4</td>
<td>8.73</td>
<td>21</td>
<td>24.9</td>
</tr>
<tr>
<td>New Delhi, India</td>
<td>rain</td>
<td>annual</td>
<td>28.58</td>
<td>77.20</td>
<td>22</td>
<td>12.8</td>
</tr>
<tr>
<td>Ahmedabad, India</td>
<td>rain</td>
<td>annual</td>
<td>23.00</td>
<td>72.67</td>
<td>20</td>
<td>6.3</td>
</tr>
<tr>
<td>Kozhikode, India</td>
<td>rain</td>
<td>annual</td>
<td>11.25</td>
<td>75.72</td>
<td>20</td>
<td>23.5</td>
</tr>
<tr>
<td>Borneo, Indonesia</td>
<td>rain</td>
<td>March</td>
<td>1.00</td>
<td>114.00</td>
<td>49</td>
<td>25.2</td>
</tr>
<tr>
<td>Borneo, Indonesia</td>
<td>rain</td>
<td>June–August</td>
<td>1.00</td>
<td>114.00</td>
<td>53.5</td>
<td>22.3</td>
</tr>
<tr>
<td>Jerusalem, Israel</td>
<td>rain</td>
<td>November</td>
<td>1.00</td>
<td>114.00</td>
<td>59</td>
<td>25.9</td>
</tr>
<tr>
<td>Jerusalem, Israel</td>
<td>rain</td>
<td>annual</td>
<td>31.78</td>
<td>35.20</td>
<td>35</td>
<td>no rain</td>
</tr>
<tr>
<td>Jerusalem, Israel</td>
<td>rain</td>
<td>annual</td>
<td>31.78</td>
<td>35.20</td>
<td>35</td>
<td>no rain</td>
</tr>
<tr>
<td>Jerusalem, Israel</td>
<td>spring</td>
<td>February</td>
<td>31.78</td>
<td>35.20</td>
<td>51</td>
<td>no rain</td>
</tr>
<tr>
<td>Israel</td>
<td>river</td>
<td>July</td>
<td>33.23</td>
<td>35.61</td>
<td>55</td>
<td>34.0</td>
</tr>
<tr>
<td>Israel</td>
<td>river</td>
<td>July</td>
<td>33.23</td>
<td>35.63</td>
<td>53</td>
<td>28.6</td>
</tr>
<tr>
<td>Israel</td>
<td>river</td>
<td>July</td>
<td>32.88</td>
<td>35.61</td>
<td>36</td>
<td>no rain</td>
</tr>
<tr>
<td>New Zealand</td>
<td>river</td>
<td>February</td>
<td>−41</td>
<td>172</td>
<td>47</td>
<td>21.7</td>
</tr>
<tr>
<td>New Zealand</td>
<td>river</td>
<td>February</td>
<td>−41</td>
<td>172</td>
<td>56</td>
<td>21.7</td>
</tr>
<tr>
<td>St. Petersburg, Russia</td>
<td>river</td>
<td>May</td>
<td>42.90</td>
<td>19.29</td>
<td>40</td>
<td>29.0</td>
</tr>
<tr>
<td>Piermont, USA</td>
<td>river</td>
<td>August</td>
<td>43.97</td>
<td>−72.07</td>
<td>15</td>
<td>19.7</td>
</tr>
<tr>
<td>Tilton, USA</td>
<td>river</td>
<td>August</td>
<td>43.44</td>
<td>−71.59</td>
<td>20</td>
<td>19.7</td>
</tr>
<tr>
<td>Charvak, Uzbekistan</td>
<td>river</td>
<td>May</td>
<td>41.62</td>
<td>69.95</td>
<td>35</td>
<td>24.4</td>
</tr>
<tr>
<td>Edmonton, Canada</td>
<td>snow</td>
<td>December–January</td>
<td>53.5</td>
<td>−113.5</td>
<td>39.5</td>
<td>17.2</td>
</tr>
<tr>
<td>Triel, France</td>
<td>river</td>
<td>October</td>
<td>48.98</td>
<td>2.00</td>
<td>22</td>
<td>16.6</td>
</tr>
</tbody>
</table>

2.4 Methodology to quantify isotopic controls

Precipitation δ^{18}O, d-excess and 17O-excess are decomposed into several contributions. For simplicity, we present here the method for decomposing the isotopic ratio R for any of the three heavy isotopic species (HDO, H$_2^{18}$O, H$_2^{17}$O), but the same equations apply for δ^{18}O, d-excess and 17O-excess.

Precipitation composition is first decomposed into two terms:

$$R_p = R_v + (R_p - R_v).$$

The first term, R_v, is the vapor composition. It results from all processes affecting the isotopic composition of the vapor upstream air mass trajectories. The second term is the precipitation-vapor difference. This reflects local condensation and post-condensation processes, since precipitation is produced and falls locally. In the tropics, where the precipitation is liquid, $R_p - R_v$ will mainly reflect rain re-evaporation and vapor–liquid exchanges during the rainfall.

At high latitudes, precipitation is solid. The diffusion of water molecules in ice is too low to allow for isotopic exchanges during the fall of snow (Jouzel, 1986). Therefore, $R_p - R_v$ will rather reflect the condensation altitude, temperature and rate. It can also depend on the vertical gradient of water vapor isotopic composition between the surface and the condensation altitude.

Then, several sensitivity tests are used to understand what controls the vapor composition R_v. Since 17O-excess has been shown to be affected by evaporative conditions at the moisture source and to be sensitive to kinetic fractionation during ice condensation, we quantify preferentially these two kinds of effects. To quantify the effect of evaporative conditions, we make additional simulations in which the sea surface temperature (SST) or the relative humidity normalized by the surface temperature (RH$_s$) during the calculation of isotopic fractionation at ocean evaporation are fixed. This allows us to quantify the direct effect of SST and RH$_s$ at the moisture source without changing anything.
in the dynamics or in the hydrological cycle of the simulation. We call RH\textsubscript{cste} the simulation in which the RH\textsubscript{c} is set to 60\% during the calculation of isotopic fractionation at ocean evaporation. The effect of RH\textsubscript{c} at the source is thus $\Delta_R^{RH} = R_v^{control} - R_v^{RH,cste}$. We call RH\textsubscript{SST}cste the simulation in which the SST is set to 15°C and the RH\textsubscript{c} is set to 60\% during the calculation of isotopic fractionation at ocean evaporation. The effect of SST at the source is thus $\Delta_R^{SST} = R_v^{RH,cste} - R_v^{RH,SST,cste}$.

