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ABSTRACT: Natural products and synthetic compounds are a valuable source
of new small molecules leading to novel drugs to cure diseases. However
identifying new biologically active small molecules is still a challenge. In this
paper, we introduce a new activity prediction approach using Bayesian belief
network for classification (BBNC). The roots of the network are the fragments
composing a compound. The leaves are, on one side, the activities to predict and,
on another side, the unknown compound. The activities are represented by sets of
known compounds, and sets of inactive compounds are also used. We calculated a
similarity between an unknown compound and each activity class. The more
similar activity is assigned to the unknown compound. We applied this new
approach on eight well-known data sets extracted from the literature and
compared its performance to three classical machine learning algorithms. Experiments showed that BBNC provides interesting
prediction rates (from 79% accuracy for high diverse data sets to 99% for low diverse ones) with a short time calculation.
Experiments also showed that BBNC is particularly effective for homogeneous data sets but has been found to perform less well
with structurally heterogeneous sets. However, it is important to stress that we believe that using several approaches whenever
possible for activity prediction can often give a broader understanding of the data than using only one approach alone. Thus,
BBNC is a useful addition to the computational chemist’s toolbox.

■ INTRODUCTION

Due to the similar property principle,1 structurally similar
compounds are expected to exhibit similar properties and
similar biological activities. This principle is exploited for in
silico discovery of new drugs with the emergence of an activity
prediction technology based on chemical structures. A variety
of computational approaches for target or activity prediction
were published over the past several years. For example,
quantitative structure−activity relationship (QSAR)2−5 was
established on the hypothesis that compounds with similar
physicochemical properties and/or structure share similar
activities. The effectiveness of a QSAR analysis relies both on
selecting the relevant descriptors for modeling the biological
activity of interest and on the choice of a good quantitative
model that maps the compound descriptors to chemical
property or biological activity by means of statistical techniques.
In similarity searching strategies, an unknown compound (the
target) is compared to a set of compounds with known
activities. The activity for which the compounds are the most
similar to the target is assigned to it. Binary kernel
discrimination (BKD),6,7 naıv̈e Bayesian classifier (NBC),8−11

artificial neural networks (ANN),12−16 and support vector
machine (SVM)17−19 are machine learning methods employed
for activity prediction by compound classification. They can
only be applied when annotated compounds are available to

design a training set divided in an active class (compounds
having a specific activity) and an inactive one (compounds
belonging to other activities). The training set is then analyzed
to develop decision rules that classify new compounds (the test
set) into one of the two classes (active or inactive). The
learning step, needed to determine the criteria for the
classification of an unknown compound is time-consuming
because many criteria are explored.
Overall, while target prediction approaches exhibit several

successes, some issues need to be addressed. In many studies,
different approaches predict a different subset of targets for the
same compound.20−22 Moreover, given that the approach might
work better on specific targets or databases in a way that is
difficult to predict beforehand, should we ignore approaches
with low or similar performance? We think the answer is no
because it is hard to predict which approach will do better on a
given combination of database and query. Also, each approach
may be able to predict specific targets that all others could not.
It is important to stress that we believe that using several
approaches whenever possible for target prediction can often
give a broader understanding of the data than using only one
approach alone.6
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Previously, Abdo and Salim23 developed a ligand-based
virtual screening method that used a Bayesian inference
network (BIN) for similarity searching. Experiments with a
subset of the MDDR and WOMBAT24 databases demonstrated
that the BIN provided an interesting alternative to existing tools
for ligand-based virtual screening. It substantially outperformed
a conventional Tanimoto-based similarity searching system
when the active molecules have a high degree of structural
homogeneity. To overcome this limitation, an alternative
Bayesian network model called Bayesian belief network
(BBN) has been introduced by Abdo et al.25 In this paper,
we introduce a new activity prediction approach using Bayesian
belief network, but this time for classification. We suggest that
the BBN model introduced by Abdo et al.25 for similarity
searching can be applied to classification of small molecules in
activity classes. The purpose of this paper is to introduce BBN
model as a useful tool for activity prediction. We show that it
provides a useful method for using the prior knowledge of
target class information (active and inactive compounds) to
predict the activity of orphan compounds. We apply this new
approach on eight well-known data sets extracted from
literature and compare its performance with three classical
machine learning algorithms.

