On the topological semigroup of equational classes of finite functions under composition

Jorge Almeida, Miguel Couceiro, Tamas Waldhauser

To cite this version:


HAL Id: hal-01090645
https://hal.archives-ouvertes.fr/hal-01090645

Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

Public Domain
ON THE TOPOLOGICAL SEMIGROUP OF EQUATIONAL CLASSES OF FINITE FUNCTIONS UNDER COMPOSITION

JORGE ALMEIDA, MIGUEL COUCEIRO, AND TAMÁS WALDHAUSER

Abstract. We consider the set of equational classes of finite functions endowed with the operation of class composition. Thus defined, this set gains a semigroup structure. This paper is a contribution to the understanding of this semigroup. We present several interesting properties of this semigroup. In particular, we show that it constitutes a topological semigroup that is profinite and we provide a description of its regular elements in the Boolean case.

1. Introduction

Throughout this paper, let \( A \) be a finite nonempty set. Without loss of generality, we assume that \( A = [m] = \{0, \ldots, m - 1\} \) for some natural number \( m \). An \( n \)-ary function on \( A \) is a mapping \( f: A^n \to A \). By a class (of functions) on \( A \) we simply mean a set of such mappings of possibly different arities. In this paper we shall be particularly interested in classes of functions definable by (depth-1) functional equations. In \([6]\) it was shown that such classes, which we refer to as being equational, are exactly those classes that are closed under identifications and permutations of variables as well as addition and deletion of inessential variables. For further background and variants, see e.g. \([3, 6, 8, 9, 14]\).

If \( \mathcal{K}_1 \) and \( \mathcal{K}_2 \) are two classes of functions on \( A \), then their composition \( \mathcal{K}_1 \mathcal{K}_2 \) is defined as the set of all compositions of functions in \( \mathcal{K}_1 \) with functions in \( \mathcal{K}_2 \), i.e.,

\[
\mathcal{K}_1 \mathcal{K}_2 := \{ f(g_1, \ldots, g_n) : f \in \mathcal{K}_1, g_1, \ldots, g_n \in \mathcal{K}_2 \}.
\]

When restricted to equational classes of functions on \( A \), class composition is associative, and thus it endows the set of all equational classes on a set \( A \) with a (fairly complicated) semigroup structure. As the size of the underlying set \( A \) determines this semigroup up to isomorphism, we denote by \( \mathbf{E}_m \) the semigroup of all equational classes on an \( m \)-element set.

Apart from the theoretical interest, this study is motivated by the many connections to areas pertaining to the multiple valued logic and universal algebra communities. For instance, idempotent elements of \( \mathbf{E}_m \) subsume so-called clones (composition-closed classes of functions that contain the

Date: September 20, 2013.
projections), which are of key importance in multiple-valued logic. The study of these semigroups may bring additional information and lead to a better understanding of the complex structure of the lattice of clones.

In Section 2 we recall the necessary definitions and preliminary results on equational classes and clones, in particular, clones of Boolean functions and idempotent elements of $E_2$. We introduce a metric on $E_m$ in Section 3 and show that $E_m$ is a compact topological semigroup with respect to the topology induced by this metric. We focus on the semigroup $E_2$ made of equational classes of Boolean functions in Section 4. In particular, we describe its regular elements and we determine the restriction of the Green relations to the regular $D$-classes. For general background on Green’s relations see, e.g., [17].

2. Preliminaries

The set of all $n$-ary functions on $A = [m]$ is denoted by $O^{(n)}_m$, and the set of all functions on $A = [m]$ is $O_m := \cup_{n \geq 1} O^{(n)}_m$. For any class $K \subseteq O_m$ and any positive integer $n$, let $K^{(n)}$ denote the $n$-ary part of $K$, i.e., $K^{(n)} := K \cap O^{(n)}_m$.

2.1. The simple minor quasiorder. We say that the $i$-th variable of a function $f \in O^{(n)}_m$ is essential, if there exist $a_1, \ldots, a_n, a'_i \in [m]$ such that $f(a_1, \ldots, a_i, \ldots, a_n) \neq f(a_1, \ldots, a'_i, \ldots, a_n)$. We denote the set of essential variables of $f$ by $\text{Ess}_f$, and we define the essential arity of $f$ by $\text{ess}_f := |\text{Ess}_f|$.

For $f \in O^{(n)}_m$ and $g \in O^{(k)}_m$, we say that $g$ is a simple minor of $f$, denoted by $g \preceq f$, if there exists a map $\sigma : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, k\}$ such that

$$g(x_1, \ldots, x_k) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}).$$

If $\sigma$ is bijective, then $g$ is obtained from $f$ by permuting variables; if $\sigma$ is not injective, then $g$ is obtained from $f$ by identifying variables; if $\sigma$ is not surjective, then $g$ is obtained from $f$ by introducing inessential variables.

The simple minor relation gives rise to a quasiorder on $O_m$ (see [8]). The corresponding equivalence is defined by $f \equiv g \iff f \preceq g$ and $g \preceq f$, and it is clear that $f$ and $g$ are equivalent if and only if they differ only in inessential variables and/or in the order of their variables. We will not distinguish between equivalent functions in the sequel. For example, $\{\text{id}\}$ will stand for the set of all projections $(x_1, \ldots, x_n) \mapsto x_i$, as these are the functions equivalent to the identity function.

Being a quasiorder, the simple minor relation induces naturally a partial order on $O_m/\equiv$. This poset was studied in more detail in [8] for $m = 2$. Functions on [2] are called Boolean functions, and we will use the notation $\Omega$ instead of $O_2$ for the set of all Boolean functions. The bottom of the poset $(\Omega/\equiv, \preceq)$ is shown in Figure 1. We can see (and it is easy to prove) that $\Omega$ (or equivalently, $\Omega/\equiv$) has four connected components,
namely $\Omega_{00}, \Omega_{11}, \Omega_{01}, \Omega_{10}$, where

$$\Omega_{ab} = \{ f \in \Omega : f(0) = a, f(1) = b \} \quad (a, b \in \{0, 1\}).$$

Hereinafter, $0$ and $1$ denote the tuples $(0,\ldots,0)$ and $(1,\ldots,1)$, respectively; the length of the tuples is not specified, as it should be always clear from the context. For an arbitrary function class $K$, we will abbreviate $K \cap \Omega_{ab}$ by $K_{ab}$, and we will use the following (hopefully intuitive) notation:

$$K_{0*} = K_{00} \cup K_{01}, \quad K_{1*} = K_{01} \cup K_{11}, \quad K_{=} = K_{00} \cup K_{11}.$$  

The minimal elements of $(\Omega/\equiv; \leq)$ are the unary functions: $0, 1, \text{id}$ and $\neg$ (negation). On the next level we can see the binary functions $+$ (addition modulo 2), $\to$ (implication), $\vee$ (disjunction), $\wedge$ (conjunction) and the ternary functions $M$ (majority function), $m$ (minority function), $\frac{2}{3}m$ (2/3-minority function, see [3]) together with their negations. Here negation is “taken from outside”, e.g., $\neg\frac{2}{3}m$ is a shorthand notation for the function

$$\neg\frac{2}{3}m(x, y, z) = 1 + \frac{2}{3}m(x, y, z) = 1 + xy + yz + xz + x + z.$$  

2.2. Equational classes and composition. A class $K \subseteq \mathcal{O}_m$ is an equational class if it is an order ideal in the simple minor quasiorder, i.e., if $f \in K$ and $g \leq f$ imply $g \in K$. This terminology is motivated by the fact that these are exactly the classes that can be defined by certain functional equations [6, 9]. Two natural examples are the class of monotone (order-preserving) and antimonotone (order-reversing) Boolean functions, which can be defined by the functional equations $f(x \wedge y) \wedge f(x) = f(x \wedge y)$ and $f(x \wedge y) \wedge f(x) = f(x)$, respectively. Another example is the class $\Omega_\leq \subseteq \Omega$ defined by the equation $f(0) = f(1)$. It is not hard to see that $\Omega_\leq$ is the largest composition-closed equational class of Boolean functions that is not a clone (see [19]). Equational classes can be also defined by relational constraints; we will discuss this approach in more detail in Subsection 2.3. The equational classes on $[m]$ form a lattice $E_m$ with intersection and union as the lattice operations. This lattice has continuum cardinality already on the two-element set, and its structure is very complicated [8].
For $f \in \mathcal{O}_m^{(n)}$ and $g_1, \ldots, g_n \in \mathcal{O}_m^{(k)}$, we define their composition as the function $f(g_1, \ldots, g_n) \in \mathcal{O}_m^{(k)}$ given by

$$f(g_1, \ldots, g_n)(x) = f(g_1(x), \ldots, g_n(x)).$$

We refer to $f$ as the outer function and to $g_1, \ldots, g_n$ as the inner functions of the composition.

