Direct Value Learning: a Rank-Invariant Approach to Reinforcement Learning

Basile Mayeur 1, 2 Riad Akrour 1, 2 Michele Sebag 3, 1, 2
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : Taking inspiration from inverse reinforcement learning, the proposed Direct Value Learning for Reinforcement Learning (DIVA) approach uses light priors to gener-ate inappropriate behaviors, and uses the corresponding state sequences to directly learn a value function. When the transition model is known, this value function directly defines a (nearly) optimal controller. Otherwise, the value function is extended to the state-action space using off-policy learning. The experimental validation of DIVA on the mountain car problem shows the robustness of the approach comparatively to SARSA, based on the assumption that the target state is known. The experimental validation on the bicycle problem shows that DIVA still finds good policies when relaxing this assumption.
Type de document :
Communication dans un congrès
Autonomously Learning Robots, workshop at NIPS 2014, Dec 2014, Montreal, Canada. Autonomously Learning Robots, workshop at NIPS 2014
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01090982
Contributeur : Basile Mayeur <>
Soumis le : jeudi 4 décembre 2014 - 14:22:53
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : lundi 9 mars 2015 - 05:58:32

Fichier

Nips2014_workshop_DiVa.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Domaine public

Identifiants

  • HAL Id : hal-01090982, version 1

Collections

Citation

Basile Mayeur, Riad Akrour, Michele Sebag. Direct Value Learning: a Rank-Invariant Approach to Reinforcement Learning. Autonomously Learning Robots, workshop at NIPS 2014, Dec 2014, Montreal, Canada. Autonomously Learning Robots, workshop at NIPS 2014. 〈hal-01090982〉

Partager

Métriques

Consultations de la notice

481

Téléchargements de fichiers

318