To quantify kinetic fractionation during ice condensation, we perform an additional simulation (called nokin) in which the kinetic fractionation during ice condensation is turned off, i.e. λ is set to 0. The effect of kinetic fractionation during ice condensation is thus $\Delta_R^{kin} = R_v^{control} - R_v^{nokin}$.

Assuming that all processes add up linearly, we can thus decompose R_v into four terms:

$$R_v^{control} = (R_v^{RH,SST,cste} - \Delta R^{kin}) + \Delta R^{kin} + \Delta R^{SST} + \Delta R^{RH}$$

The first term on the right-hand side represents all the processes other than evaporative conditions and kinetic fractionation during ice condensation. In the tropics, this may represent for example convective mixing by unsaturated down-drafts (Risi et al., 2008a, more details in Sect. 4.3.1). In higher latitudes, this represents Rayleigh distillation along trajectories and mixing between vapor from different air masses. Note that the assumption that all processes add up linearly is valid for $\delta^{18}O$ and for ^{17}O-excess, but may lead to uncertainties of up to 1\% for d-excess in very cold regions (Supplement). In the remaining of the paper, we will focus on d-excess variations larger than this uncertainty.

3 Model evaluation

We first evaluate the simulation of the triple isotopic composition in the water vapor, and then in the precipitation.

3.1 Water vapor isotopic composition

Few observations are available for ^{17}O-excess in the water vapor. We compare LMDZ with water vapor isotopic composition measured in the near-surface vapor along Southern Ocean transects (Uemura et al., 2008, 2010). When going poleward, observed $\delta^{18}O$ decreases consistently with the distillation of air masses (Fig. 1a, red). At the same time, d-excess and ^{17}O-excess decrease (Fig. 1b, c). This is consistent with the effect of evaporative conditions on d-excess and ^{17}O-excess (Vimeux et al., 2001a; Landais et al., 2008; Risi et al., 2010c). The RH\textsubscript{c} increases poleward (Fig. 1d) while the SST decreases. Both RH\textsubscript{c} and SST effects contribute to the poleward decrease of d-excess and ^{17}O-excess (Appendix A).

The Merlivat and Jouzel (1979) closure equation (Appendix A) captures the poleward decrease in d-excess and

<table>
<thead>
<tr>
<th>location</th>
<th>sample type</th>
<th>month</th>
<th>lat</th>
<th>lon</th>
<th>reference</th>
<th>^{17}O-excess obs (per meg)</th>
<th>^{17}O-excess LMDZ (per meg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zongo, Bolivia</td>
<td>rain</td>
<td>June–August</td>
<td>−16.15</td>
<td>−67.10</td>
<td>Vimeux et al. (2005), unp. results</td>
<td>15.7</td>
<td>21.4</td>
</tr>
<tr>
<td>Zongo, Bolivia</td>
<td>rain</td>
<td>December–February</td>
<td>−16.15</td>
<td>−67.10</td>
<td>Vimeux et al. (2005), unp. results</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>Niamey, Niger</td>
<td>rain</td>
<td>June–15 July</td>
<td>13.52</td>
<td>2.09</td>
<td>Risi et al. (2008b); Landais et al. (2010)</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Niamey, Niger</td>
<td>rain</td>
<td>15 July–October annual</td>
<td>13.52</td>
<td>2.09</td>
<td>Risi et al. (2008b); Landais et al. (2010)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Dome F, Antarctica</td>
<td>snow</td>
<td>annual</td>
<td>−77.32</td>
<td>39.70</td>
<td>Luz and Barkan (2010)</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Vostok, Antarctica</td>
<td>snow</td>
<td>annual</td>
<td>−78.45</td>
<td>106.85</td>
<td>Landais et al. (2008)</td>
<td>3.5</td>
<td>−29.9</td>
</tr>
<tr>
<td>Vostok, Antarctica</td>
<td>snow</td>
<td>December–February</td>
<td>−78.45</td>
<td>106.85</td>
<td>Winkler et al. (2012)</td>
<td>18.5</td>
<td>−11.8</td>
</tr>
<tr>
<td>Vostok, Antarctica</td>
<td>snow</td>
<td>June–August</td>
<td>−78.45</td>
<td>106.85</td>
<td>Winkler et al. (2012)</td>
<td>−6.4</td>
<td>−33.2</td>
</tr>
<tr>
<td>NEEM, Greenland</td>
<td>snow</td>
<td>annual</td>
<td>77.5</td>
<td>−50.9</td>
<td>Landais et al. (2012b)</td>
<td>50</td>
<td>11.1</td>
</tr>
<tr>
<td>NEEM, Greenland</td>
<td>snow</td>
<td>December–February</td>
<td>77.5</td>
<td>−50.9</td>
<td>Landais et al. (2012b)</td>
<td>58.1</td>
<td>29.2</td>
</tr>
<tr>
<td>NEEM, Greenland</td>
<td>snow</td>
<td>June–August</td>
<td>77.5</td>
<td>−50.9</td>
<td>Landais et al. (2012b)</td>
<td>64.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Dome C</td>
<td>snow</td>
<td>annual</td>
<td>−75.4</td>
<td>123.14</td>
<td>Winkler et al. (2012)</td>
<td>18</td>
<td>−9</td>
</tr>
<tr>
<td>Taylor</td>
<td>snow</td>
<td>annual</td>
<td>−77.28</td>
<td>158.26</td>
<td>Winkler et al. (2012)</td>
<td>8.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Antarctica transect</td>
<td>snow</td>
<td>annual</td>
<td>−75.6 to −74.4</td>
<td>124.4 to 160.7</td>
<td>Landais et al. (2008)</td>
<td>30 to 59</td>
<td>−22 to −14</td>
</tr>
</tbody>
</table>
This suggests that in LMDZ, the sensitivity of SST effect/SST effect vs. SST effect and the RH effect/SST effect vs. SST effect are underestimated, by about 65 and 70 %, respectively (Fig. 1e, f). The "RH effect" is calculated by the difference between the "total" slope and the slope that we would obtain if RH was set to 60 % everywhere (RHcst simulation for LMDZ). The "SST effect" is calculated by the difference between the slope that we would obtain if RH was set to 60 % everywhere and if SST was set to 15 °C everywhere (RHcstSSTcst simulation for LMDZ).

As a result, the slopes of the RHcst-d-excess and RHcst17O-excess relationships are underestimated, by about 65 and 70 %, respectively (Fig. 1e, f, Table 4). The lack of sensitivity of d-excess to RHcst in LMDZ was already noticed when comparing to water vapor measurements in Greenland (Steen-Larsen et al., 2013).

