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Abstract: Identifying transmission links of an infectious disease through a host population is critical to understanding
its epidemiology and informing measures for its control. Infected hosts close together in their locations and timings
are often thought to be linked, but timing and locations alone are usually consistent with many different scenarios of
who infected whom. To infer more reliably who-transmitted-to-whom over the course of a disease outbreak caused by
a fast-evolving pathogen, pathogen genomic data have been combined with spatial and temporal data. However, the
manner to combine these data remains today a modeling and statistical challenge.

One of the approaches recently proposed is based on an extension of stochastic Susceptible-Exposed-Infectious-
Removed (SEIR) models. In this article, we present this extension that combines (i) an individual-based, spatial,
semi-Markov SEIR model for the spatio-temporal dynamics of the pathogen, and (ii) a Markovian evolutionary model
for the temporal evolution of genetic sequences of the pathogen. The resulting model is a state-space model including
latent vectors of high dimension. Then, we describe a new algorithm that allows an approximate Bayesian inference of
model parameters and latent variables. Finally, the capacity of the estimation algorithm to reconstruct transmission
trees (i.e. who infected whom) is assessed with a simulation study. We especially investigate how the inference method
performs when only a fraction of pathogen genomic data is available.

Résumé : Identifier les évènements de transmission d’une maladie infectieuse dans une population hôte est essentiel
pour comprendre son épidémiologie et améliorer les mesures de lutte contre la maladie. Les hôtes infectés proches
spatialement et temporellement sont souvent supposés être liés, mais les données temporelles et spatiales seules sont
généralement compatibles avec de nombreux scénarios de qui a infecté qui. Pour inférer de manière plus précise qui
a infecté qui au cours d’une épidémie causée par un pathogène à évolution rapide, des données génomiques sur le
pathogène ont été associées aux données spatiales et temporelles. Cependant, la manière d’associer ces données reste
aujourd’hui un défit en terme de modélisation et de statistique.

Une des approches récemment développées est basée sur une extension des modèles stochastiques Susceptible-
Exposé-Infectieux-Retiré (SEIR). Dans cet article, nous présentons cette extension qui associe (i) un modèle SEIR
individu-centré, spatial et semi-markovien pour la dynamique spatio-temporelle du pathogène, et (ii) un modèle
markovien d’évolution temporelle des séquences génétiques du pathogène. Le modèle résultant est un modèle à espace
d’états incorporant des vecteurs latents de grande dimension. Ensuite, nous décrivons un nouvel algorithme permettant
de mener une inférence bayésienne approchée des paramètres du modèle et des variables latentes. Enfin, la capacité
de l’algorithme d’estimation à reconstruire les arbres de transmission (c-à-d qui a infecté qui) est évaluée avec une
étude simulatoire. Nous nous intéressons tout particulièrement aux performances de la méthode d’inférence lorsque
seulement une fraction des données génomiques sur le pathogène est observée.

Keywords: Bayesian estimation, Genomic data, Spatiotemporal data, State-space model, Susceptible-Exposed-Infectious-
Removed model
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2 Samuel Soubeyrand

1. Introduction

Fast-evolving pathogens such as RNA viruses can cause human, animal and plant epidemics
of high impact in developing and developed countries alike. For instance, hepatitis E causes 3
million acute cases each year worldwide (>60% in South and East Asia), of which 57,000 are
fatal (World Health Organization, 2013). The 2014 Ebola outbreak, for which 4,507 cases were
reported between 2013-12-30 and 2014-09-14, presented a real risk of continued expansion in fall
2014 (World Health Organization, 2014). During the foot-and-mouth outbreak in Great Britain in
2001, some 6 million animals were culled and the total cost was estimated to be in excess of £8
billion (Anderson et al., 1996; Haydon et al., 2004). At the global scale and over three decades,
the overall cost of sharka (infecting trees of the genus Prunus) was estimated to exceed C10
billion (Cambra et al., 2006).

In order to minimize these social, environmental and economic costs, we need to most effec-
tively control infectious diseases and thus to better understand how pathogens spread within host
populations, yet this is something we know remarkably little about. Cases close together in their
locations and timings are often thought to be linked, but timings and locations alone are usually
consistent with many different scenarios of who infected whom. For fast-evolving pathogens
such as the RNA viruses given as examples in the previous paragraph, pathogen genomic data
can advantageously complete spatial and temporal data. The genome of such pathogens evolves
so quickly relative to the rate that they are transmitted, that even over single short epidemics
we can identify which hosts contain pathogens that are most closely related to each other. This
information is valuable because when combined with the spatial and timing data it should help
us infer more reliably who-transmitted-to-who over the course of a disease outbreak. However,
doing this so that spatial, temporal and genetic data are appropriately combined remains a major
statistical challenge. Furthermore, because sequencing genetic material has become so affordable,
new statistical methods combining spatial, temporal and genetic data and estimating transmission
trees will become very important for future epidemiology.

In recent years, the methodological challenge of reconstructing the dynamics of epidemics
using (spatio-)temporal information and pathogen genetic information has been mainly addressed
with two different but complementary approaches. The first approach is based on phylogeny /
phylogeography, birth-death processes (often approximated by coalescent models) and BEAST
(Hall and Rambaut, 2014; Lemey et al., 2009, 2010; Pybus et al., 2012; Rambaut et al., 2008; Ras-
mussen et al., 2011; Stadler and Bonhoeffer, 2013). This approach is used to estimate parameters
related to the pathogen demographic process: the rate of spatial spread of the pathogen, the rate of
switching between various host types, and the rate of evolution over time. The second approach
is based on stochastic, spatiotemporal and evolutionary SEIR (Susceptible, Exposed, Infectious,
Removed) models (Jombart et al., 2014; Morelli et al., 2012; Mollentze et al., 2014; Ypma et al.,
2012, 2013). This modeling and inference approach combines heterogeneous and multi-scale
processes and data: it links the epidemiological scale —or host population(s) scale— and the
micro-evolutionary scale —or pathogen genome scale. The space-time-genetic SEIR models
explicitly recognize the host population structure, and the epidemiological processes that govern
the interaction of host and pathogen. They enable inferences to be made about epidemiological
processes, specifically the transmission tree reflecting who infected whom (at the host, premise
or population resolution), and other parameters (e.g. incubation durations, heterogeneity among
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Genetic-space-time SEIR models 3

hosts in susceptibility and force of infection, rates of evolution and spatial spread per transmission
event, and sizes of infected populations).

In this article, we are interested in the second approach and the associated estimation algorithms
allowing inference about transmission dynamics based on spatial, temporal and genetic data.

So far, the space-time-genetic SEIR approach has been developed in only a few articles (in gen-
eralist journals and journals of epidemiology and computational biology) that demonstrated that
the approach is promising for reconstructing transmission trees and for estimating epidemiological
parameters. However, this approach can be improved in several directions. One of these directions,
on which we focus on in this article, concerns the inference method. In this article, we present
the space-time-genetic SEIR model introduced by Mollentze et al. (2014) as a semi-Markov
model (Section 2), we propose a new MCMC algorithm to estimate the model parameters and
the transmission tree (Section 3; the originality of this algorithm lies in the reconstruction of
transmitted pathogen sequences), and we assess the performance of the new algorithm with a
simulation study (Section 4). In the simulation study, we especially assess the performance of the
algorithm when pathogen genomic data are available for all sampled cases or for only a fraction of
these cases. This introductory article gives probabilists and statisticians an invitation for enriching
the class of space-time-genetic SEIR models and developing efficient inference algorithms in
order to carry out high-impact analyses of infectious diseases due to viruses.