As we saw in the introduction, this notion naturally extends to classes. If $\mathcal{K}_1, \mathcal{K}_2 \subseteq \mathcal{O}_m$, then their composition is defined by

$$\mathcal{K}_1 \mathcal{K}_2 := \{ f(g_1, \ldots, g_n) : f \in \mathcal{K}_1, g_1, \ldots, g_n \in \mathcal{K}_2 \}.$$

Let us note that the simple minor relation can be defined very compactly using function class composition:

$$(1) \quad g \preceq f \iff g \in \{ f \} \{ \text{id} \}.$$

Hence, equational classes can be characterized as those classes $\mathcal{K}$ that verify the condition $\mathcal{K} = \mathcal{K} \{ \text{id} \}$.

Now, in general, class composition is not associative. However, it becomes an associative operation when restricted to equational classes.

**Main Theorem.** ([6]) Let $\mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3 \subseteq \mathcal{O}_m$. The following assertions hold:

(i) $(\mathcal{K}_1 \mathcal{K}_2) \mathcal{K}_3 \subseteq \mathcal{K}_1(\mathcal{K}_2 \mathcal{K}_3)$;

(ii) If $\mathcal{K}_2$ is an equational class, then $(\mathcal{K}_1 \mathcal{K}_2) \mathcal{K}_3 = \mathcal{K}_1(\mathcal{K}_2 \mathcal{K}_3)$.

Hence $\mathcal{E}_m$ endowed with class composition can be regarded as a semigroup. In fact, $\mathcal{E}_m$ is a monoid with identity element $\{ \text{id} \}$. In the sequel we will simply write $f \mathcal{K}$ instead of $\{ f \} \mathcal{K}$ and $\mathcal{K} f$ instead of $\mathcal{K} \{ f \}$.

A class $\mathcal{C}$ is closed under composition if $\mathcal{C} \mathcal{C} \subseteq \mathcal{C}$. Clearly, if $\mathcal{C}$ is idempotent, i.e., $\mathcal{C} \mathcal{C} = \mathcal{C}$, then $\mathcal{C}$ is closed under composition. It was proved in [19] that the converse also holds for equational classes of Boolean functions. (Let us note that this is a distinguishing feature of Boolean functions: if $m \geq 3$, then we can construct a class $\mathcal{K} \in \mathcal{E}_m$ such that $\mathcal{K} \mathcal{K} \not\subseteq \mathcal{K}$.)

**Proposition 1** ([19]). For any equational class $\mathcal{K}$ of Boolean functions we have $\mathcal{K} \mathcal{K} \subseteq \mathcal{K}$ if and only if $\mathcal{K} \mathcal{K} = \mathcal{K}$.

A class $\mathcal{C} \subseteq \mathcal{O}_m$ is a clone if it is closed under composition and contains all projections. From ([11]) it follows that every clone is an equational class. The converse is not true: the class of antimonotone Boolean functions and the class $\Omega_\omega$ are both equational classes but neither of them is a clone. The set of clones on $[m]$ constitutes a lattice, which has continuum cardinality for $m \geq 3$ (see [11]) and the description of its structure remains a topic of active research. However, there are only countably many clones on the two-element set, and these have been described by E. L. Post in [15]. The clone generated by $F \subseteq \mathcal{O}_m$, i.e., the least clone containing $F$ will be denoted by $[F]$. For general background on clones and relations (cf. Subsection 2.3) we refer the reader to the monographs [12] and [16].
2.3. Relational constraints. By a relation of arity $k$ on $[m]$ we mean a set of $k$-tuples $P \subseteq [m]^k$. If $T \in [m]^{k \times n}$ is a $k \times n$ matrix such that each column of $T$ belongs to $P$, then we say that $T$ is a $P$-matrix. A relational constraint of arity $k$ is a pair $(P, Q)$, where $P$ and $Q$ are $k$-ary relations. An $n$-ary function $f$ satisfies the constraint $(P, Q)$ if $f(T) \in Q$ for every $P$-matrix $T$ of size $k \times n$. Satisfaction of relational constraints gives rise to a Galois connection that defines equational classes of functions.

**Theorem 2** ([14]). A class $K \subseteq O_m$ is an equational class if and only if $K$ can be defined by relational constraints.

As an illustration of this theorem let us consider our three examples from Subsection 2.2: the class of monotone and antimonotone Boolean functions can be defined by the constraints $(\leq, \leq)$ and $(\leq, \geq)$, respectively, and the class $\Omega_\omega$ can be defined by $\{(0,1), (0,0), (1,1)\}$.

A function $f$ preserves the relation $P$ if $f$ satisfies the constraint $(P, P)$. This induces the well-known Pol-Inv Galois connection between clones and relational clones.

**Theorem 3** ([2, 10]). A class $K \subseteq O_m$ is a clone if and only if $K$ can be defined by relations.

As an example, let us observe that the clone of monotone Boolean functions is defined by the relation $\leq$.

Now we present another Galois connection that characterizes composition-closed equational classes. Let us say that a function $f$ strongly satisfies the relational constraint $(P, Q)$, if $f$ satisfies both $(P, Q)$ and $(Q, Q)$ (i.e., $f$ satisfies $(P, Q)$ and preserves $Q$).

**Theorem 4** ([19]). A class $K \subseteq O_m$ is a composition-closed equational class if and only if $K$ can be strongly defined by relational constraints.

Concerning our three examples, let us note that the class of antimonotone functions is not closed under composition, and the class of monotone functions is strongly defined by the constraint $(\leq, \leq)$, as we have already observed. The class $\Omega_\omega$ is also closed under composition, and it is strongly defined by $\{(0,1), (0,0), (1,1)\}$, since the relation $\{(0,0), (1,1)\}$ is just the equality relation, and it is preserved by every function.

2.4. The Post lattice. The dual of an $n$-ary Boolean function $f$ is the function $f^d$ defined by $f^d(x_1, \ldots, x_n) := \neg f(\neg x_1, \ldots, \neg x_n)$. We say that $f$ is selfdual if $f^d = f$ and we say that $f$ is reflexive if $f = \neg f^d$, i.e., $f(x_1, \ldots, x_n) = f(\neg x_1, \ldots, \neg x_n)$. The set of self-dual functions is denoted by $S$, and the set of reflexive functions is denoted by $N$. The dual of a class $K \subseteq \Omega$ is $K^d := \{f^d : f \in K\}$. Observe that $K^d$ can be also written as $\neg K \neg$ using function class composition. (Let us recall that here $\neg$ stands for $\{\neg\}$, which in turn is an abbreviation for the class of all functions that are
equivalent to the unary negation function. As we will use composition with this class very often, it will be convenient to use this simplified notation.