This lack of sensitivity could be due to several kinds of problems. First, there could be problems in the composition of the evaporation flux. However, this does not appear to be the case, since the Merlivat and Jouzel (1979) closure approximation, which applies the same Craig and Gordon (1965) equation as in LMDZ, is in good agreement with the observations (Fig. 1e, f). Using the RHcstSSTcst and RHcst simulations, we estimate that LMDZ underestimates the RHcst and SST effects in similar proportions: 37 and 31 %, respectively (Table 4). This suggests that in LMDZ, the sensitivity to SST and to RHcst are dampened by some atmospheric processes that are unrelated to evaporative conditions.

Second, there could be some altitude mismatch between the near-surface vapor collected on the ship (a few meters), and the vapor of the first layer of the model (0–130 m). This hypothesis is supported by the fact that the simulated δ18O latitudinal gradient in the low-level vapor is steeper than in that observed in the near-surface vapor (Fig. 1a). As a simple interpolation, we calculate near-surface vapor δ18O as

Table 3. LGM minus present-day difference in precipitation δ18O, d-excess and 17O-excess in Antarctica observed in ice cores and simulated by LMDZ.

<table>
<thead>
<tr>
<th></th>
<th>Latitude</th>
<th>Longitude</th>
<th>δ18O(obs)</th>
<th>d-excess(obs)</th>
<th>17O-excess(obs)</th>
<th>δ18O(LMDZ)</th>
<th>d-excess(LMDZ)</th>
<th>17O-excess(LMDZ)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vostok</td>
<td>−78.45</td>
<td>106.85</td>
<td>−14</td>
<td>−1</td>
<td>−20</td>
<td>−8</td>
<td>−1.4</td>
<td>−7</td>
<td>Vimeux et al. (2001a); Landais et al. (2008)</td>
</tr>
<tr>
<td>Dome C</td>
<td>−75.4</td>
<td>123.14</td>
<td>−6.5</td>
<td>−2.5</td>
<td>−13</td>
<td>−5.4</td>
<td>−2.6</td>
<td>−35</td>
<td>Stenni et al. (2004), unpublished</td>
</tr>
<tr>
<td>Taylos Dome</td>
<td>−77.28</td>
<td>158.26</td>
<td>−6.7</td>
<td>−6.6</td>
<td>2</td>
<td>−3.5</td>
<td>−4.6</td>
<td>−48</td>
<td>Stenni et al. (2004); Winkler et al. (2012)</td>
</tr>
<tr>
<td>Law Dome</td>
<td>−66.77</td>
<td>112.8</td>
<td>−7</td>
<td>−2</td>
<td>4</td>
<td>−3.8</td>
<td>−1.3</td>
<td>−6.7</td>
<td>Winkler et al. (2012)</td>
</tr>
<tr>
<td>EDML</td>
<td>−75.0</td>
<td>0.07</td>
<td>−6</td>
<td>−2.5</td>
<td>−2</td>
<td>−4.2</td>
<td>−2.6</td>
<td>−7.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Slopes of d-excess and 17O-excess as a function of RHcst. For the data, the slopes correspond to the regression lines shown in red in Fig. 1e, f. For LMDZ and the Merlivat and Jouzel (1979) closure equation, the “total” slope corresponds to the regression lines shown in blue and green in Fig. 1e, f. The “RHcst effect” is calculated by the difference between the “total” slope and the slope that we would obtain if RH was set to 60 % everywhere (RHcst simulation for LMDZ). The “SST effect” is calculated by the difference between the slope that we would obtain if RH was set to 60 % everywhere and if SST was set to 15 °C everywhere (RHcstSSTcst simulation for LMDZ).

17O-excess (Fig. 1, dashed green). This can be visualized by plots of d-excess and 17O-excess as a function of RHcst (Fig. 1e, f). Corresponding slopes are shown in Table 4. According to the Merlivat and Jouzel (1979) closure, 73 % of the d-excess decrease as a function of RHcst is due to the direct effect of RHcst, and the remaining is due to the effect of SST. Virtually all of the 17O-excess decrease as a function of RHcst is due to the direct effect of RHcst. This is because SST has a very small effect on 17O-excess due to its log definition (Landais et al., 2008). We notice that the Merlivat and Jouzel (1979) closure predicts a larger 17O-excess- vs.-RHcst slope than observed. This suggests that in nature some processes, such as boundary layer mixing with the free troposphere, act to dampen the 17O-excess sensitivity to evaporative conditions.

The water vapor composition at the lowest model level simulated by LMDZ is compared to the data for each measurement day and location. LMDZ captures the RHcst distribution as a function of latitude well, with an increase in RHcst with latitude (Fig. 1a, blue). It also simulates the poleward decrease in δ18O, d-excess and 17O-excess. However, it overestimates the poleward decrease in δ18O (by about 60 % from 35° S to 67° S) and underestimates the poleward decrease in d-excess (by about 65 %) and 17O-excess (by about 70 %).
Third, there could be problems in the boundary layer parameterization. If the boundary layer mixing is too strong, then the evaporative signal in the near-surface vapor may be dampened by advection of free-tropospheric air. Simulated latitudinal gradients of d-excess and 17O-excess in the free troposphere are smoother (or even reverted in the case of mid- and upper tropospheric d-excess) than near the surface (Fig. 2). A weaker vertical mixing might thus improve the results. To test this hypothesis, the mixing length scale used in the boundary layer parameterization is halved (Fig. 1 purple). However, this does little to improve d-excess or 17O-excess.

Fourth, there could be all kinds of other problems affecting the latitudinal gradients in the free-tropospheric vapor, which is entrained into the boundary layer. In particular, some processes in the subtropics that lower the tropospheric d-excess and 17O-excess could be oversimulated in the model (e.g. liquid condensation for d-excess, mixing for 17O-excess), and other processes that increase the tropospheric d-excess and 17O-excess could be undersimulated (e.g. rain drop re-evaporation). The range of processes that could be misrepresented is very large and the sensitivity tests that we have done so far have not allowed us to identify the culprit yet. Measurements of horizontal and vertical gradients in water vapor composition during cruises and aircraft campaigns would be useful to elucidate this problem. In the meanwhile, when interpreting the results in Sect. 4, we need to remember that the effect of evaporative conditions will be likely underestimated.