2. Model

The genetic-space-time SEIR model, presented below in Subsection 2.6, is a combination of a
semi-Markov epidemic model and a Markovian evolutionary model. The following subsections
shows how these submodels and the resulting genetic-space-time SEIR model are constructed.

2.1. Discrete-state, continuous-time Markovian SEIR model

Here, we consider a classical SEIR model describing the temporal dynamics of numbers of
susceptible, exposed, infectious and removed individuals in a population affected by a pathogen
(Britton and Giardina, 2015, propose in this special issue of the journal an overview of statistical
inference applied to epidemic models of this kind). Time is viewed as a continuous variable. Let
S(t), E(t), I(t) and R(t) in N respectively denote the numbers of susceptible, exposed, infectious
and removed individuals at time t ≥ 0. The sum of these quantities is equal to the instantaneous
total size of the population T(t) ∈ N, i.e. S(t)+E(t)+ I(t)+R(t) = T(t) for any time t ≥ 0.

In general, many different events can cause a change in the population pattern (S(t),E(t),I(t),R(t)),
for instance the birth and death of susceptibles, the infection of susceptibles, the death of exposed
individuals, the end of exposed stage (coinciding with the beginning of the infectious stage), the
death in infectious individuals, and the end of infectious stage (coinciding with the beginning of
removed stage).

For the sake of simplicity, in this article, we consider only three possible events, namely
infection, end of exposed stage and end of infectious stage. Corresponding transition rates are
provided in Table 1. In this model, the risk of infection is a combination of a basic risk whose rate
is α0S(t), and an endogenous risk whose rate α1S(t)I(t)/T(t) is proportional to the number of
infectious individuals in the population of interest. The basic risk may correspond to exogenous
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4 Samuel Soubeyrand

pathogen sources. For instance, in the case of zoonoses (i.e. diseases that can be transmitted
from animals to humans) if the population of interest is the set of humans, the basic risk may
correspond to animals infecting humans.

TABLE 1. Possible events and corresponding transition rates for the discrete-state, continuous-time Markovian SEIR
model.

Description Event Rate
Infection S→ S−1 & E→ E+1 α0S+α1SI/T
End of exposed stage E→ E−1 & I→ I+1 βE
End of infectious stage I→ I−1 & R→ R+1 δ I

2.2. Spatial extension

Now, consider a space decomposed into n ∈ N∗ districts. In each district k ∈ {1, . . . ,n}, the size
Tk(t) of the resident population at time t ≥ 0 is the sum of local numbers of susceptible, exposed,
infectious and removed individuals denoted by Sk(t), Ek(t), Ik(t) and Rk(t), respectively. By
assuming that contacts between individuals of different districts are possible, the local risk of
infection is a combination of a basic risk whose rate is α0Sk(t), a local endogenous risk whose rate
is α1Sk(t)Ik(t)/Tk(t), and a distant endogenous risk whose rate is α1Sk(t)∑ j 6=k wk jI j(t)/T j(t).
In the latter rate, the weight wk j is a measure of the intensity of contacts between individuals
of districts k and j. By convention, the intensity of contacts between individuals residing in the
same district is equal to one. The spatial, discrete-state, continuous-time Markovian SEIR model
considered in this section is defined by events and rates provided in Table 2.

TABLE 2. Possible events and corresponding transition rates for the spatial, discrete-state, continuous-time Markovian
SEIR model.

Description Event Rate
Infection Sk→ Sk−1 & Ek→ Ek +1 α0Sk +α1SkIk/Tk +α1Sk ∑ j 6=k wk jI j/T j
End of exposed stage Ek→ Ek−1 & Ik→ Ik +1 βEk
End of infectious stage Ik→ Ik−1 & Rk→ Rk +1 δ Ik

2.3. Particular case: individual-based version of the model

Now, let us consider a particular case of the previous model: assume that for all k ∈ {1, . . . ,n},
the size T(t) ≡ 1. Thus, districts are replaced by single individuals, and the model becomes
an individual-based model where the dynamics of the epidemics is modeled at the individual
resolution. In addition, values of Sk(t), Ek(t), Ik(t) and Rk(t) are in {0,1} and their sum is equal
to one whatever t. By assuming that each individual k ∈ {1, . . . ,n} is located at xk in the planar
space R2, events and rates shown in Table 2 can be re-written as in Table 3. The location xk can be
viewed as the central or main location of k. We can see in Table 3 that the local endogenous risk
disappeared from the expression of the rate of infection since a susceptible individual cannot infect
himself (another justification is that Sk(t)Ik(t) = 0, ∀t ≥ 0). Moreover, the rate corresponding to
the distant endogenous risk is now written α1 ∑ j 6=k w(x j− xk)I j where w is a kernel whose value
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Genetic-space-time SEIR models 5

depends on the relative locations of individuals k and j. In ecology and epidemiology, w is called
a dispersal kernel, and w(x j− xk) measures the intensity of contact between individuals k and
j. A classical and flexible class of dispersal kernels is formed by the power-exponential kernels
parametrized by α2 = (α2,1,α2,2) and satisfying, for all x ∈ R2:

w(x) =
α2,2

2π(α2,1)2Γ

(
2

α2,2

) exp
{
−
(
||x||
α2,1

)α2,2
}
, (1)

where ||x|| is the Euclidean distance between the origine of the planar space and x. Thus, the
measure of the intensity of contact between individuals k and j decreases with the distance
separating the central locations of k and j. Note that in (1), the constant before the exponential
ensures that the integral of w over R2 is equal to one.

TABLE 3. Possible events and corresponding transition rates for the individual-based, spatial, discrete-state,
continuous-time Markovian SEIR model.

Description Event Rate
Infection Sk : 1→ 0 & Ek : 0→ 1 α0 +α1 ∑ j 6=k w(x j− xk)I j
End of exposed stage Ek : 1→ 0 & Ik : 0→ 1 β

End of infectious stage Ik : 1→ 0 & Rk : 0→ 1 δ

2.4. Semi-Markov extension of the individual-based model

In the Markovian model presented in the previous subsection, the times spent by individuals in
the exposed and the infectious states are exponentially distributed. Depending on the context, this
may be viewed as an unrealistic assumption. For instance, the exposed duration, that corresponds
to a latency or incubation duration, is usually not exponentially distributed but has a distribution
with a mode away from zero (e.g. see Hampson et al., 2009). Semi-Markov models (Barbu and
Limnios, 2008) offer a framework to handle non-exponential durations in some of the possible
states. Thus, in this subsection, we introduce a semi-Markov model where durations in the exposed
and infectious stages are independently drawn under gamma distributions (see Table 4). The
draws are also independent from the duration in the susceptible stage.

Remark concerning the durations in the susceptible and removed states: the durations between
successive changes of the susceptible state in the models of Subsection 2.1-2.4 are not exponen-
tially distributed in general because the corresponding transition rates randomly vary in time
(due to variations in the infectious states; see Appendix A). In the individual based models of
Subsection 2.3-2.4, the removed states are absorbant and the corresponding durations are therefore
infinite.

TABLE 4. Possible events and corresponding transition rates or distributions for the individual-based, spatial,
discrete-state, continuous-time, semi-Markov SEIR model.