■ MATERIALS AND METHODS

Data Sets. We evaluate the quality of our prediction model
on eight data sets already used to validate the classification of
molecules based on structure−activity relationship. The five
data sets described in Table 1 are taken from the studies of

Sutherland et al.26 and Helma et al.27 with compounds classified
as active or inactive: (1) 467 cyclooxygenase-2 (COX2)
inhibitors, (2) 405 ligands of the benzodiazepine receptor
(BZR), (3) 756 dihydrofolate reductase (DHFR) inhibitors,
(4) 393 ligands of the estrogen receptor (ER), and (5) 683
mutagens (MUT) of molecular structures. These data sets have
been used by many studies for validating prediction
models.2,28−30

The sixth data set (Table 2) of this study is taken from the
Norine database (version of August 2013), which contains 1122
peptides with 11 distinct activities.31 We have restricted our
data set to 605 peptides, belonging to five different activity
classes.32 The last two data sets (Tables 3 and 4) are chosen
from the MDL Drug Data Report (MDDR)33 and have been
extensively used by many studies for validating ligand-based
virtual screening approaches.34−37 The data sets MDDR1 and
MDDR2 contain 10 homogeneous activity classes and 10
heterogeneous ones, respectively. Each row of data set tables

(Tables 2−4) contains an activity class, the number of
molecules/peptides belonging to the class, and the diversity
of classes, which is computed as the mean pairwise Tanimoto
similarity calculated across all pairs of molecules/peptides in
the class using ECFC4 (extended connectivity) for data sets in
Tables 1, 3, and 4 and monomer composition fingerprints
(MCFP)32 in the Norine data set. For Norine and MDDR data
sets, each activity class is considered, one by one, as active set
and the others as the inactive set.
All compounds in the first five data sets and MDDR data sets

are converted to Pipeline Pilot’s ECFC4 fingerprints and folded
to a size of 1024.38 ECFC4 fingerprints have been successfully
used by many previous studies. For the Norine data set, all the
peptides are converted to MCFP. MCFP is a novel
representation we have developed for obtaining an appropriate
description of nonribosomal peptides in relation to their
activity. So, the compounds of all data sets are represented by
fingerprints containing the frequency of each fragment within it.
However, it should be noticed that it is not our intention to
tackle here the question of which is the most appropriate
fingerprint/descriptor.

Table 1. Summary of the First Fifth Data Setsa

no. compounds
pairwise similarity

(mean)

data set active inactive active inactive

cyclooxygenase-2 inhibitors 303 164 0.687 0.690

benzodiazepine receptor 306 99 0.536 0.538

dihydrofolate reductase 393 363 0.502 0.537

estrogen receptor 141 252 0.468 0.456

mutagens 340 343 0.143 0.125
aEach row in Tables 1−3 contains an activity class, the number of
compounds belonging to the class, and the class’s diversity, which was
computed as the mean pairwise Tanimoto similarity calculated across
all pairs of molecules in the class using ECFC4.

Table 2. Summary of Norine Data Set

activity class NRPs number pairwise similarity (mean)

antibiotics 319 0.09

toxin 157 0.09

siderophore 82 0.18

antitumor 25 0.27

protease inhibitors 22 0.26

Table 3. MDDR Activity Classes for MDDR1 Data Set

activity
index activity class

active
molecules

pairwise similarity
(mean)

07707 adenosine (A1)
agonists

207 0.424

07708 adenosine (A2)
agonists

156 0.484

31420 renin inhibitors 1130 0.584

42710 monocyclic beta-
lactams

111 0.596

64100 cephalosporins 1346 0.512

64200 carbacephems 113 0.503

64220 carbapenems 1051 0.414

64300 penicillin 126 0.444

65000 antibiotic, macrolide 388 0.673

75755 vitamin D analogous 455 0.569

Table 4. MDDR Activity Classes for MDDR2 Data Set

activity
index activity class

active
molecules

pairwise similarity
(mean)