3.2 Spatial distribution

The simulated spatial patterns of annual mean δ^{18}O, d-excess and 17O-excess in precipitation are compared with observations in Fig. 3. The latitudinal gradients are summarized in Fig. 4. In the latter figure, model outputs and observations are collocated for a more quantitative comparison.

The simulated annual mean spatial and zonal distribution of δ^{18}O and d-excess were already extensively evaluated in Risi et al. (2010b). Spatial patterns of δ^{18}O are very well captured, including the main “effects” that have long been documented (Dansgaard, 1964; Rozanski et al., 1993): latitudinal gradient associated with the temperature effect, the land-sea contrast with more depleted values over land associated with the continental effect, and the depletion of the South Asia–Western Pacific region, associated with the amount effect. The root mean square error of simulated δ^{18}O is 3.5‰ globally. The latitudinal gradient in polar regions is underestimated, due to the warm bias in these regions (Risi et al., 2010b).

Fig. 1. δ^{18}O (a), d-excess (b), 17O-excess (c) and RH$_s$ (d) of surface water vapor measured by Uemura et al. (2008, 2010) (red) and simulated by LMDZ (blue), as a function of latitude. Results are regridded on the LMDZ grid and applied a smoothing Gaussian filter of 10° in latitude. D-excess (e) and 17O-excess (f) of surface water vapor predicted by the Merlivat and Jouzel (1979) closure approximation (Appendix A) is also shown in green. For clarity, we show only the regression line. Sensitivity tests using the LMDZ model (purple and cyan) are detailed in the text.

Fig. 2. Zonal mean of simulated d-excess (a) and 17O-excess (b) in water vapor as a function of latitude and altitude in the Southern Hemisphere.
Spatial patterns for d-excess are also relatively well captured: a minimum in the Southern Ocean and over the coasts of Antarctica, a minimum over northwestern America and Alaska, a minimum over the Sahel region (associated with rain re-evaporation; Risi et al., 2008b) and a maximum over the Mediterranean and Middle East region (interpreted as the effect of strong kinetic fractionation during sea surface evaporation in a dry environment, Gat et al., 1996). Even the land-sea contrast with higher values over land, traditionally interpreted as the effect of fractionation during continental recycling (Gat and Matsui, 1991), is well captured by the model even without representing this process. The latitudinal structure, with a local minimum near the equator, maxima in the subtropics, a strong poleward decrease in mid-latitudes, and a poleward increase in high latitudes (> 60°), are well captured (Fig. 4). The root mean square error is only 3.2 ‰ globally.

It is surprising that LMDZ simulates the latitudinal gradient of precipitation d-excess well, while it had difficulties simulating it in the vapor. In particular in the subtropics, precipitation d-excess has the right mean value in spite of the vapor d-excess being underestimated by about 20 ‰ (Sect. 3.1). It could be that d-excess in precipitation reflects the d-excess in the vapor at a level where LMDZ would agree better with observations, if such observations existed. It could also be that the correct values of precipitation d-excess arises from a compensation of errors. In particular, the parameter \(\phi \) controlling kinetic fractionation during rain re-evaporation was tuned to optimize precipitation d-excess (Risi et al., 2010b). Simultaneous measurements of d-excess in both vapor and precipitation would be very helpful to ensure that tuning \(\phi \) does not lead to error compensations.

No coherent spatial pattern for \(^{17}\)O-excess emerges from the sparse data available. Measured values range from about 0 to 50 per meg. The values simulated by LMDZ are within this range, except in Antarctica and Greenland where values are underestimated by about 40 per meg. Outside these two regions, the root mean square error is 13 per meg. The underestimate of \(^{17}\)O-excess in subtropical water vapor source (Sect. 3.1) could contribute to the underestimate of polar \(^{17}\)O-excess. As will be detailed in Sect. 4.4, uncertainties in supersaturation parameter \(\lambda \) and in the equilibrium fractionation and diffusivity coefficients may also contribute to LMDZ difficulties in simulating polar \(^{17}\)O-excess.

3.3 Seasonal variations

The simulated latitudinal pattern of seasonal variations (JJA-DIF) in \(^{18}\)O, d-excess and \(^{17}\)O-excess are compared with observations in Fig. 5. The seasonality in \(^{18}\)O is very well captured by the model, with a root mean square error of
In the tropics, precipitation is more depleted during the wet season, consistent with the amount effect. Poleward of 35° latitude, precipitation is more depleted in winter, consistent with the temperature effect (Dansgaard, 1964).

The broad pattern of δ-excess seasonality is well captured. In most regions of the globe, observed δ-excess is lower in summer of each hemisphere, especially in the subtropics. This is also the case in LMDZ, but with less noise. The root mean square error is 4.8 ‰. The δ-excess seasonality in high latitudes has often been interpreted as the effect of evaporative conditions at the moisture source (e.g. Delmotte et al., 2000). It is surprising that although LMDZ underestimates the δ-excess sensitivity to evaporative conditions (Sect. 3.1), LMDZ is able to capture the observed δ-excess seasonality in northern high latitudes. This may be because δ-excess seasonality in these regions arises at least partly from processes other than changes in evaporative conditions. LMDZ fails to simulate the higher δ-excess in winter in Central Antarctica. As will be detailed in Sect. 4.4, this could be associated with uncertainties in the supersaturation parameter λ.

We have only three sites where seasonal cycles of 17O-excess in precipitation are available: in Greenland, Antarctica and Bolivia. Observed 17O-excess is 15 per meg lower in summer in Greenland, a few per meg higher in winter in Antarctica, and 22 per meg lower during the dry season in Bolivia. LMDZ fails at capturing the correct seasonality at all sites.

Simulated δ-excess and 17O-excess in tropical regions are very sensitive to the choice of the re-evaporation parameter ϕ. Figure 6 shows the sensitivity of δ18O, δ-excess and 17O-excess to this parameter. When ϕ = 0, the relative humidity around rain drops is that of the environment and kinetic fractionation is stronger. In this case, δ18O increases and δ-excess and 17O-excess decrease especially in dry regions. Over the Bolivian site however, tuning ϕ is not sufficient to reach model-data agreement. In observations, 17O-excess is 22 per meg lower during the dry season than during the wet season, possibly due to more rain re-evaporation during the dry season. However, even with ϕ = 0 (maximum kinetic fractionation during re-evaporation), 17O-excess is only 3 per meg lower during the dry season than during the wet season. Therefore, processes other than re-evaporation may be at play in this region, and LMDZ does not capture them. For example, the observed 4 ‰ higher δ-excess during the dry season may be associated with a higher proportion of the moisture arising from bare soil evaporation upstream, which is characterized by higher δ-excess (Gat and Matsui, 1991). LMDZ does not simulate this effect.