Figure 2 shows the lattice of clones on $[2]$, usually referred to as the Post lattice. Only some clones are labelled on the figure; all other Boolean clones can be obtained as intersections of these:

- $\Omega$ is the clone of all Boolean functions;
- $\Omega_0^*$ is the clone of 0-preserving functions;
- $\Omega_1^*$ is the clone of 1-preserving functions;
- $M$ is the clone of monotone (order-preserving) functions;
- $S$ is the clone of self-dual functions;
- $L$ is the clone of linear functions, i.e., functions of the form $x_1 + \cdots + x_n + c$ with $n \geq 0$, $c \in \{0, 1\}$;
- $\Lambda$ consists of conjunctions $x_1 \land \cdots \land x_n$ ($n \geq 1$) and the two constants $0, 1$;
• $V$ consists of disjunctions $x_1 \lor \cdots \lor x_n$ ($n \geq 1$) and the two constants 0, 1;
• $\Omega^{(1)}$ is the clone of essentially at most unary functions;
• $\{\text{id}\}$ is the clone consisting of projections only;
• $W^k$ is the clone of functions preserving the relation $\{0,1\}^k \setminus \{0\}$;
• $W^\infty = W^2 \cap W^3 \cap \cdots$ is the clone generated by implication;
• $U^k$ is the dual of $W^k$ for $k = 2, 3, \ldots, \infty$.

2.5. **Idempotent equational classes.** The usual notation for the set of idempotents of a semigroup $S$ is $E(S)$, but in our case this would lead to the somewhat awkward notation $E(E_m)$, therefore we will simply write $I_m$ for the set of idempotent equational classes on $[m]$. If $C$ is a clone, then $CC \subseteq C$ by the very definition of a clone, and $CC \supseteq C \{\text{id}\} = C$, since $C$ contains the projections. Therefore, every clone is idempotent, and this means that for $m \geq 3$ it is probably a hopelessly difficult task to describe the idempotents of $E_m$. However, for $m = 2$ the idempotents have been described in [19].

Here we recall some of these results that we will use in Section 4.

It follows from Proposition 1 that $I_2$ is closed under arbitrary intersections (we allow the empty class), hence it is a complete lattice. For any clone $C \subseteq \Omega$, we define the set

$$I(C) := \{K \in I_2 : [K] = C\}.$$

Here $[K]$ stands for the clone generated by $K$, i.e., the least clone containing $K$. For each clone $C$, the set $I(C)$ turns out to be an interval in the lattice $I_2$, whose greatest element is $C$, which is obviously the only clone in $I(C)$. Clearly, these intervals form a partition of $I_2$, hence in order to determine all idempotents it suffices to describe $I(C)$ for every Boolean clone $C$.

**Theorem 5 ([19]).** Let $C$ be a Boolean clone. The interval $I(C)$ is one the following:

1. if $C = \{\text{id}\}, \{\text{id}, 0\}, \{\text{id}, 1\}, \{\text{id}, 0, 1\}, L, L_0, L_1$, then $I(C) = \{C, C^\infty\}$;
2. if $C = \Omega, \Omega_0, \Omega_1$, then $I(C) = \{C, C^\infty, C \cap N\}$.
3. if $2 \leq k < \infty$, then $k + 1 \leq |I(U^k)|, |I(W^k)| < \infty$, whereas $I(U^\infty)$ and $I(W^\infty)$ have continuum cardinality;
4. for all other clones, $I(C)$ only contains $C$.

A characterization of the idempotents belonging to $I(U^k)$ and $I(W^k)$ was also provided in [19]: here we describe only the least elements of these intervals. For every $k \geq 2$, let $B^k$ be the class of functions that strongly satisfy the constraint $\{(0,1)^k \setminus \{1\}, (0,1)^k \setminus \{0\}\}$, and let $D^k$ be the dual of $B^k$. Moreover, let $B^\infty = \cap_{k \geq 2} B^k$ and $D^\infty = \cap_{k \geq 2} D^k$. Then the least element of $I(W^k)$ is $B^k$ and the least element of $I(U^k)$ is $D^k$ for $2 \leq k \leq \infty$.

1We consider the inclusion as the ordering on $I_2$, and not the natural ordering defined by $K \leq K' \iff K = KK' = K'K$.
2Let us note that the class of reflexive functions was denoted by $R$ in [19]. In order to avoid confusion with Green’s $R$ relation, we use the notation $N$ here.
3. Topological properties of $E_m$

3.1. The metric on $E_m$. For $A \neq B \subseteq O_m$, we define the quantities $m(A, B)$ and $d(A, B)$ by

$$m(A, B) := \min \{ \text{ess } f \mid f \in A \triangle B \},$$

$$d(A, B) := 2^{-m(A, B)},$$

and we put $m(A, A) = \infty$ and $d(A, A) = 0$ for all $A \subseteq O_m$. (Here $A \triangle B$ denotes the symmetric difference of the sets $A$ and $B$.) It is straightforward to verify that $d$ is an ultrametric on $P(O_m)$, the power set of $O_m$. Intuitively, two classes are close to each other, if they coincide up to a large essential arity.

**Theorem 6.** The metric space $(E_m, d)$ is compact.

**Proof.** To prove compactness, we will interpret equational classes as sequences of $\equiv$-classes of functions, and embed $(E_m, d)$ into a compact product space.

Equivalent functions have the same essential arity, thus we can speak of the essential arity of an $\equiv$-class. Let us denote the set of all essentially $n$-ary equivalence classes by $E_m^{(n)}$. Clearly, $E_m^{(n)}$ is a finite set, since its cardinality is bounded by the number of $n$-ary functions on $[m]$.

Let us say that $K \subseteq O_m$ is saturated, if it is a union of $\equiv$-classes, and let $S$ denote the set of all saturated subsets of $O_m$. Note that every equational class is saturated. A saturated set $K \subseteq O_m$ can be naturally identified with a sequence $\{K_n\}_{n \geq 0}$, where $K_n \subseteq E_m^{(n)}$ is the set of essentially $n$-ary $\equiv$-classes contained in $K$. This identification gives rise to a bijection between $S$ and $\prod_{n=0}^{\infty} P(E_m^{(n)})$. It is easy to see that this bijection is a homeomorphism between $S$, equipped with the topology induced by the metric $d$, and the product space $\prod_{n=0}^{\infty} P(E_m^{(n)})$, equipped with the product of the discrete topologies on each $P(E_m^{(n)})$. Since each $E_m^{(n)}$ is finite, this product space is compact by Tychonoff’s theorem, hence $S$ is also compact. Therefore it only remains to prove that $E_m$ is a closed subset of $S$. We shall see that, in fact, $E_m$ is closed in $P(O_m)$.

Let $K$ be any set of functions that is not an equational class. We will prove that there is an open ball around $K$ that is contained in $P(O_m) \setminus E_m$. Since $K$ is not an equational class, there exist $f, g \in O_m$ such that $f \in K$ and $g \preceq f$, but $g \notin K$. Let $n = \text{ess } f$, and let us consider the open ball of radius $2^{-n}$ centered at $K$. Let $A \subseteq O_m$ be an arbitrary class in this ball, that is, such that $d(K, A) < 2^{-n}$. Then $m(K, A) > n$, i.e., $K$ and $A$ coincide up to essential arity $n$. In particular, we have $f \in A$ and $g \notin A$, which implies that $A$ is not an equational class. Therefore, $P(O_m) \setminus E_m$ is an open set and, hence, $E_m$ is closed.

As it turns out, the set of those classes $K \in E_m$ that are not closed under composition constitutes an open subset of $(E_m, d)$. Indeed, if $K \in E_m$ is not
closed under composition, then there exist \( f \in \mathcal{K}^{(n)} \) and \( g_1, \ldots, g_n \in \mathcal{K}^{(k)} \) such that \( h := f (g_1, \ldots, g_n) \notin \mathcal{K} \). Let \( \mathcal{K}' \) be any equational class in the open ball of radius \( 2^{-\max\{n,k\}} \) centered at \( \mathcal{K} \). Then \( m(\mathcal{K}, \mathcal{K}') > \max\{n, k\} \), i.e., \( \mathcal{K} \) and \( \mathcal{K}' \) coincide up to essential arity \( \max\{n, k\} \). Therefore, we have \( f, g_1, \ldots, g_n \in \mathcal{K}' \) and \( h \notin \mathcal{K}' \), and hence \( \mathcal{K}' \) is not closed under composition. This shows that the set of all equational classes that are not closed under composition forms an open set, and thus we have the following result.

