M. A. Johnson, G. M. Maggiora, C. L. Bruce, J. L. Melville, S. D. Pickett et al., Concepts and Application of Molecular Similarity Contemporary QSAR Classifiers Compared, 219?227. (3) Burden, F. R.; Winkler, D. A. New QSAR Methods Applied to Structure?Activity Mapping and Combinatorial Chemistry. J. Chem, 1990.

. Inf, . Comput, 2. Sci, D. Rogers, and A. J. Hopfinger, Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships, J. Chem. Inf. Comput, issue.4, 1999.

S. Walters, W. Goldman, and B. , Feature selection in quantitative structure-activity relationships, Curr. Opin. Drug. Discov. Dev, vol.34, issue.6, 1994.

D. Madge, X. Xia, E. G. Maliski, P. Gallant, D. Rogers et al., Classification of Kinase Inhibitors Using a Bayesian Model Enrichment of Extremely Noisy High-Throughput Screening Data Using a Nai ? ve Bayes Classifier, Prediction of Ion Channel Activity Using Binary Kernel Discrimination Reiling, S. Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Nai ? ve Bayesian Classifier. J. Chem. Inf, pp.4463-4470, 2004.

. Comput, J. W. Sci-davies, J. L. Jenkins, . Ajay, G. W. Bemis et al., Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases Designing Libraries with CNS Activity, J. Chem. Inf. Model. J. Med. Chem, vol.44, issue.42, pp.170-178, 1999.

A. A. Ivashchenko, N. P. Savchuk, D. A. Winkler, and F. Burden, Property-Based Design of GPCR- Targeted Library ( 1 4 )S c h n e i d e r ,G . ;W r e d e ,P .A r t i f i c i a ln e u r a ln e t w o r k sf o r computer-based molecular design Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design, 175?222. (15) Combinatorial Library: Methods and Protocols Zhokhova, N.; Palyulin, V.; Zefirov, A.; Zefirov, N. Multilevel approach to the prediction of properties of organic compounds in the framework of the QSAR/QSPR methodology, pp.1332-1342, 1998.

. Brief, K. Kawai, S. Fujishima, Y. Takahashi, A. M. Wassermann et al., Predictive Activity Profiling of Drugs by Topological-Fragment-Spectra-Based Support Vector Machines Searching for Target-Selective Compounds Using Different Combinations of Multiclass Support Vector Machine Ranking Methods, Kernel Functions, and Fingerprint Descriptors Why do we need so many chemical similarity search methods? Drug Discovery Today (21) Ding, H.; Takigawa, I.; Mamitsuka, H.; Zhu, S. Similarity-based machine learning methods for predicting drug?target interactions: a brief review, silico target fishing: Predicting biological targets from chemical structure. Drug Discovery Today: Technol. 2006, 3, 413?421. (23) Abdo, A.; Salim, N. Similarity-Based Virtual Screening with a Bayesian Inference Network, 2002.

B. Chen, C. Mueller, P. Willett, A. Abdo, B. Chen et al., Evaluation of a Bayesian inference network for ligand-based virtual screening Ligand- Based Virtual Screening Using Bayesian Networks Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification Structure?Activity Relationships Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds, Journal of Chemical Information and Modeling Article dx.doi.org/10.1021/ci4004909 | J. Chem. Inf. Model. 2014 1402?1411. (28) Chavatte Lesieur, D. Three- Dimensional Quantitative Structure?Activity Relationships of Cyclo- oxygenase-2 (COX-2) Inhibitors: A Comparative Molecular Field Analysis. (29) Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. A Comparison of Methods for Modeling Quantitative Structure?Activity Relationships, pp.30-36, 2001.

J. J. Sutherland, D. F. Weaver, and P. Jacques, Three-dimensional quantitative structure-activity and structure-selectivity relationships of dihydrofolate reductase inhibitors, 309? 331. (31) Caboche, S.; Pupin, M.; Lecle? re, 2004.
DOI : 10.1023/B:JCAM.0000047814.85293.da

G. Kucherov, A. Abdo, S. Caboche, V. Lecle?-re, P. Jacques et al., A new fingerprint to predict nonribosomal peptides activity Ligand expansion in ligand-based virtual screening using relevance feedback, ) Symyx Technologies. MDL Drug Data Report, 2008.

C. Abdo, A. Salim, and N. , New Fragment Weighting Scheme for the Bayesian Inference Network in Ligand-Based Virtual Screening, Journal of Chemical Information and Modeling, vol.51, issue.1, 2012.
DOI : 10.1021/ci100232h

. I. Chem, A. Abdo, N. Salim, A. Ahmed, J. Hert et al., Implementing Relevance Feedback in Ligand-Based Virtual Screening Using Bayesian Inference Network New Methods for Ligand-Based Virtual Screening: Use of Data Fusion and Machine Learning to Enhance the Effectiveness of Similarity Searching 462?470. (38) Pipeline Pilot (39) Witten, I. H.; Frank, E. Data Mining: Practical machine learning tools and techniques Estimating continuous distributions in Bayesian classifiers LIBSVM: A library for support vector machines Nonparametric Statistics for The Behavioral Sciences, Proceedings of the Eleventh conference on Uncertainty in artificial intelligence) Bugmann, G. Normalized Gaussian Radial Basis Function networks, pp.51-53, 1988.