3.4 Last glacial maximum

LGM-PD variations for δ18O and δ-excess were extensively evaluated in Risi et al. (2010b). We focus here on LGM-PD variations in Antarctica where most of the LGM 17O-excess data are available. LMDZ simulates qualitatively well the observed depletion at LGM in Antarctica, and it captures the increased depletion towards the interior (Fig. 7a). However, the depletion magnitude is underestimated by 20 % in Dome C and up to 45 % in Vostok and Taylor Dome (Table 3).

Although simulating δ-excess signals with the same sign as δ18O has proven difficult for some models (Werner et al.,
C. Risi et al.: 17O-excess in LMDZ

Fig. 7. LGM minus present-day difference in precipitation $\delta^{18}O$, d-excess and 17O-excess in Antarctica observed in ice cores (colored circles) and simulated (shaded) by LMDZ over Antarctica. Numerical values are given in Table 3.

2001; Noone, 2008), LMDZ is able to simulate the lower d-excess at LGM over most of Antarctica (Fig. 7b). In observations, the decrease of d-excess from PD to LGM is all the larger as we go poleward. However, LMDZ simulates the opposite, with an increase over Central Antarctica from PD to LGM. When using the LGM SST forcing based on the IPSL climate simulation, the decrease of d-excess from LGM to PD is 1‰ stronger but has a similar shape (Risi et al., 2010b).

LMDZ captures the lower 17O-excess observed at LGM at most sites (Fig. 7c). In observations, the decrease of 17O-excess from PD to LGM is all the larger as we go poleward, as for d-excess. This is also well captured by LMDZ. However, LMDZ overestimates the 17O-excess decrease from PD to LGM at all sites, and simulates the wrong sign near the coast. Note that stratospheric intrusions may contribute to the LGM-PD difference in 17O-excess (Winkler et al., 2013), but their effects are neglected in LMDZ.

4 Understanding what controls precipitation 17O-excess

We now use LMDZ simulations to understand what controls $\delta^{18}O$, d-excess and 17O-excess in the model. In doing so, we keep in mind the strengths and weaknesses highlighted by the model-data comparison: we have good confidence in the $\delta^{18}O$ distribution both for PD and LGM. We have relatively good confidence in the annual-mean d-excess distribution and in the broad latitudinal pattern of d-excess seasonality. Finally, we have moderate confidence in the LGM-PD changes in d-excess and 17O-excess in Antarctica. All other features are subject to more caution, as they are either misrepresented in LMDZ, or difficult to evaluate given the lack of data.

Figure 8 shows the decomposition of the latitudinal variations of annual mean $\delta^{18}O$, d-excess and 17O-excess into four effects (Sect. 2.4): (1) precipitation-vapor difference (green); (2) evaporative conditions associated with SST and RH$_s$ (orange); (3) effect of supersaturation (dashed pink); and (4) all other processes (red). The sum of all these contributions make the total signal (black). Figure 9 and 10 shows the same decomposition for seasonal and LGM-PD variations, respectively.

4.1 Precipitation-vapor difference

The contribution of precipitation-vapor difference to the precipitation signal is shown in green in Figs. 8–10.

4.1.1 Rain re-evaporation

In the tropics, in the absence of rain re-evaporation, the precipitation reequilibrates with the vapor as it falls (Risi et al., 2008a). Variations in precipitation-vapor difference are thus mainly associated with rain re-evaporation.

As rain re-evaporates, $\delta^{18}O$ increases in the rain (Risi et al., 2008a, 2010a; Lee and Fung, 2008). This process is the main reason for the so-called amount effect (Risi et al., 2008a), i.e. the decrease of $\delta^{18}O$ as precipitation amount increases. Regarding the latitudinal gradient, the green and black curves have similar shapes for $\delta^{18}O$ (Fig. 8a). This means that rain re-evaporation explains much of the latitudinal variations in precipitation $\delta^{18}O$. In particular, rain re-evaporation explains the slight local minimum in $\delta^{18}O$ in the equatorial region (around 0° N) where the air is moist, and the larger values in the subtropics (around 30° N and 35° S) where re-evaporation is strong. Regarding seasonality, in the tropics, the green and black curves also have a similar shape for $\delta^{18}O$ (Fig. 9). This means that the effect of rain re-evaporation dominates the seasonality in $\delta^{18}O$, with larger values during the dry season (Fig. 9a, Risi et al., 2008b). At LGM, LMDZ simulates only small changes in $\delta^{18}O$ in the tropics, but the latitudinal distribution of these changes mirror those in precipitation-vapor difference.

As rain re-evaporates, in parallel to the $\delta^{18}O$ increase, d-excess and 17O-excess both decrease (Risi et al., 2010a; Barra and Simmons, 2009; Landais et al., 2010). In the tropics, this explains much of the latitudinal variations, in particular the local maxima in d-excess and 17O-excess in the equatorial region and the lower values in the subtropics (Fig. 8b, c). Rain re-evaporation also dominates the seasonality in 17O-excess (and to a lesser extent in d-excess), with lower values during the dry season (Fig. 9b, c). This seasonal evolution
Fig. 8. Decomposition of the annual zonal mean distribution of the precipitation δ^{18}O, d-excess and 17O-excess into different contributions. The black line correspond to the total simulated values. The green, orange, dashed pink and red correspond to the precipitation-vapor difference, the effect of evaporative conditions (SST and RH$_s$), the effect of supersaturation and all other effects, respectively. Their sum makes the total black line. The effect of evaporative conditions is further decomposed into the effect of RH$_s$ only (dashed orange). The difference between the solid and dashed orange lines correspond to the effect of SST only. To focus on spatial patterns, we subtract the annual, global mean to all curves. When the black curve is positive, δ^{18}O, d-excess or 17O-excess are higher than the global mean. When the colored curves are positive, the corresponding process contributes to increase the total values. When the colored curves show a similar shape as the black curve, they contribute to the latitudinal variations of the total signal.

of the triple isotopic composition of precipitation is consistent with that observed during the transition from dry to wet season in the Sahel (Risi et al., 2008b; Landais et al., 2010). At LGM also, the small changes in d-excess and 17O-excess in the tropics reflect the changes in rain re-evaporation (Fig. 10b, c).