**Proposition 7.** The set of composition-closed equational classes is a closed subset of \( \mathbf{E}_m \), hence it is compact.

**Remark 8.** A similar metric (which induces the same topology) was considered in \([3]\) for clones, and it has been shown that the resulting “clone space” is compact. We have seen in Proposition [7] that the space of composition-closed equational classes is compact. Clones are just the composition-closed equational classes that contain the projections, hence we also obtain the compactness of the clone space from the above results.

### 3.2. Finitely generated equational classes.

For \( f \in \mathcal{O}_m \), let \( \downarrow f \) denote the principal ideal generated by \( f \) in the simple minor quasiorder, i.e., \( \downarrow f := \{ g \in \mathcal{O}_m : g \preceq f \} \). Observe that \( \downarrow f \) is the least equational class containing \( f \). We say that an equational class \( \mathcal{K} \) is **finitely generated** if there exist \( t \geq 0, f_1, \ldots, f_t \in \mathcal{O}_m \) such that \( \mathcal{K} = \downarrow f_1 \cup \cdots \cup \downarrow f_t \). In this case \( \mathcal{K} \) is the least equational class containing \( \{f_1, \ldots, f_t\} \). For an equational class \( \mathcal{K} \), let \( \deg \mathcal{K} = \max \{ \text{ess} f : f \in \mathcal{K} \} \), if this maximum exists, and let \( \deg \mathcal{K} = \infty \) otherwise. Clearly, \( \mathcal{K} \in \mathbf{E}_m \) is finitely generated if and only if \( \mathcal{K} \) contains, up to equivalence, only finitely many functions. From this it follows that \( \mathcal{K} \) is finitely generated if and only if \( \deg \mathcal{K} < \infty \).

As mentioned in Subsection 2.2, a class of functions is an equational class if and only if it is definable by functional equations. It has been proved in \([9]\) that finitely generated equational classes can be defined by finitely many functional equations. The topological counterpart of this notion is that of being isolated: we say that \( \mathcal{K} \in \mathbf{E}_m \) is **isolated**, if \( \{\mathcal{K}\} \) is an open set in the topological space \( \mathbf{E}_m \), i.e., if \( \mathcal{K} \) has an open neighborhood in \( \mathcal{P}(\mathcal{O}_m) \) that contains no equational class other than \( \mathcal{K} \).

**Theorem 9.** An equational class \( \mathcal{K} \subseteq \mathcal{O}_m \) is finitely generated if and only if it is isolated.

**Proof.** Let us assume first that \( \mathcal{K} \) is finitely generated, i.e., \( d := \deg \mathcal{K} < \infty \). We will show that the open ball of radius \( 2^{- (d + m)} \) around \( \mathcal{K} \) contains no other equational class than \( \mathcal{K} \). Suppose for the sake of a contradiction that there exists \( \mathcal{K}' \in \mathbf{E}_m \) with \( m(\mathcal{K}, \mathcal{K}') > d + m \) and \( \mathcal{K}' \neq \mathcal{K} \). Then \( \mathcal{K}' \) and \( \mathcal{K} \) coincide up to essential arity \( d + m \), therefore we have \( \mathcal{K} \subseteq \mathcal{K}' \) (as all members of \( \mathcal{K} \) are essentially at most \( d \)-ary). Since \( \mathcal{K}' \neq \mathcal{K} \), it follows that \( \mathcal{K}' \setminus \mathcal{K} \neq \emptyset \). Let us choose \( f \in \mathcal{K}' \setminus \mathcal{K} \) of minimum essential arity. If \( g \) is any proper simple minor of \( f \), then \( g \in \mathcal{K} \) by the minimality of \( \text{ess} f \), and hence \( \text{ess} g \leq \deg \mathcal{K} = d \). On the other hand, we have \( \text{ess} f > d + m \), and thus the
arity gap $\text{gap } f := \min \{ \text{ess } f - \text{ess } g : g \prec f \}$ of $f$ is greater than $m$. This contradicts the fact that the arity gap of any function of several variables defined on an $m$-element set is at most $m$ (see [1]).

Now assume that $K$ is not finitely generated, i.e., $\deg K = \infty$. For any $n \geq 0$, let $K_n = \{ f \in K : \text{ess } f \leq n \}$. From $\deg K = \infty$, it follows that $K_n \neq K$ for all $n \geq 0$. Moreover, it is clear that $d(K, K_n) < 2^{-n}$, and thus that $K$ is not isolated. \hfill \square

**Remark 10.** It was shown in [13] that if a clone $C$ is isolated in the clone space, then $C$ is a finitely generated equational class, i.e., there is a finite set $O_m$ such that $C = [F]$. Observe that if $C$ is a finitely generated equational class, then $C$ is a finitely generated clone, but the converse is not true.

**Theorem 11.** Finitely generated equational classes constitute a dense subsemigroup of $E_m$.

*Proof.* We have seen in the second part of the proof of Theorem 9 that if $K \in E_m$ is not finitely generated, then there exists a sequence $\{K_n\}_{n \geq 0}$ of finitely generated equational classes $K_n$ such that $K_n \rightarrow K$. This shows that the set of finitely generated equational classes is dense in $E_m$.

In order to prove that they form a subsemigroup, let us consider two arbitrary finitely generated equational classes $K$ and $K'$ with $\deg K = s$ and $\deg K' = s$. Any function $h \in KK'$ can be written in the form $h = f(g_1, \ldots, g_n)$ with $f \in K$ and $g_1, \ldots, g_n \in K'$. Moreover, we may assume without loss of generality that $f$ depends on all of its variables, i.e., $\text{ess } f = n$. If a variable is inessential in all of the inner functions $g_1, \ldots, g_n$, then it is also inessential in the composite function $h$. Thus we have $\text{Ess } h \subseteq \text{Ess } g_1 \cup \cdots \cup \text{Ess } g_n$, and this yields the estimate $\text{ess } h \leq \text{ess } g_1 + \cdots + \text{ess } g_n \leq n \cdot s \leq r \cdot s$. This proves that $\deg KK' \leq r \cdot s$. Hence, $KK'$ is indeed finitely generated. \hfill \square

In general, the estimate $\deg KK' \leq \deg K \cdot \deg K'$ that has been established in the above proof is not sharp. As an example, let $K$ be the clone of term functions of a rectangular band. Then we have $KK = K$ and $\deg K = 2$, thus $2 = \deg KK < \deg K \cdot \deg K = 4$. However, it is noteworthy to observe that for Boolean functions (i.e., when $m = 2$) we always have an equality.

**Theorem 12.** For any equational classes $K, K' \in E_2$, we have $\deg KK' = \deg K \cdot \deg K'$.

*Proof.* When dealing with non-finitely generated classes, we use the conventions $\infty \cdot 0 = 0 \cdot \infty = 0$ and $n \cdot \infty = \infty \cdot n = \infty \cdot \infty = \infty$ for all $n \geq 1$. We will also need the following notation: for $x \in [2]^n$, $1 \leq i \leq n$, and $a \in [2]$, let $x^i_a$ be the $n$-tuple whose $j$-th component is $x_j$ if $j \neq i$, and $a$ if $j = i$.

Let $K, K' \in E_2$ with $\deg K = n$ and $\deg K' = k$, where $n, k \in \{0, 1, \ldots, \infty\}$. If either $n = 0$ or $k = 0$, then $\deg KK' = 0 = \deg K \cdot \deg K'$ holds trivially, so we will assume that $n, k \geq 1$.

Suppose first that $K$ and $K'$ are both finitely generated, i.e., $n, k < \infty$. We have seen in the proof of Theorem 11 that $\deg KK' \leq n \cdot k$. In order
to prove that \( \text{deg } \mathcal{K}', n \cdot k \) \( \text{deg } \mathcal{K}' \geq n \cdot k \), let us fix \( f \in \mathcal{K}^{(n)} \) and \( g \in \mathcal{K}^{(k)} \) such that \( \text{ess } f = n \) and \( \text{ess } g = k \). Since \( f \) and \( g \) depend on all of their variables, for each \( 1 \leq i \leq n \) and \( 1 \leq j \leq k \) there exist \( a \in [2]^n \) and \( b \in [2]^k \) such that \( f(a_i) \neq f(a_i') \) and \( g(b_j) \neq g(b_j') \). In particular, the range of both \( f \) and \( g \) is \([2]\).