09249 muscarinic (M1) agonists 900 0.257

12455 NMDA receptor antagonists 1400 0.311

12464 nitric oxide synthase
inhibitors

505 0.237

31281 dopamine beta-hydroxylase
inhibitors

106 0.324

43210 aldose reductase inhibitors 957 0.370

71522 reverse transcriptase
inhibitors

700 0.311

75721 aromatase inhibitors 636 0.318

78331 cyclooxygenase inhibitors 636 0.382

78348 phospholipase A2 inhibitors 617 0.291

78351 lipoxygenase inhibitors 2111 0.365
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As classes contain a set of compounds, we calculated a
representative fingerprint. For each bit of the fingerprint
representing a given fragment f, we have taken the average
number of occurrences of f within a class c according to the
following formula:

= Σc
f c

av(nb ( ))
1

nb ( , )
nb (co)f

c

f
co

nb ( )co

(1)

where nbco( f, c) is the number of compounds containing the
fragment f within the class c and nbco(c) is the number of
compounds in the class c and nbf(co) is the number of
occurrences of the fragment f in the compound co.
Bayesian Belief Network Classifier Model (BBNC). The

BBNC model is based on Bayesian belief network model (for
more details about BBN see ref 25) but adapted to activity
prediction (classification rather than similarity searching).
The BBNC model, shown in Figure 1, consists of three types

of nodes. The roots are the fragment nodes f. Each node

represents a bit of the fingerprints generated for the
compounds, i.e., the presence/absence of particular chemical
substructures. Both class and molecule nodes, the leaves, are
described using a set of fragment nodes. The class nodes c
represents the compound collections for the different biological
activities that are part of the training set, summarized by the
average frequency of formula 1. The first five data sets contain 2
class nodes, 5 class nodes for Norine, and 10 for MDDR1 and
MDDR2. The other type of leaf is the molecule node t
representing the molecule for which we want to predict an
activity (unknown natural compound or target of an unknown
protein). For simplicity of processing, the fragment occurrences
are assumed to be statistically independent of each other, an
assumption that was also adopted in our previous BIN and
BBN works. An edge is traced from one fragment node to one
class or molecule node if the fragment appears in that class/
molecule.
To build a robust model that distinguish efficiently the

classes and then give the right prediction, we excluded the very
rare and predominant fragments that introduce noise in the
data. We determined empirically the rare fragments as the ones
covering less than 3% of the active molecules in the training set
and the predominant ones covering more than 50% of the
active set and 70% of the inactive one. The corresponding
fragment nodes are set to 0.
To construct our belief network classifier, we needed to

estimate the strength of the relationships represented by the
network by encoding a set of conditional probability

distributions. Specifically, for any nonroot node A in the
network, where A has a set of parent nodes {P1, P2, ..., Pn}, we
must estimate the probability P(A|P1, P2, ..., Pn), i.e., we need to
specify the conditional probability for the nonroot nodes and
P(t|f). We adapted the probabilities to the specificity of
chemical data. Our weighting scheme is derived of the InQuery
system and has been used successfully in our previous studies.
Here, it is proposed to use the following probabilities P(c|f) for
each fragment in a class c or molecule t vector.
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where

− α is a constant (which was set to 0.4 in our preliminary
experiments) that avoids the probabilities being equal to
0 for fragments not observed in the data set which is only
a sample of the existing compounds.

− av(nbf(c)) and nbf(t) are, respectively, the average
number of occurrences of the fragment f within the
class c (see (1)) and the number of occurrences of the
fragment f within the molecule t (only one molecule).

− nbco( f, c) and nbco( f, c)̅ are the numbers of compounds
containing the fragment f within the class c or within the
other classes c ̅ representing the inactive training set.

− nbco(c) and nbco(c)̅ are the numbers of compounds in,
respectively, the class c and the other classes c.̅

The ratio between nbco( f, c) and nbco(c) is the fragment f
frequency among the class c. It modulates the weight of the
fragments by decreasing it when f is rare and increasing it when
f is ubiquitous within the class. At the same time, the ratio of
logs is near 1 when f is rare and near 0 when f is ubiquitous
outside the class c. This increases the probability of the
fragments that are specific of a class c.
Once the probabilities of each nodes of the network are

obtained, we calculate a similarity between the target t and each
of the classes by