Description Event Rate Distribution
Infection Sk : 1→ 0 & Ek : 0→ 1 α0 +α1 ∑ j 6=k w(x j− xk)I j
End of exposed stage Ek : 1→ 0 & Ik : 0→ 1 Γ(β1,β2)
End of infectious stage Ik : 1→ 0 & Rk : 0→ 1 Γ(δ1,δ2)
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6 Samuel Soubeyrand

2.5. Markovian evolutionary model for a pathogen sequence

Now, suppose that the pathogen under consideration is an RNA virus that can evolves with time.
More specifically, we suppose that mutations can occur at s sites of the viral sequence between
the four possible nucleobases that are adenine (A), cytosine (C), guanine (G) and uracil (U). We
assume that mutations in different sites are independent but mutation rates vary as functions of the
current nucleobases and the substituting nucleobases as in the 3-parameters Kimura substitution
model (Kimura, 1981). Here, mutation and substitution are synonyms. Thus, at the s sites of the
sequence under mutation, the mutation processes follow independent, discrete-state, continuous-
time Markovian models that are defined by events and rates provided in Table 5.

Based on this model, Kimura (1981) considered two sequences evolving from a hidden com-
mon ancestral sequence, they built a system of ordinary differential equations governing the
probabilities of obtaining in the two sequences at any time all the possible pairs of nucleotides
(AA, AC, AG, AU, CG, ...), and they solved the system analytically to obtain the expressions of
the probabilities as a function of the time of evolution (further technical details are provided in
Takahata and Kimura, 1981).

In our framework, the times of evolution since a common ancestor of two observed sequences
are generally different because the sequences are observed at varying times. However, because the
mutation rates do not depend on the direction of the mutation (e.g. the same rate applies for A→G
and G→A), the direction of the evolution does not matter and, formally, only the evolutionary
time lag separating the two sequences matters. Thus, the expressions provided by Kimura (1981)
can be used in our framework to compute the expected proportions of the numbers of transitions,
type-1 transversions, type-2 transversions and unchanged nucleobases over an evolutionary time
lag ∆ separating two sequences. These expected proportions are:

ρ = (ρ1,ρ2,ρ3,ρ4) =
1
4
(
1− e1− e2 + e3, 1− e1 + e2− e3, 1+ e1− e2− e3, 1+ e1 + e2 + e3

)
,

(2)

where e1 = exp{−2(µ1+µ2)∆}, e2 = exp{−2(µ1+µ3)∆}, e3 = exp{−2(µ2+µ3)∆}, and µ1, µ2
and µ3 are the genetic substitution rates per nucleotide per day, for transitions, type-1 transversions
and type-2 transversions, respectively.

In addition, we make the following distributional assumption: the numbers of observed transi-
tions, type-1 transversions, type-2 transversions and unchanged nucleobases over an evolutionary
time lag ∆ separating two sequences are distributed from a multinomial distribution, say Pµ,s(· | ∆),
with size equal to the length s of the observed sequence fragment and with the vector of proba-
bilities ρ given by Equation (2). Thus, for any nonnegative integers m1,m2,m3,m4 whose sum is
s,

Pµ,s{(m1,m2,m3,m4) | ∆}=
(s!)×ρ

m1
1 ρ

m2
2 ρ

m3
3 ρ

m4
4

(m1!)× (m2!)× (m3!)× (m4!)
.

2.6. Genetic-space-time SEIR model

The genetic-space-time SEIR model, whose structure is illustrated by Figure 1, is obtained by
combining the semi-Markov SEIR model of Subsection 2.4 and the Markovian evolutionary
model of Subsection 2.5. The two models are combined under the following list of assumptions.
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Genetic-space-time SEIR models 7

TABLE 5. Possible events and corresponding substitution rates for the Markovian evolutionary model. Letters A, C, G
and U denotes nucleobases adenine, cytosine, guanine and thymine, respectively.

Description Event Rate
Transition A→G or G→A or C→U or U→C µ1
Transversion of type 1 A→U or U→A or C→G or G→C µ2
Transversion of type 2 A→C or C→A or G→U or U→G µ3

– The disease reservoir (i.e. exogenous source) is assumed to simply consist of one virus
sequence Sexo dated at time texo ∈ R.

– We assume that, at any time, there is only one sequence of the virus (i.e. one viral variant)
per infected individual. The sequence in individual k at time t, for t such that Ek(t) = 1 or
Ik(t) = 1, is denoted by Sk(t) and is a vector of letters A, C, G and U.

– When a susceptible individual k is infected by an infectious individual j at time t, the
sequence S j(t) is transmitted to k, i.e. Sk(t) = S j(t).

– For any individual, mutations of the virus sequence during the exposed and infectious stages
are assumed to be independent from the epidemiological dynamics. When an individual
is removed, the sequence is fixed. This is illustrated in Figure 2 where the length of the
sequence under mutation is s = 2.

– Virus mutations in different infected individuals are assumed to be conditionally independent
given the virus sequences at the infection times.

Disease
reservoir

ACCACGUC...

Exogenous infection

��
S j = 1 // E j=1

ACCACGUC...
// I j = 1 ACGACGUC //

Distance-dependent
transmission

��

R j=1
ACGAUGUC...

Sk = 1 // Ek=1
ACGCGUC...

// Ik = 1 // Rk=1
ACGACGCG...

FIGURE 1. Diagram illustrating the combination of the semi-Markov SEIR model and the Markovian evolutionary
model. Individual j is infected by the disease reservoir with virus sequence "ACCACGUC...". Then, j becomes
infectious and when j infects k, the sequence in j has evolved (C at the 3rd base mutated to G). Finally, the sequences
in j and k independently evolve.
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FIGURE 2. Possible transitions for an individual in the genetic-space-time SEIR model, where the virus sequence is of
length s = 2. Transitions from S = 1 (susceptible) to E = 1 (exposed), from E = 1 to I = 1 (infectious) and from I = 1
to R = 1 (removed) are irreversible, whereas transitions corresponding to substitutions in nucleobases are reversible.

3. Estimation methods

3.1. Data structure

We consider the same type of data than in Mollentze et al. (2014) who analyzed transmissions of
rabies within a South African population of dogs, jackals and livestock. Thus,

– Data are collected in a spatio-temporal observation window included in the whole spatial
domain and in the whole time frame covered by the disease dynamics (which is either an
epidemic or an endemic dynamics);

– Among all the infected cases in the spatio-temporal observation window, only a subset is
observed (thus, sources of infection can be unobserved, and the unobserved sources can be
inside or outside the observation window);

– The removed state corresponds to the death of the individual;
– Sampled individuals are observed when they die, that is to say at the transition from I = 1 to

R = 1;
– Virus sequences that are available correspond to the states of the sequences at the death times

(usually only a fragment of the sequence is available, the same fragment for all inividuals);
– The central locations x1, . . . ,xn of sampled individuals are assumed to be the locations at the

death;
– The sequence Sexo is assumed to be known (in real cases, Sexo can be reconstructed by a

phylogenetic analysis of available genetic sequences: Sexo is typically the reconstructed
sequence of the most recent common ancestor; see Mollentze et al., 2014).

Compared to the amount of variables in the model, data are particularly sparse. Indeed, looking at
Figure 1, data consist of the sequence of the disease reservoir and locations, times and sequences
collected when observed individuals are in state R = 1. It has to be noted that, usually, only a

Soumis au Journal de la Société Française de Statistique
File: seir.tex, compiled with jsfds, version : 2009/12/09
date: September 29, 2015



Genetic-space-time SEIR models 9

fraction of infected individuals are observed. Now, consider Figure 2, infected individuals and
pathogen sequences are observed in one of the state R = 1 whereas they previously evolved in a
high-dimension space of states (37 states in Figure 2; 1+2×4s states in general, where s is the
length of the observed sequence fragment).