4.1.2 Effect of fractionation coefficients

In high latitudes, precipitation falls as snow and is thus not affected as much by post-condensational processes. The precipitation-vapor difference is thus associated with condensation processes. As temperature decreases, the fractionation coefficients increase, but the coefficient for δ^{18}O increases faster than that for δ^D. Therefore, precipitation-vapor difference for d-excess becomes more negative at colder temperatures. This contributes to the lower d-excess in polar regions, during winter and during the LGM (Figs. 8b, 9b and 10b). During winter, this effect is not major and does not prevent d-excess to be higher in winter. During the LGM in contrast, this effect appears as the main process contributing to the lower d-excess in polar regions.

Similarly, the precipitation-vapor difference in 17O-excess increases at lower temperatures. This is due to the fact that the slope of the meteorologic water line (0.528) is lower than the logarithm of the ratio of the fractionation coefficients ($\ln(\alpha^{O^{17}})/\ln(\alpha^{O^{18}}) = 0.529$). This fractionation coefficient effect contributes to the increase of 17O-excess in polar regions, in winter and at LGM. This effect might however be overestimated in LMDZ. Observations at the NEEM station in Greenland shows that 17O-excess is only 3 ± 13 per meg higher in the snow than in the vapor (Landais et al., 2012b), compared to 41 per meg higher as predicted by LMDZ (not shown). This may be due to $\ln(\alpha^{O^{17}})/\ln(\alpha^{O^{18}})$ being actually closer to 0.528 than to 0.529 for vapor-solid equilibrium (Landais et al., 2012b). However, even in LMDZ, this equilibrium fractionation effect is not dominant since it is overwhelmed by other effects (green and black curves do not have similar shapes and often have opposite signs on Figs. 8c, 9c and 10c).

4.2 Evaporative conditions

The contribution of evaporative conditions (SST and RH$_s$) to the precipitation signal is shown in orange in Figs. 8–10. The role of RH$_s$ only is shown in dashed orange. The difference
between the solid and dashed lines correspond to the role of SST only.

For $\delta^{18}O$, evaporative conditions play little role in the latitudinal gradient and in LGM-PD differences, but they do contribute to the seasonality of $\delta^{18}O$ in high latitudes. This is mainly due to the RH$_s$ being drier in summer.

Evaporative conditions play a more important role for the distribution of d-excess. In particular, the poleward decrease in d-excess from 30° to 60° in the Southern Ocean is due to evaporative conditions (Fig. 8b). SST and RH$_s$ account each for about half of this decrease. The broad latitudinal distribution of d-excess seasonality was characterized both in observations and LMDZ by lower values in summer in the sub-tropics and mid-latitudes of each hemisphere (Sect. 3, Fig. 5). This pattern is similar to that of the evaporative condition contribution, in particular the effect of RH$_s$ at the moisture source (Fig. 9b). Therefore, the observed d-excess pattern could be due to the RH$_s$ seasonality at the moisture source or to seasonal shifts in moisture sources. In high latitudes, the contributions of “other processes” (red curve, detailed in Sect. 4.3) and of supersaturation (pink curve) effects are large and largely compensate each other (later discussion in Sect. 4.3). Beside these two components, the dominant cause for d-excess seasonality in polar regions is RH$_s$ conditions at the moisture source (Fig. 9b). The importance of evaporative conditions could be even stronger in nature than in LMDZ, since LMDZ underestimates the effect of RH$_s$ and SST on d-excess.

Regarding LGM-PD differences, in LMDZ changes in evaporative conditions play little role in decreasing d-excess at LGM. This is because RH$_s$ and SST do not vary as much between LGM and present as during a seasonal cycle. This contradicts the suggestion that higher RH$_s$ at the LGM (Jouzel et al., 1982) or lower SST at the moisture source (Stenni et al., 2001) contribute to the lower d-excess in Antarctica. It is possible that the contribution of evaporative conditions was significant at LGM, that it is underestimated by LMDZ, and that LMDZ gets the right sign of d-excess change through compensation of errors. This study just shows that the lower d-excess at LGM can be explained without change in evaporative conditions, provided that a significant supersaturation parameter is chosen.

For ^{17}O-excess, the solid and dashed orange lines are identical, since SST has no impact on ^{17}O-excess at evaporation (Risi et al., 2010c). LMDZ simulates a small role for evaporative conditions in the latitudinal gradient of ^{17}O-excess (Fig. 8c). However, we have shown in Sect. 3.1 that LMDZ underestimates the slope of ^{17}O-excess as a function of RH$_s$. Therefore, in nature the role for evaporative conditions might be stronger. For LGM-PD differences, the evaporative condition effect is not negligible in Antarctica. The effect of RH$_s$ at the moisture source leads to lower ^{17}O-excess by 5 per meg at Vostok. If LMDZ had a more realistic RH$_s$-^{17}O-excess slope (i.e. about 4 times larger), the RH$_s$ contribution might have been larger, in better agreement with Landais et al. (2008). LMDZ can however simulate the observed lower ^{17}O-excess at LGM without an important role of evaporative conditions, provided that an adequate supersaturation parameter is used (Sect. 4.4).

4.3 Convective processes, distillation and mixing between vapors of different origins

The sum of all effects other than supersaturation, precipitation-vapor difference and evaporative conditions is shown in red.

4.3.1 Convective processes

In the tropics, the air temperature is relatively uniform horizontally (Sobel and Bretherton, 2000) so the temperature effect is small (Rozanski et al., 1993). Large variations in humidity can however be associated with vertical motions (Sherwood, 1996). Since $\delta^{18}O$ decreases with altitude (e.g. Ehhalt, 1974), subsidence of air in unsaturated downdrafts of convective systems (Risi et al., 2008a) and the subsidence at the large scale in dry regions (Frankenberg et al., 2009; Galewsky and Hurley, 2010) both deplete the water vapor. In addition, rain re-evaporation and rain–vapor interactions in moist conditions can also deplete the vapor (Lawrence et al., 2004; Worden et al., 2007). Therefore, in the tropics, the red curves in Figs. 8–10 correspond to the combined effects of large-scale dynamics, of unsaturated downdrafts and of rain re-evaporation on the vapor. We can see that these effects are the major contribution to explain the seasonality in $\delta^{18}O$ in the tropics (Fig. 9). This is consistent with the important role...
of unsaturated downdrafts in the amount effect (Risi et al., 2008a).