For \( 0 \leq i \leq n - 1 \), let \( g_i : [2]^{n-k} \to [2] \) be defined by
\[
\forall x_1, \ldots, x_k, x_{ik+1}, \ldots, x_{(i+1)k}, \ldots, x_{nk}, \quad g_i (x_1, \ldots, x_k, x_{ik+1}, \ldots, x_{(i+1)k}, \ldots, x_{nk}) = g(x_{ik+1}, \ldots, x_{(i+1)k}) .
\]
Consider the function \( h : [2]^{n-k} \to [2] \) given by \( h(x_1, \ldots, x_{n-1}) = f(g_0, \ldots, g_{n-1}) \). Observe that \( g_i \equiv g \), hence \( g_i \in \mathcal{K}' \) for all \( 0 \leq i \leq n - 1 \), therefore \( h \in \mathcal{K} \mathcal{K}' \). We show that \( x_1 \) is an essential variable of \( h \).

Let \( a = (a_1, \ldots, a_n) \in \{0, 1\}^n \) and \( b \in [2]^k \) such that \( f(a_i) \neq f(a_i') \) and \( g(b_i) \neq g(b_i') \), for some \( u, v \in [2] \). For each \( 2 \leq i \leq n \), let \( b_i \in [2]^k \) be such that \( g(b_i) = a_i \), and define \( c := (bb_2 \cdots b_n) \). By construction, we have
\[
h(c_i) = f(a_i) \neq f(a_i') = h(c_i').
\]
This shows that \( x_1 \) is essential in \( h \). Similarly, it can be shown that the remaining variables \( x_i, 1 \leq i \leq nk \), are also essential in \( h \), hence \( \text{ess } h = n \cdot k \).

This proves that \( \text{deg } \mathcal{K} \mathcal{K}' \geq n \cdot k \) as claimed.

Now let us assume that \( \text{deg } \mathcal{K} = \infty \) and \( \text{deg } \mathcal{K}' \in \{1, 2, \ldots, \infty\} \). Since \( \text{deg } \mathcal{K} = \infty \), for any \( n \geq 0 \) we can find a function \( f \in \mathcal{K} \) with \( \text{ess } f \geq n \). Let us choose \( g \in \mathcal{K} \) with \( \text{ess } g = k > 0 \), and let us construct the function \( h \in \mathcal{K} \mathcal{K}' \) as above. We have seen that \( \text{ess } h = n \cdot k \) and, hence, \( \text{deg } \mathcal{K} \mathcal{K}' \geq n \cdot k \). Since this holds for all \( n \geq 0 \), we have that \( \text{deg } \mathcal{K} \mathcal{K}' = \infty = \text{deg } \mathcal{K} \cdot \text{deg } \mathcal{K}' \). If \( \text{deg } \mathcal{K}' = \infty \), then we can proceed similarly, by letting \( f \) be any nonconstant function in \( \mathcal{K} \) and by choosing functions \( g_i \in \mathcal{K}' \) with unbounded essential arities.

\[ \square \]

3.3. Continuity of composition. In this subsection we will prove that composition of equational classes is continuous with respect to the topology induced by the metric \( d \). By making use of the compactness of \( \mathcal{E}_m \) established in Theorem 3, we will show that \( \mathcal{E}_m \) is a profinite semigroup. The proof will essentially rely on the two following estimates.

**Lemma 13.** For all \( \mathcal{K}, \mathcal{K}_1, \mathcal{K}_2 \in \mathcal{E}_m \), we have
\[
m(\mathcal{K} \mathcal{K}_1, \mathcal{K} \mathcal{K}_2) \geq m(\mathcal{K}_1, \mathcal{K}_2),
\]
\[
d(\mathcal{K} \mathcal{K}_1, \mathcal{K} \mathcal{K}_2) \leq d(\mathcal{K}_1, \mathcal{K}_2).
\]

**Proof.** The second inequality is an immediate consequence of the first. Let \( u = f(g_1, \ldots, g_n) \in \mathcal{K} \mathcal{K}_1 \) be such that \( \text{ess } u < m(\mathcal{K}_1, \mathcal{K}_2) \). We have to show that \( u \in \mathcal{K} \mathcal{K}_2 \). Whenever a variable is inessential in \( u \), we may identify that variable with another variable in every \( g_i \), without changing the value of the function \( u \). In this way we can replace each \( g_i \) with some \( g_i' \) such that \( \text{ess } g_i' \leq \text{ess } u, g_i' \leq g_i \) and \( u \equiv f(g_1', \ldots, g_n') \). Since \( K_1 \) is an equational class, \( g_i' \in \mathcal{K}_1 \), and since \( \text{ess } g_i' < m(\mathcal{K}_1, \mathcal{K}_2) \), we have \( g_i' \in \mathcal{K}_2 \) for \( i = 1, 2, \ldots, n \). Thus \( u \equiv f(g_1', \ldots, g_n') \in \mathcal{K} \mathcal{K}_2 \). \[ \square \]
Lemma 14. If $\mathcal{K} = \downarrow h_1 \cup \downarrow h_2 \cup \cdots \cup \downarrow h_t$ and $k = \max \{\ess h_i \mid 1 \leq i \leq t\}$, then for all $\mathcal{K}_1, \mathcal{K}_2 \in E_m$ we have

$$m(\mathcal{K}_1 \mathcal{K}, \mathcal{K}_2 \mathcal{K}) \geq \sqrt[k]{\frac{m(\mathcal{K}_1, \mathcal{K}_2)}{t}},$$

$$d(\mathcal{K}_1 \mathcal{K}, \mathcal{K}_2 \mathcal{K}) \leq 2^{-\sqrt[\log_2 d(\mathcal{K}_1, \mathcal{K}_2)]{t}}.$$ 

Proof. We prove only the first inequality, since the second follows from the first one using the definition of $d$. Let $u = f(g_1, \ldots, g_n) \in \mathcal{K}_1 \mathcal{K}$ be such that $l = \ess u < \sqrt[\log_2 d(\mathcal{K}_1, \mathcal{K}_2)]{t}$. We have to show that $u \in \mathcal{K}_2 \mathcal{K}$.

Let us suppose that $u$ depends on all of its variables, and let us denote these variables by $x_1, x_2, \ldots, x_t$. Each of the inner functions $g_i$ is a simple minor of one of $h_1, \ldots, h_t$, i.e., they are of the form

$$h_j(z_1, z_2, \ldots, z_r)$$

where $1 \leq j \leq t$, $z_1, z_2, \ldots, z_r \in \{x_1, x_2, \ldots, x_t\}$, $r \leq k$.

The number of such functions is at most $t \cdot l^k$, so we can index them by (some of) the numbers $1, 2, \ldots, t \cdot l^k$. Let $v_1, v_2, \ldots$ be the list of these functions. Let $s_i$ be the number corresponding to the function $g_i (i = 1, 2, \ldots, n)$, i.e., $g_i = v_{s_i}$, and let $f'$ be the function $f(x_{s_1}, x_{s_2}, \ldots, x_{s_n})$. Since $f' \leq f$ and $f \in \mathcal{K}_1$, we have $f' \in \mathcal{K}_1$. Also $\ess f' \leq t \cdot l^k < m(\mathcal{K}_1, \mathcal{K}_2)$, and thus $f' \in \mathcal{K}_2$. Since $u$ is equivalent to $f'(v_1, v_2, \ldots)$ and each $v_i$ belongs to $\mathcal{K}$, we have that $u \in \mathcal{K}_2 \mathcal{K}$. 