3.2. Posterior distribution

Following Morelli et al. (2012) and Mollentze et al. (2014), we consider the joint posterior distri-
bution p(J,T in f ,L,D,θ | data) of the transmission tree J, infection times T in f = (T in f

1 , . . . ,T in f
n ),

exposed (or latency) durations L = (L1, . . . ,Ln), infectious durations D = (D1, . . . ,Dn), and param-
eters θ that contains infection and dispersal parameters α = (α0,α1,α2,1,α2,2), latency parameters
β = (β1,β2), infectiousness parameters δ = (δ1,δ2), mutation parameters µ = (µ1,µ2,µ3) and
the date texo of the exogenous sequence Sexo.

The transmission tree J is a function from {1, . . . ,n} to {0,1, . . . ,n} that states who infected
whom: an observed individual i is infected by a pathogen source j = J(i) that is either another
observed individual j ∈ {1, . . . ,n}, j 6= i, or the disease reservoir (exogenous source) denoted by
0.

Data are removal times T end = (T end
1 , . . . ,T end

n ), central locations X = (x1, . . . ,xn) and observed
sequences Send = {S1(T end

1 ), . . . ,Sn(T end
n )}. The posterior distribution is:

p(J,T in f ,L,D,θ | data) = p(J,T in f ,L,D,θ | Send ,T end ,X ,Sexo)

∝ p(Send | J,T in f ,L,D,θ ,T end ,X ,Sexo)p(J,T in f ,L,D,θ | T end ,X ,Sexo)

= p(Send | J,T in f ,L,D,θ ,T end ,X ,Sexo)p(J,T in f | L,D,θ ,T end ,X ,Sexo)

× p(L,D | θ ,T end ,X ,Sexo)p(θ),

(3)

where ∝ means "proportional to" (the multiplicative constant does not depend on the unknowns
(J,T in f ,L,D,θ)), p(Send | J,T in f ,L,D,θ ,T end ,X ,Sexo) is called the genetic likelihood, p(J,T in f |
L,D,θ ,T end ,X ,Sexo) is called the transmission likelihood, p(L,D | θ ,T end ,X ,Sexo) is the distri-
bution of latency and infectious durations and p(θ) is the prior distribution of parameters.

The prior distribution of parameters will be specified in Subsection 4.2. Based on Subsection 2.4,
the distribution of latency and infectious durations is simply the product of gamma probabilities:

p(L,D | θ ,T end ,X ,Sexo) = p(L,D | θ)

=
I

∏
i=1

γ(Li;β1,β2)γ(Di;δ1,δ2),

where γ(·;a,b) is the probability distribution function of the gamma distribution parameterized
by (a,b).

In Subsection 3.3, we detail the transmission likelihood and show how the incompleteness
of epidemiological data, i.e. the missing infecting hosts, is handled. In Subsections 3.4, 3.5 and
3.6, we detail the genetic likelihood and show how the incompleteness of genetic data, i.e. the
missing pathogen sequences, is handled. The genetic likelihood can be formally written as a
function of the unobserved virus sequences at the infection times Sk(T

in f
k ), k = 1, . . . ,n. To avoid
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10 Samuel Soubeyrand

to handle latent vectors Sk(T
in f

k ) (the dimension of these unknowns is n× s), Morelli et al. (2012)
and Mollentze et al. (2014) replaced the genetic likelihood by a pseudo-likelihood in their MCMC
algorithm; see Subsection 3.5. In Subsection 3.6, we propose a new approximation of the genetic
likelihood whose performance will be assessed in Section 4.

3.3. Transmission likelihood

Following Mollentze et al. (2014), the transmission likelihood p(J,T in f | L,D,θ ,T end ,X ,Sexo)
can be written:

p(J,T in f |L,D,θ ,T end ,X ,Sexo) = p
(

J(1),T in f
1 | L,D,θ ,T end ,X

)
×

I

∏
i=2

p
(

J(i),T in f
i | J{1 : (i−1)},T inf

1:(i−1),L,D,θ ,T end ,X
)
,

(4)

where the index i is sorted with respect to increasing infection times T in f
i , J{1 : (i− 1)} =

(J(1), . . . ,J(i−1)) for i > 1, T inf
1:(i−1) = (T in f

1 , . . . ,T inf
i−1) for i > 1, and by assuming that the trans-

mission dynamics does not depend on the exogenous sequence Sexo.
Each host has the same chance (1/I) to be infected first (by an external source J(1) = 0), and

its infection time is assumed to be less than or equal to the first observation time (min{T end}):

p
(

J(1),T in f
1 | L,D,θ ,T end ,X

)
=

1
I
×1(T in f

1 ≤min{T end}),

where 1 is the indicator function. Subsequent infections (i.e. for i > 1) occur with the following
probabilities derived from assumptions made in Subsections 2.4 and 2.6:

p
(

J(i),T in f
i | J{1 : (i−1)},T inf

1:(i−1),L,D,θ ,T end ,X
)

= exp

(
−α0(T

in f
i −T in f

1 )−
∫ T in f

i

T in f
1

i−1

∑
j=1

α11(T in f
j +L j ≤ t ≤ T end

j )w(x j− xi)dt

)

×
(

α01{J(i) = 0}+α11(T inf
J(i)+LJ(i) ≤ T in f

i ≤ T obs
J(i) )w(xJ(i)− xi)1{J(i)> 0}

)
where the exponential term is the probability that host i has not been infected between times T in f

1
and T in f

i , and the second term is the probability density that host i has been infected by J(i) at
time T in f

i . Here, if J(i)> 0 the source is observed, while the source is external to the dataset (an
introduction) if J(i) = 0. α0 is the infection strength of the exogenous sources, assumed to be
constant in time and space, α1 is the infection strength of an observed source, and w is the
parametric dispersal kernel specified in Equation (1).

3.4. Genetic likelihood

By assuming that the evolution of pathogen sequences does not depend on the transition from
exposed to infectious states and does not depend on individual locations, the genetic likelihood
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Genetic-space-time SEIR models 11

p(Send | J,T in f ,L,D,θ ,T end ,X ,Sexo) reduces to p(Send | J,T in f ,θ ,T end ,Sexo). This distribution
was written by Mollentze et al. (2014) as a sum over all possible transmitted sequences Sin f

i =

Si(T
in f

i ) at times T in f
i for all i such that J(i)> 0:

p(Send | J,T in f ,θ ,T end ,Sexo)

= ∑
{Sin f

i ∈S: i=1,...,n
and J(i)>0}

{(
n

∏
i=1

Pµ,s{M(Send
i ,S†

prec(i,obs)) | ∆ = T end
i −T †

prec(i,obs)}

)

×

 n

∏
i=1

J(i)>0

Pµ,s{M(Sin f
i ,S∗prec(i,in f )) | ∆ = T in f

i −T ∗prec(i,in f )}


 .

(5)

In Equation (5), the first series of factors accounts for the probabilities of the number of
substitutions between an observed sequence and the immediately preceding unobserved, transmit-
ted sequence or the sequence of the exogenous source (last double arrows on every horizontal
lines of Figure 3A). The second series of factors accounts for the probabilities of the number
of substitutions between each transmitted sequence and the transmitted sequence immediately
preceding in time or the sequence of the exogenous source (every double arrows except the last
one on every horizontal lines of Figure 3A).

Let us now detail terms in Equation (5): S is the set of all possible sequences (the size of
S is 4s, where s is the length of the sequence fragment); M(S′,S) is the vector of the numbers
of transitions, type-1 transversions, type-2 transversions and unchanged nucleobases between
S and S′; Pµ,s{M(S′,S) | ∆ = T ′−T} is the probability given by the multinomial distribution in
Subsection 2.5.