For d-excess, the vertical gradient in the tropics remains an open question. LMDZ simulates a decrease with altitude (Fig. 2a), whereas theoretical considerations (Bony et al., 2008) and indirect evidence based on upper-tropospheric measurements (Sayres et al., 2010) and high-frequency measurements (Lai and Ehleringer, 2011; Welp et al., 2012; Wen et al., 2010) suggest that d-excess increases with altitude. Therefore, the role of convective-scale subsidence on d-excess is unclear. In contrast, it is more certain that rain re-evaporation and rain–vapor interactions increase the d-excess of the vapor (Landais et al., 2010). This process explains the maximum of d-excess in equatorial convective regions (Fig. 8b). This is also a major contribution to the seasonality in d-excess in the tropics (Fig. 9b).

For 17O-excess, the vertical gradient in the tropics also remains an open question. As for d-excess, rain re-evaporation and rain–vapor interactions increase the 17O-excess of the vapor (Landais et al., 2010). This process is the major contribution to explain the seasonality in 17O-excess in the tropics (Fig. 9c).

4.3.2 Distillation and mixing

In high latitudes, the above-mentioned processes play a minor role. Therefore, the red curves represent the combined effects of distillation and mixing between vapor of different origins (hereafter shortened as “mixing”). In particular, mixing includes evaporative recycling along trajectories, i.e. mixing between vapor undergoing distillation during its poleward transport and newly evaporated vapor from the ocean surface.

Distillation decreases δ18O. Simple Rayleigh distillation calculations based on LMDZ temperature show that if there was only distillation, the δ18O latitudinal gradient would be four times larger than actually simulated (not shown). In reality and in the simulations, this latitudinal gradient is dampened by evaporative recycling along trajectories. As expected, distillation and mixing (red curve) dominate the δ18O latitudinal gradient, consistent with the traditional temperature effect (Dansgaard, 1964). It also dominates the seasonality and the LGM-PD difference in δ18O.

For d-excess, Rayleigh distillation increases d-excess at low temperature (Jouzel and Merlivat, 1984). This explains the polar increase of the red contribution (Fig. 8b). For the same reasons, in high latitudes, the Rayleigh effect contributes to the increased d-excess in winter (Fig. 9b) and at LGM (Fig. 10b).

For 17O-excess, the poleward decrease of the red contribution in high latitudes (Fig. 8c) may be due to the effect of evaporative recycling. The effect of evaporative recycling on 17O-excess is due to the fact that mixing of two air masses with very different δ18O leads to 17O-excess values that are lower than both end-members (Risi et al., 2010c).

The fact that LMDZ underestimates 17O-excess in polar regions (Sect. 3.2) may be due to the fact that the advection scheme is too diffusive. Indeed, in the Van Leer (1977) advection scheme, advection of vapor from one grid box A to neighboring grid box B is represented as mixing between of vapor A and B into grid box B.

Note that there is persistent uncertainty on vapor-solid fractionation used for distillation at very low temperature. Vapor-solid fractionation coefficients have been measured only down to −34 °C and are extrapolated beyond (Majoube, 1971a), leading to some uncertainty. There are also disagreements between different experimental measurements (Ellehoj, 2011). This may contribute to difficulties simulating d-excess and 17O-excess in polar regions.

4.4 Supersaturation

The effect of supersaturation is shown in dashed pink in Figs. 8–10.

Supersaturation occurs at cold temperatures, in polar regions, and this partially compensates the effect of distillation. When supersaturation occurs, δ18O decreases less along trajectories than expected. The supersaturation effect has, however, relatively little effect on δ18O (Fig. 8a; pink).

For d-excess and 17O-excess, supersaturation has a larger effect. The distillation/mixing and supersaturation effects are both very large and largely compensate each other (Fig. 8b,c). When supersaturation occurs, d-excess and 17O-excess increase less along trajectories than expected. As a consequence, the sign of the seasonality and of LGM-PD variations results from a balance between distillation effects and supersaturation effects. Regarding seasonality for example, in Greenland where LMDZ captures the sign of the d-excess seasonality, the distillation effect dominates and this leads to higher d-excess values in winter when the distillation is stronger. In Vostok in contrast, d-excess is higher in winter in observations but lower in winter in LMDZ. This suggests that in observations, the distillation effect dominates, but that in LMDZ, the supersaturation effect is too strong and dominates. In observations, 17O-excess is higher in winter in Greenland and lower in winter in Antarctica. This suggests that the supersaturation effect dominates in Antarctica but not in Greenland. In LMDZ, the seasonality is misrepresented in both regions.

Summing up large effects of different signs without having good confidence in their magnitude leads to strong uncertainty. Estimating their magnitude calls for laboratory experiments. In particular, d-excess and 17O-excess in polar regions is extremely sensitive to the choice of λ, consistent with simple model studies (Ciais and Jouzel, 1994; Winkler et al., 2012; Landais et al., 2012a,b). Risi et al. (2010b) chose λ to optimize the latitudinal gradient in polar d-excess. If λ was lower, the agreement would be better for 17O-excess, but d-excess would be overestimated in Central Antarctica (Fig. 11b,c). In LMDZ, we cannot tune λ to agree both with
Table 5. Summary of the main processes explaining the main features of the $\delta^{18}O$, d-excess and ^{17}O-excess spatio-temporal distribution in the LMDZ model, as a function of latitude. The physical meaning of these processes are detailed in Sect. 4. Mixing refers to mixing of water vapor of different origins.

<table>
<thead>
<tr>
<th>Isotopic tracer</th>
<th>$\delta^{18}O$</th>
<th>d-excess</th>
<th>^{17}O-excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitudinal gradient variation</td>
<td>re-evaporation</td>
<td>re-evaporation</td>
<td>re-evaporation</td>
</tr>
<tr>
<td>Seasonal variation</td>
<td>re-evaporation + convection ocean composition</td>
<td>re-evaporation</td>
<td>re-evaporation</td>
</tr>
<tr>
<td>LGM – PD difference</td>
<td>re-evaporation</td>
<td>re-evaporation</td>
<td>re-evaporation</td>
</tr>
<tr>
<td>Mid-latitudes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitudinal gradient variation</td>
<td>distillation</td>
<td>SST + RHs</td>
<td>distillation/mixing</td>
</tr>
<tr>
<td>Seasonal variation</td>
<td>distillation</td>
<td>RHs + condensation conditions</td>
<td>distillation/mixing</td>
</tr>
<tr>
<td>LGM – PD difference</td>
<td>distillation</td>
<td>condensation conditions</td>
<td>distillation/mixing</td>
</tr>
<tr>
<td>High latitudes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitudinal gradient variation</td>
<td>distillation + RHs</td>
<td>distillation + supersaturation</td>
<td>distillation/mixing + supersaturation</td>
</tr>
<tr>
<td>Seasonal variation</td>
<td>distillation + RHs</td>
<td>distillation + supersaturation</td>
<td>distillation/mixing</td>
</tr>
<tr>
<td>LGM – PD difference</td>
<td>distillation</td>
<td>distillation + supersaturation</td>
<td>distillation/mixing + supersaturation</td>
</tr>
</tbody>
</table>

The sensitivity to a poorly constrained parameter makes the interpretation of d-excess and ^{17}O-excess LGM-PD changes difficult. Any observed change at a given location can be reproduced by any model by tuning λ. Setting $\lambda = 0.004$ leads to a good agreement with the LGM-PD variations, but a lower value of λ can lead to a reversal of the sign of the d-excess and ^{17}O excess LGM-PD variations (Fig. 11e,f).