By Theorem 11 the set of finitely generated equational classes form a dense subset of $E_m$, and thus for any fixed positive $\varepsilon$ and $\mathcal{K} \in E_m$ there exists a finitely generated equational class $\mathcal{K}'$ such that $d(\mathcal{K}', \mathcal{K}) < \varepsilon$.

Now if $(\mathcal{K}_n)_{n \geq 1}$ is a sequence in $E_m$ converging to $\mathcal{K}_0 \in E_m$, then using the ultrametric inequality we have that for each $n \geq 1$

$$d(\mathcal{K}_n \mathcal{K}, \mathcal{K}_0 \mathcal{K}) \leq \max\{d(\mathcal{K}_n \mathcal{K}, \mathcal{K}_n \mathcal{K}'), d(\mathcal{K}_n \mathcal{K}', \mathcal{K}_0 \mathcal{K}'), d(\mathcal{K}_0 \mathcal{K}', \mathcal{K}_0 \mathcal{K})\}.$$ 

From Lemma 13 it follows that the first and the last terms are at most $d(\mathcal{K}', \mathcal{K})$ and thus less than $\varepsilon$. Since $\mathcal{K}'$ is finitely generated, we can apply Lemma 14 to the middle term (with appropriate but fixed numbers $k$ and $t$). Since $d(\mathcal{K}_n, \mathcal{K}_0) \to 0$, we have just shown that $d(\mathcal{K}_n \mathcal{K}', \mathcal{K}_0 \mathcal{K}') \to 0$. Hence, we have proved the following result.

Proposition 15. If $\mathcal{K}_n \to \mathcal{K}_0$, then $\mathcal{K}_n \mathcal{K} \to \mathcal{K}_0 \mathcal{K}$.

Now let us assume that $\mathcal{K}_n \to \mathcal{K}$ and $\mathcal{K}_n' \to \mathcal{K}'$ in $E_m$, and let us fix $\varepsilon > 0$. By Proposition 15, $\mathcal{K}_n \mathcal{K}' \to \mathcal{K} \mathcal{K}'$. Hence there exists a natural number $N$ such that $d(\mathcal{K}_n \mathcal{K}', \mathcal{K} \mathcal{K}') < \varepsilon$ for all $n > N$. Since $\mathcal{K}_n' \to \mathcal{K}'$, there also exists a natural number $N'$ such that $d(\mathcal{K}_n' \mathcal{K}', \mathcal{K} \mathcal{K}') < \varepsilon$ for all $n > N'$.

Using the ultrametric inequality we get the following upper bound:

$$d(\mathcal{K}_n \mathcal{K}_n', \mathcal{K} \mathcal{K}') \leq \max\{d(\mathcal{K}_n \mathcal{K}_n', \mathcal{K}_n \mathcal{K}'), d(\mathcal{K}_n \mathcal{K}', \mathcal{K}_n \mathcal{K}')\}.$$ (2)
Let \( n > \max \{ N, N' \} \). Then \( n > N \), and hence \( d(K_n K'_n, K K') < \varepsilon \). By Lemma 13, we have
\[
d(K_n K'_n, K K') \leq d(K'_n, K'),
\]
and the latter is less than \( \varepsilon \), since \( n > N' \). Thus \( d(K_n K'_n, K K') < \varepsilon \) whenever \( n > \max \{ N, N' \} \). In other words, \( K_n K'_n \rightarrow K K' \), and we have shown our next theorem.

**Theorem 16.** Composition of equational classes is a continuous operation, i.e., \( E_m \) is a topological semigroup.

Now as a metric space, \( E_m \) is obviously Hausdorff. Moreover, \( E_m \) is also compact by Theorem 6. From the ultrametric inequality it follows that each ball of this topological space is clopen, and hence \( E_m \) is a zero-dimensional space. Consequently, we have the following corollary (for further background see, e.g., [1]).

**Corollary 17.** The topological semigroup \( E_m \) is profinite.

Knowing that \( E_m \) is profinite, the natural question is to ask for the smallest pseudovariety \( V \) of finite semigroups such that \( E_m \) is a pro-\( V \) semigroup. Seeking the description of this variety, we come to the following problem that we leave open:

**Problem 1.** Determine all finite continuous homomorphic images of \( E_m \).

### 4. Regular elements of \( E_2 \)

One of the fundamental tools in the study of a semigroup is the description of the Green’s relations that are defined as follows. Recall that two elements of a semigroup are \( L \)-related (\( R \)-related, \( J \)-related) if they generate the same left ideal (right ideal, two-sided ideal, respectively). Moreover, we also have the relations \( H \) and \( D \) that are defined by \( H = L \cap R \) and \( D = L \circ R \). All of these five relations are equivalence relations.

Another important concept in the investigation of the structure of a semigroup is that of a regular element, i.e., elements that are \( R \)-related (or, equivalently, \( L \)-related) to some idempotent element. As mentioned in Subsection 2.5, the description of the idempotent elements of \( E_m \) does not seem feasible for \( m > 2 \), however, they have been completely described for \( m = 2 \) in [19]. As we will see, this result constitutes a key step in classifying the regular elements of \( E_2 \).

In this section we will justify the latter claim by providing an explicit description of the regular elements of \( E_2 \) and, as a by-product, of the structure of the regular \( D \)-classes of \( E_2 \).

First we consider classes consisting only of constant functions.

---

3Note that \( D = J \), since \( E_2 \) is a compact semigroup.
Proposition 18. The empty set forms a singleton $\mathcal{D}$-class. The function classes $\{0\}, \{1\}$ and $\{0, 1\}$ form an $\mathcal{L}$-class with singleton $\mathcal{R}$- and $\mathcal{H}$-classes. Thus the eggbox pictures of these classes are the following (hereinafter, the grey background color indicates an $\mathcal{H}$-class containing an idempotent element):

$$
\begin{array}{c}
\emptyset \\
\{0\} \\
\{1\} \\
\{0, 1\}
\end{array}
$$

Proof. The empty class is a two-sided zero element, hence it forms a singleton $\mathcal{D}$-class. The classes $\{0\}, \{1\}$ and $\{0, 1\}$ are left zero elements in the subsemigroup of nonempty equational classes, hence each of them is a singleton $\mathcal{R}$-class, and they are all $\mathcal{L}$-equivalent. Moreover, for any nonempty $A \in \mathcal{E}_2$ we have $A \{0\} \in \{\{0\}, \{1\}, \{0, 1\}\}$, therefore the $\mathcal{L}$-class of $\{0\}$ contains only the three classes $\{0\}, \{1\}$ and $\{0, 1\}$. □

In the sequel we discard the trivial cases covered by the above proposition, and we work only with equational classes that contain at least one nonconstant function. It follows from Theorem 12 that these classes form a subsemigroup of $\mathcal{E}_2$, which we will denote by $\tilde{\mathcal{E}}$. Similarly, let us use the notations $\tilde{\mathcal{I}} = \mathcal{I}_2 \cap \tilde{\mathcal{E}}$ and $\tilde{\mathcal{I}}(C) = \mathcal{I}(C) \cap \tilde{\mathcal{E}}$. (We drop the subscript 2 as we only work only with Boolean functions in this section.) Note that $\tilde{\mathcal{I}}(C) = \mathcal{I}(C)$ for almost all clones, the only exceptions being $C = \{\text{id}\}, \{\text{id}, 0\}, \{\text{id}, 1\}$ and $\{\text{id}, 0, 1\}$, for which $\tilde{\mathcal{I}}(C) = \{C\}$, whereas $\mathcal{I}(C) = \{C, \mathcal{C}_-\}$.

The following result reveals the relation between an equational class $K$ and the clone $[K]$ generated by it.

Proposition 19 ([19]). Let $K \in \tilde{\mathcal{E}}$ be an idempotent, and let $C = [K]$. Then we have $CK = K$ and $KC = C$.

Since every regular $\mathcal{R}$-class contains an idempotent $K$ and, by Proposition 19 such an idempotent $K$ is $\mathcal{R}$-equivalent to $[K]$, we obtain the following result.

Proposition 20. Each regular $\mathcal{R}$-class of $\tilde{\mathcal{E}}$ contains a clone.