The subscript prec(i,obs) can take two types of values. First case: if J(i) = 0 and i did not
infected any other observed host, then prec(i,obs) = exo, S†

prec(i,obs) = Sexo and T †
prec(i,obs) = texo.

Second case: if J(i)> 0 or if i infected another observed host, then prec(i,obs) denotes the host
whose node of infection belongs to the tree path from the root of the tree to the observation of i (at
time T end

i ) and whose infection is just preceding the observation of i (S†
prec(i,obs) is the transmitted

sequence Sin f
prec(i,obs) at the infection time T †

prec(i,obs) = T in f
prec(i,obs)). The node of infection of a given

host k is defined as the point on the tree at which “the branch leading to the observation of k” and
“the branch leading to the observation of the infecting host J(k)” diverged. The tree path from one
point of the tree to another is defined as the most direct broken line on the graph connecting the
two points. In the second case, if J(i)> 0 and i did not infect any other host, then prec(i,obs) is i
itself.

The subscript prec(i, in f ) can also take two types of values. First case: if J(J(i)) = 0 and J(i)
did not infect any other observed host before the infection of i at T in f

i , then prec(i, in f ) = exo,
S∗prec(i,in f ) = Sexo and T ∗prec(i,in f ) = texo. Second case: if J(J(i)) > 0 or if J(i) infected another

observed host before the infection of i at T in f
i , then prec(i, in f ) denotes the host whose node

of infection belongs to the tree path from the root of the tree to the infection of i (at time T in f
i )

and whose infection is just preceding the infection of i (S∗prec(i,in f ) is the transmitted sequence

Sin f
prec(i,in f ) at the infection time T ∗prec(i,in f ) = T in f

prec(i,in f )).
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12 Samuel Soubeyrand

3.5. Genetic pseudo-likelihood

To reduce the complexity of the inference algorithm, Mollentze et al. (2014) used a conditional
pseudo-distribution of Send , noted p̃(Send | J,T in f ,θ ,T end ,Sexo), instead of the exact conditional
distribution given by Equation (5). The conditional pseudo-distribution does not depend on the
extra latent vectors {Sin f

i : i = 1, . . . ,n, J(i)> 0} appearing in Equation (5).

With index i being sorted with respect to increasing infection times T in f
i , the distribution

p(Send | J,T in f ,θ ,T end ,Sexo) can be written:

p(Send | J,T in f ,θ ,T end ,Sexo) =p(Send
1 | J,T in f ,θ ,T end ,Sexo)

×
n

∏
i=2

p(Send
i | Send

1:(i−1),J,T
in f ,θ ,T end ,Sexo),

(6)

where Send
1:(i−1) is the set of observed sequences from hosts 1, . . . , i−1.

For the first infected host,

p(Send
1 | J,T in f ,θ ,T end ,Sexo) = Pµ,s{M(Send

1 ,Sexo) | ∆ = T end
1 − texo}.

For the other hosts infected by the exogenous source (i.e. for i > 1 such that J(i) = 0),

p(Send
i | Send

1:(i−1),J,T
in f ,θ ,T end ,Sexo) = Pµ,s{M(Send

i ,Sexo) | ∆ = T end
i − texo}.

For hosts infected by observed hosts (i.e. for i > 1 such that J(i)> 0), we replaced the conditional
probability p(Send

i | Send
1:(i−1),J,T

in f ,θ ,T end ,Sexo) of Send
i given sequences Send

j ( j = 1, . . . , i− 1)
by the product, up to a power, of the conditional probabilities of Send

i given each sequence Send
j

such that j ∈ 1, . . . , i− 1 and j is in the transmission chain leading to i (the latter condition is
mathematically written: ∃m ∈ N∗,Jm(i) = j, where Jm consists of composing J with itself m
times):

 i−1

∏
j=1

∃m∈N∗,Jm(i)= j

Pm,s{M(Send
i ,Send

j ) | ∆ =| T end
i −T in f

div(i, j) |+ | T
end
j −T in f

div(i, j) |}


1/ηi

, (7)

where ηi is the number of terms in the product, T end
div(i, j) denotes the infection time at which the

chain of infection leading to i and the chain of infection leading to j diverged (T in f
div(i, j) is one

of the latent variables in T in f ) and ∆ =| T end
i −T in f

div(i, j) | + | T
end
j −T in f

div(i, j) | is the evolutionary
duration separating the observation of Send

i and Send
j . The use of the power 1/ηi is a way to get

a quantity homogeneous to a single probability and not to a product of probabilities whatever
the length of the transmission chain leading to i. Therefore, the hosts have similar weights in the
pseudo-distribution given below. The computation of Equation (7) is illustrated by Figure 3B.
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Genetic-space-time SEIR models 13

Thus, the conditional pseudo-distribution of Send , or in other words the genetic pseudo-
likelihood, satisfies:

p̃(Send | J,T in f ,θ ,T end ,Sexo)

=
n

∏
i=1

J(i)=0

Pµ,s{M(Send
i ,Sexo) | ∆ = T end

i − texo}

×
n

∏
i=1

J(i)>0

 i−1

∏
j=1

∃m∈N∗,Jm(i)= j

Pm,s{M(Send
i ,Send

j ) | ∆ =| T end
i −T in f

div(i, j) |+ | T
end
j −T in f

div(i, j) |}


1/ηi

.

(8)

3.6. Genetic approximate likelihood

The genetic likelihood given by Equation (5) is a sum over all possible transmitted sequences
Sin f

i for i such that J(i)> 0. In the genetic approximate likelihood, we use a fixed value S̆in f
i for

Sin f
i that is deterministically reconstructed conditionally on J, Sexo and Send . The reconstruction

is based on the parsimony principle commonly used in phylogenetics: the most parsimonious
reconstruction of {Sin f

i : i = 1, . . . ,n,J(i) > 0} is the one that requires the fewest evolutionary
changes (i.e. the fewest substitutions of nucleobases; see Tuffley and Steel, 1997, for a formal
definition). The genetic approximate likelihood is given by:

p̆(Send | J,T in f ,θ ,T end ,Sexo)

=

(
n

∏
i=1

Pµ,s{M(Send
i , S̆†

prec(i,obs)) | ∆ = T end
i −T †

prec(i,obs)}

)

×

 n

∏
i=1

J(i)>0

Pµ,s{M(S̆in f
i , S̆∗prec(i,in f )) | ∆ = T in f

i −T ∗prec(i,in f )}

 ,

(9)

where S̆†
prec(i,obs) and S̆∗prec(i,in f ) are computed like S†

prec(i,obs) and S∗prec(i,in f ) in Subsection 3.4 except

that Sin f
i is replaced by S̆in f

i for all i such that J(i)> 0.
The set of sequences {S̆in f

i : i = 1, . . . ,n,J(i)> 0} is computed by applying Algorithm 2 that
calls Algorithm 1 several times.

Algorithm 1 computes one of the most parsimonious sequence for the node of bifurcation of an
ancestral sequence Ganc into two sequences G(1) and G(2) (there can be several most parsimonious
sequences for the node; see Discussion section). In our setting (and in Algorithm 2), nodes of
bifurcation coincide with infection events. The function that provides Gnode by carrying out
calculations in Algorithm 1 is denoted by G : (Ganc,G(1),G(2)) 7→G(Ganc,G(1),G(2)).

Algorithm 2 shows how the fixed value {S̆in f
i : i = 1, . . . ,n,J(i) > 0} are obtained given J,

Sexo and Send . Note that the operation Ganc⇐ S̆in f
j that uses one of the output of the algorithm is
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14 Samuel Soubeyrand

feasible because index i is sorted with respect to increasing infection times T in f
i (i.e. S̆in f

j has been

already computed when the operation Ganc⇐ S̆in f
j is performed).