In addition, there are uncertainties on the diffusivity coefficients. Cappa et al. (2003) and Merlivat and Jouzel (1979) found different values and Luz et al. (2009) suggest that they may actually vary also with temperature. Therefore, the combined uncertainties on supersaturation, equilibrium fractionation, and diffusivity coefficients make it difficult to interpret d-excess and ^{17}O-excess data and to identify the culprit in the shortcomings of the d-excess and ^{17}O-excess simulation in polar regions. In addition, stratospheric intrusions cannot be ruled out to explain at least part of the measured signals in ^{17}O-excess (Winkler et al., 2013).

5 Conclusion and perspectives

We used the LMDZ GCM to simulate the PD and LGM distributions of precipitation $\delta^{18}O$, d-excess and ^{17}O-excess. LMDZ correctly captures the $\delta^{18}O$ distribution and climatic variations. After appropriate tuning of supersaturation, it captures reasonably well the d-excess distribution and the average LGM-PD variations in Antarctica. For ^{17}O-excess, the lack of data makes it difficult to evaluate the spatio-temporal distribution. LMDZ underestimates the ^{17}O-excess latitudinal gradient in the Austral Ocean water vapor and has difficulties to simulate seasonal variations on some stations.

We propose a methodology to quantify the controlling factors of the associated latitudinal, seasonal and LGM-PD variations. Table 5 summarizes the main factors controlling the different aspects of the $\delta^{18}O$, d-excess and ^{17}O-excess spatio-temporal distribution depending on latitude. In the tropics, rain re-evaporation and convective processes explain the main features of the $\delta^{18}O$, d-excess and ^{17}O-excess spatio-temporal distributions. In mid- and high-latitude, as expected, the distillation effect is the first-order control on $\delta^{18}O$. D-excess and ^{17}O-excess are affected by distillation, but also by other processes. Evaporative conditions play a role for d-excess, and may also play a role for ^{17}O-excess if LMDZ was more sensitive to RHs and SST. The sensitivity to evaporative conditions is an added value of d-excess compared to $\delta^{18}O$, consistent with previous studies (e.g. Vimeux et al., 1999, 2001b; Gat, 2000; Stenni et al., 2001; Masson-Delmotte et al., 2005). ^{17}O-excess also features this added value, but an additional particularity is its sensitivity to mixing between vapor of different origins along distillation trajectories. ^{17}O-excess seems to be sensitive to a much broader
The simplest equation to predict the isotopic composition of the boundary layer vapor is the Merlivat and Jouzel (1979) closure. Although it fails to predict the absolute values of $\delta^{18}O$ and d-excess (Jouzel and Koster, 1996), it has been shown to accurately predict the sensitivity of the isotopic composition to ocean surface conditions (Uemura et al., 2008, 2010; Risi et al., 2010c). We recall here the derivation of this equation and the underlying assumptions.

The isotopic composition R_E of the evaporation flux from the ocean is given by the Craig and Gordon (1965) equation:

$$R_E = \frac{1}{\alpha_K} \cdot \frac{R_{oce}/\alpha_{eq} - RH_s \cdot R_i}{1 - RH_s} ,$$

(A1)

where α_K is the kinetic fractionation coefficient, α_{eq} is the liquid-vapor equilibrium fractionation coefficient and R_{oce} is the isotopic ratio of the ocean surface. The relative humidity at the surface, RH_s is the relative humidity of near-surface air at the temperature of the ocean surface T_s:

$$RH_s = RH_a \cdot \frac{q_{sat}(T_a)}{q_{sat}(T_s)} ,$$

(A2)
where \(q_{\text{sat}} \) is the specific humidity at saturation and \(R_H \) and \(T_a \) are the relative humidity and temperature of the near-surface air, respectively.

If we assume that (1) the only source of vapor in the boundary layer is the surface evaporation and (2) the sinks of vapor from the boundary layer do not fractionate (i.e. have the composition of the boundary layer, e.g. air flux going out of the boundary layer), then at stationary state \(R_v = R_E \). Combined with Eq. (A1), this leads to (Merlivat and Jouzel, 1979):

\[
R_v = \frac{R_{\text{oce}}}{\alpha_{\text{eq}} \cdot (\alpha_K + R_H \cdot (1 - \alpha_K))}.
\] (A3)

Applying this equation to \(H_2^{16}O, H_2^{18}O \) and HDO isotopic ratios, it can be shown that d-excess in the boundary layer vapor increases with SST and that d-excess and \(^{17}O \)-excess decrease with \(R_H \).

Supplementary material related to this article is available online at: http://www.clim-past.net/9/2173/2013/cp-9-2173-2013-supplement.pdf.

Acknowledgements. We thank Boaz Luz, Eugeni Barkan and Ryu Uemura for sharing their \(^{17}O \)-excess data. We thank two anonymous reviewers for their constructive comments. Simulations were performed on the NEC supercomputer of the IDRIS computing center. We acknowledge the FP7 European Project INTRAMIF and the ANR JC project CITRONNIER.

Edited by: A. Paul

The publication of this article is financed by CNRS-INSU.

References

Barkan, E. and Luz, B.: Diffusivity fractionations of \(H_2^{16}O/H_2^{17}O \) and \(H_2^{16}O/H_2^{18}O \) in air and their implications for isotope hydrology, Rapid Commun. Mass Sp., 21, 2999–3005, 2007.

Franz, P. and Roeckmann, T.: High-precision isotope measurements of \(h_2o, h_2o17, h_2o18 \) and delta17o of water vapour in the southern lowermost stratosphere. Atmos. Chem. Physics, 5, 2949–2959, 2005.

C. Risi et al.: 17O-excess in LMDZ