∑

=
∩

× − | | − | | ̅
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The sum concerns the n fragments between the class node and
the target node and nb( f, c) and nb( f, t) are the numbers of
single fragments in the tested class c and the molecule t,
respectively.
Here, nb( f, c) ∩ nb( f, t) is the set of fragments in common

between the tested class and the molecule. If nbco( f, c)̅ is equal
to zero (meaning that this fragment never occurs in an inactive
training set), then the nbco( f, c)̅ in eq 4 is substituted with a

Figure 1. Bayesian belief network classifier model.
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very small value given by 1/(nbco(c) + nbco(c)̅). However, it
should be noted that the calculation was carried out only for
nodes representing common fragments between the molecule
and the tested class. Once the similarity calculations against
each class are completed, the target molecule is assigned to the
most similar class.
BBNC is designed for classification while BIN and BBN was

used for similarity searching. The main difference between
those methods is the nature of the network. In BBNC, the
leaves are, on one hand, the classes composed of numerous
compounds extracted from the training data sets and, on the
other end, the target compound; whereas in BBN each leaf
represents one compound of the data set and the target. So, in
BBNC the number of leaves corresponds to the number of
biological activity classes (generally less than hundred);
whereas, in BIN and BBN the number of leaves equals the
total number of compounds in the data set (generally several
thousands or more). Another difference is the calculation of the
belief of the fragments that is used for similarity searching in
BIN and BBN and for classification in BBNC.
Machine Learning Algorithms. We have compared our

method to three machine learning algorithms available in
WEKA-Workbench:39 The naive Bayesian classifier (NaiveB),40

the support vector machine classifier, called LibSVM
(LSVM),41 and the neural network classifier (RBFN).42 Details
of these algorithms can be found in their references. Finding
the optimal parameters for a classifier is somewhat a tedious
process. However, WEKA-Workbench offers the possibility of
automatically finding the best possible setup for LSVM
classifier. Here, LSVM was used with linear kernel and the
following values: 0.1, 1.0, and 0.001 were assigned to the
Gamma, Cost, and Epsilon parameters, respectively. We used
supervised discretization to convert numeric attributes to
nominal ones in NaiveB classifier and the minimum standard
deviation parameter was set to 0.01 in RBFN classifier. The
remaining parameters were left as they are in default setup for
each classifier in WEKA-Workbench.
Validation. Ten-fold cross-validation was used to validate

the results of BBNC and the other machine learning algorithms.
In this cross-validation, the data set was split into 10 parts; 9

were used for training and the remaining 1 was used for testing.
This process was repeated 10 times, so all the compounds were
used in the test set once. Each activity class was tested against
all the others, grouped. As in the case of many prediction
methods, we used the area under the reciever operating
characteristic (ROC) curve (AUC) as quality criterion to
quantify the performance of classification algorithms. AUC is
defined as (sensitivity + specificity)/2. The sensitivity is defined
by sens = tp/(tp + fn) and specificity is defined by spec = tn/
(tn + fp), where tp, tn, fp, and fn are the number of true
positives, true negatives, false positives, and false negatives,
respectively. A ROC curve describes the trade-off between
sensitivity and specificity, where the sensitivity and specificity
are defined as the effectiveness of a model to identify positive
and negative labels, respectively. The area under the ROC curve
(AUC) is a measure of the model performance: the closer to 1,
the better the performance of the prediction. We also used an
accuracy (ac) measurement to quantify the performance of the
classification models. Accuracy is the overall effectiveness of a
model and is calculated as the sum of correct classifications
divided by the total number of classifications ac = (tp + tn)/(tp
+ tn + fp + fn).

■ RESULTS AND DISCUSSION

The main aim of this study was to introduce the Bayesian belief
network classifier approach into ligand-based target fishing or
activity prediction and then identify the prediction accuracy of
such an approach. To achieve this aim, the BBNC approach
was compared with three machine learning algorithms available
in WEKA-Workbench: NaiveB, LSVM, and RBFN, used with
optimal parameters.
Visual inspection of the AUC and accuracy in Tables 5−8

enabled comparing the performances of the four prediction
algorithms. However, a more quantitative approach is possible
using the Kendall W test of concordance.43 This test was
developed to quantify the level of agreement between multiple
sets ranking the same set of objects. Here, we used this
approach to rank the performance of the tested algorithms. In
the present context, the data sets in Table 5 and the activity
classes in Tables 6−8 were considered as judges and the AUC