In fact, our next lemma shows that each $\mathcal{R}$-class (and also each $\mathcal{L}$-class) of $\tilde{\mathcal{E}}$ contains at most one clone.

Lemma 21. If $C_1, C_2 \in \tilde{\mathcal{E}}$ are clones, and $C_1 \mathcal{R} C_2$ or $C_1 \mathcal{L} C_2$, then $C_1 = C_2$.

Proof. Suppose that $C_1$ and $C_2$ are $\mathcal{R}$-related. Since $C_1$ and $C_2$ are idempotents, it follows that $C_1C_2 = C_1$ and $C_2C_1 = C_2$. Since $\text{id} \in C_1$, we have $C_1 = C_1C_2 \supseteq C_2$. By exchanging the roles of $C_1$ and $C_2$, we obtain $C_2 \supseteq C_1$, and thus $C_1 = C_2$.

An analogous argument shows that $C_1 \mathcal{L} C_2$ implies $C_1 = C_2$. □
According to Proposition 20, we can find all regular elements by computing the \( R \)-classes of clones. We will need the following technical lemma.

**Lemma 22.** If \( K, K' \in \tilde{E} \) and \( \text{id} \in KK' \), then \( \text{id} \in K' \) or \( \neg \in K' \).

**Proof.** Suppose for contradiction that \( \text{id} \in KK' \) but neither \( \text{id} \) nor \( \neg \) belongs to \( K' \). Then every unary function in \( K' \) is constant, that is, \( K'(1) \subseteq [2] \). Since \( \text{id} \in KK' \), there exist \( f \in K(n) \) and \( g_1, \ldots, g_n \in K'(k) \) for some \( n, k \geq 1 \), such that \( f(g_1, \ldots, g_n) \) is a projection, i.e.,

\[
    f(g_1(x_1, \ldots, x_k), \ldots, g_n(x_1, \ldots, x_k)) = x_j
\]

holds identically for some \( j \in \{1, \ldots, k\} \). By identifying all the variables, we obtain

\[
    f(g_1(x, \ldots, x), \ldots, g_n(x, \ldots, x)) = x.
\]

For each \( 1 \leq i \leq n \), the unary function \( g_i(x, \ldots, x) \) is a simple minor of \( g_i \in K' \), hence it is a member of \( K'(1) \). Since \( K'(1) \) contains only constant functions, this implies that the left hand side of (3) is constant, which yields the desired contradiction. \( \square \)

Let \( R_C \) and \( L_C \) denote the \( R \)-class and \( L \)-class, respectively, of \( C \).

**Proposition 23.** If \( C \in \tilde{E} \) is a clone, then \( R_C = \tilde{I}(C) \cup \tilde{I}(C) \neg \).

**Proof.** From Proposition 19 it follows that \( \tilde{I}(C) \subseteq R_C \), and then \( \tilde{I}(C) \neg \subseteq R_C \) follows since \( \{\neg\} \) is a unit. To prove the inclusion \( R_C \subseteq \tilde{I}(C) \cup \tilde{I}(C) \neg \), let us choose an arbitrary \( K \in R_C \). Then \( C = KK' \) and \( K = CK'' \) for some \( K', K'' \in \tilde{E} \). It follows that \( KK'K = CKC = CK'' = K \), as \( C \) is idempotent. Since \( \text{id} \in C = KK' \), we have \( \text{id} \in K' \) by Lemma 22.

Let us examine these two cases separately. If \( \text{id} \in K' \), then \( K^2 = K \text{id} \subseteq KK'K = K \), hence \( K \) is idempotent by Proposition 1. Moreover, \( C \mathcal{R} K \) since \( K \in R_C \), and \( C \mathcal{R} [K] \) by Proposition 19. By transitivity, we have \( C \mathcal{R} [C] \), and then \( C = [K] \) follows from Lemma 21. Thus \( K \) is an idempotent that generates the clone \( C \), hence \( K \in \tilde{I}(C) \).

If \( \neg \in K' \), then let \( K^* = K \neg \). Similarly to the previous case, we can show that \( K^* \) is idempotent:

\[
    (K^*)^2 = K\neg K\neg \subseteq KK'K\neg = K\neg = K^*.
\]

Also, we have the following \( \mathcal{R} \)-relations:

\[
    [K^*] \mathcal{R} K^* \mathcal{R} K \mathcal{R} C.
\]

Hence, \( [K^*] \mathcal{R} C \) and, by Lemma 24, \( [K^*] = C \). This means that \( K^* \in \tilde{I}(C) \) and thus \( K = K^* \neg \in \tilde{I}(C) \neg \). \( \square \)

**Theorem 24.** The set of regular elements of \( \tilde{E} \) is \( \tilde{I} \cup \tilde{I} \neg \).

**Proof.** Combine Proposition 20 and Proposition 23. \( \square \)
Remark 25. Informally, we can say that the regular elements of \( \widetilde{E} \) are exactly the idempotents and the negations of idempotents. We do not have to specify whether we mean negation from the left or from the right, since the left (right) negation of the idempotent \( K \) is the same as the right (left) negation of the idempotent \( K'^d = \neg K \). Indeed, we have
\[
\neg K = (\neg K) \quad \text{and} \quad \neg K = \neg (\neg K).
\]
Moreover, since \( K \mapsto \neg K \) is an automorphism of the semigroup \( \widetilde{E} \), we also have that \( K \) is idempotent if and only if \( K'^d \) is idempotent.

Proposition 26. If \( C \in \widetilde{E} \) is a clone, then \( L_C = \{ C, \neg C \} \).

Proof. Clearly \( C \) and \( \neg C \) are \( L \)-equivalent to \( C \). To see that these are in fact the only ones, let us consider an arbitrary \( K \in L_C \). Then \( K = K'C \) and \( C = K''K \) for some \( K', K'' \in \widetilde{E} \). Since \( \text{id} \in C = K''K \), by Lemma 22 we have that \( \text{id} \in K \) or \( \neg \in K \). Moreover, since \( K \) is a regular element, either \( K \) or \( K^* := \neg K \) is idempotent, according to Theorem 24 (see also Remark 25). Thus we can separate the following four cases:

1. If \( K^* \in I \) and \( \text{id} \in K \), then \( K \) is a clone, and thus \( K = C \) by Lemma 21.
2. If \( K \in I \) and \( \neg \in K \), then \( \text{id} = \neg \in K^2 = K \), hence \( K \) is a clone and \( K = C \) as in the previous case.
3. If \( K^* \in I \) and \( \neg \in K \), then \( \text{id} = K^* \), hence \( K^* \) is a clone. Moreover, \( K^* \mathrel{\mathcal{L}} K \mathrel{\mathcal{L}} C \). By Lemma 21 \( K^* = C \) and thus \( K = \neg C \).
4. If \( K^* \in I \) and \( \text{id} \in K \), then \( \neg \in K^* \), which implies that \( \text{id} \in (K^*)^2 = K \).
   Therefore \( K^* \) is a clone, and we have \( K = \neg C \) just like in the previous case. \( \square \)

Now we are ready to present the description of the structure of the regular \( D \)-classes of \( \widetilde{E} \). The contents of the following theorem are illustrated and summarized in Table 1. (Let us recall that in these eggbox pictures, an \( H \)-class has a grey background if it contains an idempotent element.)