Remark: Algorithm 2 is not demonstrated to yield the most parsimonious reconstruction of the
transmitted sequences. However, it is expected to yield a relatively parsimonious reconstruction
because it is based on successive calls of Algorithm 1, which leads to the most parsimonious
sequence for the node of bifurcation of an ancestral sequence Ganc into two sequences G(1) and
G(2).

Algorithm 1 Most parsimonious reconstruction of the sequence Gnode = (gnode
1 , . . . ,gnode

s ) of
the node of bifurcation from an ancestral sequence Ganc = (ganc

1 , . . . ,ganc
s ) to two sequences

G(1) = (g(1)1 , . . . ,g(1)s ) and G(2) = (g(2)1 , . . . ,g(2)s ). These sequences, that are shown on the diagram
below on the right of the algorithm, are vectors of size s whose components take values in a finite
countable set.

for b = 1, . . . ,s do
if g(1)b = g(2)b then

gnode
b ⇐ g(1)b

else
gnode

b ⇐ ganc
b

end if
end for

G(1)

Ganc // Gnode

44iiiiiiiiiiiii

**UUU
UUUU

UUUU
UU

G(2)

Algorithm 2 Reconstruction of sequences {Sin f
i : i = 1, . . . ,n,J(i)> 0} conditionally on J, Sexo

and Send . Index i is sorted with respect to increasing infection times T in f
i .

for j = 1, . . . ,(n−1) do
if J( j) = 0 then

Ganc⇐ Sexo
else

Ganc⇐ S̆in f
j

end if
for i = 1, . . . ,(n−1) do

if J(i) = j then
G(1)⇐ Send

j

G(2)⇐ Send
i

S̆in f
i ⇐G(Ganc,G(1),G(2))

Ganc⇐ S̆in f
i

end if
end for

end for
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Genetic-space-time SEIR models 15

3.7. MCMC

To estimate parameters and latent variables, in particular the transmission tree J, Mollentze et al.
(2014) built an MCMC algorithm that samples in:

p̃(J,T in f ,L,D,θ | data)

∝ p̃(Send | J,T in f ,L,D,θ ,T end ,X ,Sexo)p(J,T in f | L,D,θ ,T end ,X ,Sexo)

× p(L,D | θ ,T end ,X ,Sexo)p(θ),

(10)

Equation (10) is analogue to Equation (3) that gives the posterior distribution of parameters and
latent variables, except that the genetic likelihood (Eq. (5)) is replaced by the genetic pseudo-
likelihood (Eq. (8)).

Here, we propose to estimate parameters and latent variables with an MCMC algorithm that
samples in:

p̆(J,T in f ,L,D,θ | data)

∝ p̆(Send | J,T in f ,L,D,θ ,T end ,X ,Sexo)p(J,T in f | L,D,θ ,T end ,X ,Sexo)

× p(L,D | θ ,T end ,X ,Sexo)p(θ),

(11)

Equation (11) is analogue to Equation (3), except that the genetic likelihood (Eq. (5)) is replaced
by the genetic approximate likelihood (Eq. (9)).

As explained above, sampling in p̃(J,T in f ,L,D,θ | data) instead of sampling in the exact
posterior avoids us to handle the latent transmitted viral sequences. In contrast, sampling in
p̆(J,T in f ,L,D,θ | data) requires us to handle these latent sequences but, using Algorithm 2,
they are deterministically calculated given the values of J, Sexo and Send . In both approaches,
avoiding to stochastically update the transmitted viral sequences along the MCMC algorithm
(with a Metropolis-Hastings sampler for example) significantly reduces the complexity of the
algorithm. Note that computation costs are comparable when the pseudo-likelihood and the
approximate likelihood are used: sampling in p̆(J,T in f ,L,D,θ | data) only took us about 1.05
times the duration required for sampling in p̃(J,T in f ,L,D,θ | data).

For the application presented in the next section, we used both MCMC algorithms (the one based
the pseudo-likelihood and the one based on the approximate likelihood). Proposal distributions
and initialization were approximately similar than those used by Mollentze et al. (2014). It has to
be noted that the transmission tree J was initialized such that J(i) = 0 for all i ∈ {1, . . . ,n} (i.e.
all individuals are initially infected by the exogenous source). Each MCMC algorithm was run for
100,000 iterations. Following a burn-in of 10,000 iterations, we sampled every 250th iterations.

4. Application

We carried out a simulation study to assess the efficiency of the two MCMC algorithms presented
in Subsection 3.7. In this article, we assessed the algorithm efficiency by focusing on the estimation
of the transmission tree J. We also evaluated how this efficiency is decreased when a fraction of
genetic data are missing (i.e. when pathogen is not collected on some of the observed individuals
and, therefore, not sequenced). Regarding the estimation of model parameters that is not studied
here, Morelli et al. (2012) and Mollentze et al. (2014) provided extensive results on the coverage
of parameters by posterior intervals provided by our approach.
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16 Samuel Soubeyrand

4.1. Simulation model

For each simulation, the epidemic is initiated at time zero with one infected host localized at
the origin (0,0) and 119 susceptible hosts uniformly and randomly localized in the [0.0,0.3]×
[0.0,0.1] rectangle. At time zero, the sequence of the virus in the infected host purely consists of
A nucleobases. The incubation parameters are β1 = 50 (mean) and β2 = 5 (standard deviation).
The infectious duration parameters are δ1 = 10 (mean) and δ2 = 1 (standard deviation). The unit
of β1, β2, δ1 and δ2 is an arbitrary time unit that is typically the day. The infection strength of
each infectious host is α1 = 104. The basic risk parameter is α0 = 0. The dispersal parameters are
α2,1 = 0.002 (scale) and α2,2 = 1 (shape). The substitution rates are µ1 = µ2 = µ3 = 2×10−5

(in substitutions per nucleotide per time unit). This value is rather high but is included in current
values observed for RNA viruses (Hanada et al., 2004; Jenkins et al., 2002). Only a fraction of the
n = 120 hosts is sampled: hosts with x-coordinate larger than 0.2 have a probability equal to 3/4
to be sampled, hosts with x-coordinate lower than or equal to 0.2 are not sampled (the sampling
region is reduced to the square [0.2,0.3]× [0.0,0.1]). For genetic data, a sequence fragment of
length s = 800 sites is observed. The values β1 = 50, δ1 = 10, µ1 = µ2 = µ3 = 2× 10−5 and
s = 800 lead, in expectation, to 0.96 substitutions per infected host over the observed sequence
fragment. Figure 4 presents an example of simulated epidemic.

The simulation model is not exactly the same than the model used for the inference. Indeed,
there is a difference concerning infection from external sources. In the simulation model, the
external sources are handled in a realistic manner: the external sources are infectious hosts within
or outside the sampling region generating infectious risks that are local in time and space. In the
inference model, exogenous infections are due to a single source that has a constant infection
strength (measured by α0) in time and space and that is characterized by the sequence Sexo at
time texo. This trick allows us to not have to explicitly deal with multiple unobserved sources (and
therefore supplementary latent variables) in the estimation algorithm. It has to be noted that the
parameter α0 has not the same meaning in the simulation model and the inference model.

4.2. Prior distributions

Independent prior distributions were used for all parameters. Exponential priors with mean values
106 were chosen for α0 and α1. An exponential prior with mean value 1 was chosen for α2,1, while
an informative gamma prior distribution with mean 1 and standard deviation 1 was specified for
α2,2. Doing so allows classical kernels to have a non-negligible weight, in particular the thin-tailed
normal kernel (α2,2 = 2), the exponential kernel (α2,2 = 1) and the fat-tailed kernel corresponding
to α2,2 = 0.5.

For the parameters governing incubation and infectious periods, we used very narrow prior
distributions centered around true parameter values. Thus, we consider a situation where accu-
rate information about these quantities are available (e.g. see Hampson et al., 2009, for such
information in the case of canine rabies). Narrow prior distributions were used to prevent the
inference algorithm from creating direct connections by extending the incubation and infectious
periods when one or more intermediate cases have not been sampled (Note that in a situation
where all infected cases are observed, the parameters governing incubation and infectious periods
can be estimated with our approach Morelli et al., 2012). A narrow gamma prior with mean 50
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Genetic-space-time SEIR models 17

and standard deviation 0.01 was specified for β1. A narrow gamma prior with mean 5 days and
standard deviation 0.01 was specified for β2. A narrow gamma prior with mean 10 and standard
deviation 0.01 was specified for δ1. A narrow gamma prior with mean 1 and standard deviation
0.01 was specified for δ2.

Exponential prior distributions with mean parameter m = 2×10−5 substitutions per nucleotide
per day were used for the substitution rates µ1, µ2 and µ3. A normal prior distribution with mean
0 and standard deviation 10 was specified for texo.

4.3. Results

Fifty data sets were independently simulated using the procedure described above. For each data
set, we applied four different estimation algorithms:

– in the first one, we used the genetic pseudo-likelihood and all genetic data;
– in the second one, we used the genetic approximate likelihood and all genetic data;
– in the third one, we used the genetic approximate likelihood and 50% of genetic data (50%

of the available sequences were randomly selected and used for the inference, the other
sequences were ignored);

– in the fourth one, we used the genetic approximate likelihood and 25% of genetic data (25%
of the available sequences were randomly selected and used for the inference, the other
sequences were ignored).

It has to be noted that the genetic sampling effort (which varies) is different from the epidemi-
ological sampling effort (which is constant in expectation): the sampling scheme described in
Subsection 4.1 leads to observe about 3/4 of the infected hosts located within the study region;
then, the virus is sampled and sequenced for either 100%, 50% or 25% of the observed hosts.

Comparing the two first algorithms will allow us to assess which of the approaches based on
the pseudo-likelihood and the approximate likelihood is more accurate for reconstructing the
transmission tree in the simulation setting described in Subsection 4.1.

Comparing the three last algorithms will allow us to assess how the reconstruction of the
transmission tree relies on the genetic data, by keeping constant the other components of the
reconstruction (i.e. the epidemiological data and the inference algorithm).

The algorithms were compared by assessing their ability to correctly estimate endogenous
and exogenous transmissions. Endogenous transmissions designate direct transmissions between
observed cases whereas exogenous transmissions designate infections of observed cases by
unobserved cases. Three criteria were used to compare the performance of the algorithms. They
are defined as follows, for each simulation and each algorithm:

– Average posterior probability of true endogenous transmissions:

C1 =
1

∑
n
i=1 1{Jtrue(i)> 0}

n

∑
i=1

1{Jtrue(i)> 0} p̂{J(i) = Jtrue(i) | data},

where Jtrue is the true transmission tree that was simulated, p̂{J(i) = Jtrue(i) | data} is the
MCMC-based assessment of the posterior probability that the infecting source of i is the

Soumis au Journal de la Société Française de Statistique
File: seir.tex, compiled with jsfds, version : 2009/12/09
date: September 29, 2015



18 Samuel Soubeyrand

true one,

p̂{J(i) = Jtrue(i) | data}= 1
Z

Z

∑
z=1

1{J(z)(i) = Jtrue(i)}},

J(z) is the z-th state of J in the posterior sample obtained from the MCMC, and Z is the size
of the posterior sample of (J,T in f ,L,D,θ);

– Average posterior probability of true exogenous transmissions:

C2 =
1

∑
n
i=1 1{Jtrue(i) = 0}

n

∑
i=1

1{Jtrue(i) = 0} p̂{J(i) = Jtrue(i) | data};

– Average posterior probability of false exogenous transmissions:

C3 =
1

∑
n
i=1 1{Jtrue(i)> 0}

n

∑
i=1

1{Jtrue(i)> 0} p̂{J(i) = 0 | data},

where p̂{J(i) = 0 | data} is the MCMC-based assessment of the posterior probability that
the infecting source of i is an external source,

p̂{J(i) = 0 | data}= 1
Z

Z

∑
z=1

1{J(z)(i) = 0}}.

Table 6 provides the means and standard deviations of C1, C2 and C3 computed from the 50
simulations and using the four estimation algorithms. Using the genetic approximate likelihood
instead of the pseudo-likelihood allowed us to significantly improve the identification of true
endogenous sources when all genetic data were used (the mean of C1 was increased from 0.75 to
0.82; p-value of pairwise t-test: 0.018).

When the genetic sampling effort was decreased from 100% to 50% and 25%, the correct
identification of both endogenous and exogenous sources was more uncertain but remained
relatively high. Indeed, in average, there were 31 observed hosts in the simulated data sets and
consequently, for each infected host there were 30 possible endogenous sources and 1 possible
exogenous source. Therefore, obtaining mean values for C1 and C2 equal to 0.36 and 0.72 indicates
that, in average, the true source is identified with a relatively high probability. We can notice that
the decrease in the identification of true endogenous transmissions is mostly counterbalanced
by an increase in the incorrect detection of exogenous transmissions. Thus, in general, when an
endogenous source is not identified correctly, the algorithm tends to assign the infection to an
external source but not to an incorrect endogenous source.

5. Discussion

In this article, we presented an extension of stochastic SEIR models that combines (i) an individual-
based, spatial, semi-Markov SEIR model for the spatio-temporal dynamics of the pathogen, and
(ii) a Markovian evolutionary model for the temporal evolution of genetic sequences of the
pathogen. The resulting model is a state-space model including many latent variables. The high
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TABLE 6. Means and standard deviations of average posterior probabilities of true endogenous transmissions (C1),
true exogenous transmissions (C2) and false exogenous transmissions (C3). Means and standard deviations were
computed from 50 simulations & estimations. Endogenous transmissions designate direct transmissions between
observed cases whereas exogenous transmissions designate infections of observed cases by unobserved cases. Four
estimation algorithms were applied, one based on the genetic pseudo-likelihood and three based on the genetic
approximate likelihood with three different levels of genetic sampling effort. The genetic sampling effort is the
percentage of observed cases for which the virus was sequenced and used in the inference.

Method Pseudo-likelihood Approximate likelihood
Genetic sampling effort (%) 100 100 50 25
C1 (true endogenous transmissions) 0.75 (0.20) 0.82 (0.20) 0.48 (0.27) 0.36 (0.31)
C2 (true exogenous transmissions) 0.80 (0.18) 0.80 (0.18) 0.72 (0.21) 0.72 (0.21)
C3 (false exogenous transmissions) 0.14 (0.18) 0.11 (0.17) 0.26 (0.26) 0.34 (0.33)

dimension of the set of latent variables lead to inference difficulties. The main difficulty concerns
the manner to handle latent genetic sequences (i.e. the transmitted pathogen sequences at infection
times). We proposed a new algorithm including a new way to deal with latent genetic sequences.
We assessed this new algorithm with respect to its capacity to reconstruct transmission trees
(i.e. who infected whom). This new algorithm outperforms the one proposed by Mollentze et al.
(2014). We also assessed the performance of the algorithm when pathogen sequences are observed
for only a fraction of sampled hosts. The results that we obtained show that including more
genetic data significantly improves the reconstruction of transmission trees. It has to be noted
that similar studies could be carried out to investigate, for example, the influence of spatial data,
contact tracing information, substitution rate heterogeneity and dissemination capacities in the
reconstruction of transmission trees, but also in the estimation of key epidemic parameters and
latent variables such as unobserved infection times. These influence analyses were out of the
scope of the present introductory article but they are obviously of major interest.