Theorem 27. The regular \( D \)-classes of the semigroup \( \widetilde{E} \) are the following:

1. A one-element class \( \{ C \} \) for a clone \( C = S, SL, \Omega^{(1)} \), \( \{ \text{id}, \neg \} \);
2. A two-element class \( \{ C, C^\neg \} \) that consists of a single \( H \)-class, for a clone \( C = \Omega_{01}, M, M_{01}, S_{01}, SM, L_{01}, \{ \text{id}, 0, 1 \} \), \( \{ \text{id} \} \);
3. A four-element class \( \{ C, C^\neg, \neg C, \neg C^\neg \} \) that consists of two \( R \)-classes with singleton \( H \)-classes, for a clone \( C = M_0, U_{01}^k, MU^k, MU_{01}^k, \Lambda, \Lambda_1, \Lambda_2 \), \( \{ \text{id}, 0 \} \);
4. The class \( \{ \Omega, \Omega_{=1}, \Omega \} \) that consists of one \( R \)-class with singleton \( H \)-classes;
5. The class \( \{ L, L_{=1} \} \) that consists of one \( R \)-class with singleton \( H \)-classes;
6. The class \( \{ \Omega_{0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0}, \Omega_{=0} \} \) that consists of two \( R \)-classes with singleton \( H \)-classes;
(7) the class \( \{ L_{0*}, L_{00}, L_{*0}, L_{1*}, L_{11}, L_{*1} \} \) that consists of two \( R \)-classes with singleton \( H \)-classes;
(8) the class \( \tilde{\mathbf{I}}(W^k) \cup \tilde{\mathbf{I}}(W^k) \neg \cup \tilde{\mathbf{I}}(U^k) \cup \tilde{\mathbf{I}}(U^k) \neg \) that consists of two \( R \)-classes with singleton \( H \)-classes, for \( k = 2, 3, \ldots, \infty \).

**Proof.** By Proposition 20, it suffices to determine the \( R \)-classes of clones, and we have seen in Proposition 23 that \( R_C = \tilde{\mathbf{I}}(C) \cup \tilde{\mathbf{I}}(C) \neg \) for any clone \( C \in E \). From Proposition 20 and Green’s lemma, we obtain \( L_k = \{ \mathcal{K}, \neg \mathcal{K} \} \) for all \( \mathcal{K} \in R_C \), and hence the eggbox picture of a regular \( D \)-class is the following:

\[
\begin{array}{cccccccc}
\mathcal{C} & \cdots & \mathcal{K} & \cdots & \mathcal{K} \neg & \cdots & \mathcal{C} \neg \\
\neg \mathcal{C} & \cdots & \neg \mathcal{K} & \cdots & \neg \mathcal{K} \neg & \cdots & \neg \mathcal{C} \neg \\
\hline
\neg \mathbf{I}(C) & \cdots & \neg \tilde{\mathbf{I}}(C) & \cdots & \neg \tilde{\mathbf{I}}(C) \neg & \cdots & \neg \tilde{\mathbf{I}}(C) \neg \\
\end{array}
\]

Observe the symmetries of this picture: reflection to the vertical axis of the rectangle corresponds to negation from the right, reflection to the horizontal axis (i.e., interchanging the two rows) corresponds to negation from the left, and reflection to the center point of the rectangle corresponds to negation from both sides (i.e., dualizing). Note also that \( \mathcal{I}(\neg \mathcal{C}) \neg = \mathcal{I}(\neg \mathcal{C}) \neg = \mathcal{I}(\mathcal{C}^d) \).

The above observations and the description of the intervals \( \mathcal{I}(C) \) (cf. Theorem 5) prove all the statements of the theorem. However, since the description of the intervals \( \tilde{\mathbf{I}}(W^k) \) and \( \tilde{\mathbf{I}}(U^k) \) is not explicit, we still need to determine \( \tilde{\mathbf{I}}(W^k) \cap \tilde{\mathbf{I}}(W^k) \neg \) and \( \tilde{\mathbf{I}}(U^k) \cap \tilde{\mathbf{I}}(U^k) \neg \) to have a complete
picture of the $\mathcal{D}$-class $\mathcal{D}_{W^k} = \mathcal{D}_{U^k}$. So let us consider an arbitrary class $\mathcal{K} \in \tilde{\mathcal{I}}(W^k) \cap \tilde{\mathcal{I}}(W^k)$. Then we have $\mathcal{K}, \mathcal{K} \subseteq \mathcal{I}(W^k)$, and hence $\mathcal{K}, \mathcal{K} \subseteq W^k$. In particular, if $f \in \mathcal{K}$, then both $f$ and $f^{-}$ preserve the relation $[2]^k \setminus \{0\}$.

It is easy to see that $f^{-}$ preserves $[2]^k \setminus \{0\}$ if and only if $f$ satisfies the constraint $([2]^k \setminus \{1\}, [2]^k \setminus \{0\})$. Therefore, $f$ strongly satisfies $([2]^k \setminus \{1\}, [2]^k \setminus \{0\})$ for all $f \in \mathcal{K}$, i.e., $\mathcal{K} \subseteq B^k$. Since $\mathcal{K} \in \tilde{\mathcal{I}}(W^k)$ and $B^k$ is the least element of the interval $\tilde{\mathcal{I}}(W^k)$, it follows that $\mathcal{K} = B^k$. Thus the only possible common member of $\tilde{\mathcal{I}}(W^k)$ and $\tilde{\mathcal{I}}(W^k)\setminus\mathcal{K} = B^k$. Since $B^k = B^k\setminus\mathcal{K}$, it follows that $\tilde{\mathcal{I}}(W^k) \cap \tilde{\mathcal{I}}(W^k)\setminus\mathcal{K} = \{B^k\}$. Dually, we have $\tilde{\mathcal{I}}(U^k) \cap \tilde{\mathcal{I}}(U^k)\setminus\mathcal{K} = \{D^k\}$.

Denote by $\text{Ab}_2$ the pseudovariety of all finite (Abelian) groups of exponent 2. For a pseudovariety $\mathcal{H}$ of groups, denote by $\overline{\mathcal{H}}$ the pseudovariety consisting of all finite semigroups whose subgroups lie in $\mathcal{H}$. Taking into account the fact that

$$\text{Ab}_2 = \text{Ab}_2\cap\text{Ab}_2$$

If $k = \infty$, then this is to be understood as preserving $[2]^k \setminus \{0\}$ for all $k \geq 2$, and similarly in the rest of the proof.
Lemma 3.1.14, we obtain the following result as an immediate application of Theorem 27.

**Corollary 28.** The regular $D$-classes of finite continuous homomorphic images of $E_2$ are either groups of order two or contain no nontrivial subgroups. In particular, $E_2$ is a pro-$\mathbb{A}B_2$ semigroup.

5. Concluding remarks and future work

In this paper we have initiated the study of the semigroup $E_m$ of equational classes of functions of several variables defined on an $m$-element set as a means of obtaining a better understanding of the structure of composition-closed systems in $m$-valued logic. We have introduced a metric on this semigroup such that the resulting topology is compact, and we have used this topology to prove that $E_m$ is a profinite semigroup. Moreover, we described the regular elements of $E_2$ and brought light into the understanding of the structure of its Green’s relations.

In this, the description of the idempotents of $E_2$ (given in [19]) played a key role. Sadly, such a description is out of reach for $m > 2$. Nevertheless, it might be possible to describe special kinds of idempotents in the spirit of Rosenberg’s theorem on maximal clones [18], and which we leave as an interesting open problem.

**Problem 2.** Describe the maximal idempotents (with respect to inclusion) of $E_m$.

Acknowledgments

The work of the first named author was supported, in part, by the European Regional Development Fund, through the programme COMPETE, and by the Portuguese Government through FCT – Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011.

The third named author acknowledges that the present project is supported by the Hungarian National Foundation for Scientific Research under grants no. K83219 and K104251. The present project is supported by the European Union and co-funded by the European Social Fund under the project “Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences” of project number “TÁMOP-4.2.2.A-11/1/KONV-2012-0073”.

References


CMUP, DEP. MATEMÁTICA, FACULDADE DE CIÊNCIAS, UNIVERSIDADE DO PORTO, RUA DO CAMPO ALEGRE 687, 4169-007 PORTO, PORTUGAL, jalmeida[at]fc.up.pt

LAMSADE - CNRS, UNIVERSITÉ PARIS-DAUPHINE, PLACE DU MARÉCHAL DE LATTRE DE TASSIGNY, 75775 PARIS CEDEX 16, FRANCE, miguel.couceiro[at]dauphine.fr

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H6720 Szeged, HUNGARY, twaldha[at]math.u-szeged.hu