Several directions can be explored to improve the space-time-genetic SEIR approach. One of
these directions concerns the computation / approximation of the genetic likelihood. We based
our approximation on the reconstruction of transmitted genetic sequences based on the parsimony
principle. While the parsimony principle has drawbacks in phylogenetic analyses (Brocchieri,
2001), it can be viewed as a nonparametric approach that is robust to model misspecifications
(Kolaczkowski and Thornton, 2004). One of its main interests is its low computation cost with
respect to the costs of probabilistic alternatives reviewed in Brocchieri (2001). However, we
can improve how the parsimony principle is applied in our approach. Let us give below an
example of possible improvement (notations are those of Section 3.6). If g(1)b 6= g(2)b and g(1)b 6=
ganc

b and g(2)b 6= ganc
b , then our algorithm states gnode

b = ganc
b . This value for gnode

b requires two
substitutions: one from gnode

b to g(1)b and one from gnode
b to g(2)b . Fixing gnode

b = g(1)b (resp. g(2)b )
also requires two substitutions: one from ganc

b to gnode
b and one from gnode

b to g(2)b (resp. g(1)b ). Thus,
the parsimony principle does not lead to a unique solution. The criterion using the differences
in nucleobases could be augmented by a criterion on temporal lengths of branches joining
Ganc— Gnode, Gnode— G(1), and Gnode— G(2). For example, we could proceed as follows: If
g(1)b 6= g(2)b and g(1)b 6= ganc

b and g(2)b 6= ganc
b , then gnode

b is equal to the bth nucleobase of the
genome among {Ganc,G(1),G(2)} that is the nearest in time from Gnode. This could lead to a clear
improvement when Ganc is Sexo, because the date texo of Sexo is often far away from dates of
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bifurcation nodes coinciding with infection times of observed individuals.

The approach presented in this article for reconstructing the virus sequences at the internal
nodes (and its possible improvement described above) exploits the knowledge of the transmission
tree J (more exactly the state of J along the MCMC algorithm) and the knowledge of a common
ancestral sequence Sexo. The knowledge of J implies that the topology of the evolutionary tree
is known (at each stage of the MCMC algorithm) and, consequently, that we have to solve the
so-called small parsimony problem (i.e. finding the most parsimonious labeling of the internal
vertices in an evolutionary tree; Jones and Pevzner, 2004, chap. 10). This problem is classically
solved by the algorithms of Fitch (1971), Hartigan (1973) and Sankoff and Rousseau (1975) that
consist of two stages: (1) a bottom-up phase where candidate states for the internal nodes are
determined and eventually associated with a score; and (2) a top-down refinement where one
makes a choice for the sequence state at the tree root and one decides between the candidate
states for the other internal nodes by minimizing a total score. The additional knowledge of a
common ancestral sequence Sexo allows us to simply perform a top-down phase for reconstructing
the internal nodes. Thus, Algorithm 2 that is conditional on J and Sexo allows us to divide the
number of operations at least by a factor 2 compared with the algorithms mentioned above. In
practice, Sexo will often have to be preliminary reconstructed, but this will be done once and not at
each update in the MCMC algorithm that lead to the modification of the genetic likelihood. It has
to be noted that Algorithm 2 is not demonstrated to yield the most parsimonious reconstruction of
transmitted sequences, but is expected to yield a relatively parsimonious reconstruction because it
is based on successive partial reconstructions (i.e. successive calls of Algorithm 1) and each of
these partial reconstructions is the most parsimonious.

The reconstruction of evolutionary trees and ancestral sequences has also been tackled with
likelihood-based methods such as the maximum likelihood, empirical Bayes and hierarchical
Bayes approaches (Hanson-Smith et al., 2010; Huelsenbeck and Bollback, 2001; Pirie et al.,
2012). Despite several similarities between (i) the construction of the likelihood defined in these
approaches and (ii) the construction of our likelihood, these likelihoods are different because
we make specific assumptions about the dependencies between temporal, spatial and genetic
variables. However, from an algorithmic point of view, the numerical approaches developed for
the reconstruction of evolutionary trees and ancestral sequences could be adapted to our setting.
Thus, we could replace our mixed likelihood/parsimony-based inference algorithm by a fully
likelihood-based algorithm. Future studies could be carried out in this direction to compare the
performance of these algorithms.

As we mentioned in the introduction, this article gives probabilists and statisticians an invitation
for enriching the class of space-time-genetic SEIR models and developing efficient inference
algorithms in order to carry out high-impact analyses of infectious diseases due to viruses. This
invitation is particularly relevant because, today, (i) our connected world favors in some ways
the spread of infectious diseases, and (ii) sequencing genetic material has become so affordable
that they are available for many infectious diseases. New statistical methods combining spatial,
temporal and genetic data and estimating transmission trees will become very important for future
epidemiology.
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Appendix A: On the distribution of susceptible state durations

In each SEIR model presented in Section 2, the transition rate governing the changes of the
susceptible state S→ S− 1 (resp. Sk → Sk− 1) is a function of the infectious state(s) I (resp.
{I j : j 6= k}). Suppose that these infectious states are constant in time (which is not true in general),
then the duration required for a change in S or Sk is exponentially distributed. However, I and
{I j : j 6= k} are randomly varying. Therefore, (i) the transition rate governing the changes of the
susceptible state S or Sk is a random time-varying function and (ii) the duration required for a
change in S or Sk is not exponential in general.

For instance, consider the stochastic time process {S(t) : t ≥ 0} defined in Subsection 2.1.
The times at which S changes (i.e. makes a negative jump of one unit) form a Cox process
(or doubly stochastic point process; Daley and Vere-Jones, 2003; Grandell, 1976) where the
stochastic intensity function is t 7→ α0S(t)+α1S(t)I(t)/T(t). Note that this intensity function is
zero once S(t) = 0. Closed (and non-exponential) forms of the distribution of inter-point times
have only been obtained for specific Cox processes (e.g. Dassios and Jang, 2008). In the general
case, computing the distribution of inter-point times requires an integration over the possible
realizations of the intensity function.
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FIGURE 3. Example of transmission tree with five individuals i, j, k, l and m, where j and m are infected by the
exogenous source and i, k and l are infected by observed individuals. On horizontal lines, that are time lines, the first
tick indicates the infection time, the second the end of exposed stage, and the third the observation time. A: Evolution
of sequences are independent on tree segments marked with double arrows; the sequences Sin f at infection times
appear in the genetic likelihood given in Subsection 3.4 and in its approximation given in Subsection 3.6. B: In the
genetic pseudo-likelihood of Subsection 3.5, the probability of observing Sin f

i , for example, is assessed by computing
the probability of evolution between Sin f

i and Sin f
k and the probability of evolution between Sin f

i and Sin f
j , without

taking into account the dependence due to the overlapping of these two evolutions.
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FIGURE 4. Example of simulated epidemic. Black dots represent infected hosts, while black segments represent
transmissions. Samples are only taken from a sub-region, colored in gray, and in this area, not all cases are detected
or sampled. Infected hosts have a probability of 3/4 of being sampled. Points corresponding to sampled hosts are
surrounded by red circles.
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