Table 5. Sensitivity, Specificity, AUC, and Accuracy Rates for the Prediction Models for Different Data Sets

BBNC Naıv̈eB RBFN LSVM

activity class Sens Spec AUC Acc Sens Spec AUC Acc Sens Spec AUC Acc Sens Spec AUC Acc

COX2 0.99 0.99 0.99 98.19 1.00 0.99 1.00 99.79 0.93 0.76 0.84 86.94 1.00 1.00 1.00 100.00

BZR 0.99 0.91 0.95 92.11 0.94 0.61 0.78 86.17 0.99 0.65 0.82 90.62 1.00 1.00 1.00 100.00

DHFR 1.00 0.98 0.99 94.00 0.99 1.00 0.99 99.47 0.86 0.80 0.84 83.86 1.00 1.00 1.00 100.00

ER 1.00 0.90 0.95 89.13 1.00 1.00 1.00 100.00 0.62 0.70 0.64 64.89 1.00 1.00 1.00 100.00

MUT 0.74 0.85 0.80 78.59 0.59 0.84 0.72 71.74 0.69 0.50 0.59 59.00 0.72 0.71 0.71 71.60

mean 0.94 0.93 0.93 90.40 0.90 0.89 0.90 91.43 0.82 0.68 0.75 77.06 0.94 0.94 0.94 94.32

Table 6. Sensitivity, Specificity, AUC, and Accuracy Rates for the Prediction Models with the Norine Data Set

BBNC Naıv̈eB RBFN LSVM

activity class Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC

antibiotics 0.96 0.91 0.94 0.88 0.77 0.82 0.90 0.96 0.93 0.96 0.95 0.96

toxin 0.90 0.97 0.94 0.66 0.92 0.79 0.87 0.93 0.90 0.92 0.97 0.95

siderophore 0.99 0.99 0.99 0.94 0.99 0.97 0.96 0.99 0.98 0.99 1.00 0.99

antitumor 0.23 0.99 0.61 0.48 0.97 0.48 0.60 0.97 0.79 0.64 0.98 0.81

protease inhibitors 0.92 1.00 0.96 0.73 0.97 0.49 0.82 0.99 0.90 0.91 1.00 0.95

mean 0.80 0.97 0.89 0.74 0.92 0.71 0.83 0.97 0.90 0.88 0.98 0.93

accuracy 92.10 80.99 88.60 93.88
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and accuracy measurement of the various prediction algorithms
as objects. The outputs of the test are the value of the Kendall
coefficient, ranging from 0 (no agreement between set of ranks)
to 1 (complete agreement), and the associated significance
level, which indicates whether this value of the coefficient could
have occurred by chance. If the value is significant (we use
cutoff values of 0.01 or 0.05), then it is possible to give an
overall ranking of the objects that have been ranked. The
results of the Kendall analysis are reported in Table 9 and give
the ranking for the various prediction algorithms.
We first considered the results of the first five data sets

(COX2, BZR, DHFR, ER, and MUT). The results reported in
Table 5 showed that the LSVM produces the highest sensitivity,
specificity, AUC, and accuracy values compared to the other
approaches, with BBNC and NaiveB also performing well.
Table 9 showed that the value of the Kendall coefficient, 0.549,
was significant at the 0.05 cutoff value. So, we can conclude that
the overall ranking of the four methods is: LSVM > BBNC =
NaiveB > RBFN. Here, the results in Table 9 suggested that the
BBNC has the second best performance after LSVM.
The good performance for LSVM and BBNC approaches

was not restricted to the first five data sets since they also
perform best for the Norine and MDDR1 data sets (Tables 6
and 7). The results in Table 6 showed that LSVM and BBNC
produced the best performance across the five activity classes in
the Norine data set. In only one instance (antitumor class), the
performance of BBNC was not satisfying (Sens = 0.23 and
AUC = 0.61). This finding was in accordance to our previous
study.32 This is because the peptides with antitumor activity are

biologically closed to antibiotic and toxin peptides and can even
harbor several of those activities. Table 9 showed that the value

of the Kendall coefficient, 0.845, was significant at the 0.01
level; we can conclude that the overall ranking of the different
methods is: LSVM > BBNC > RBFN > NaiveB.
The best performance of BBNC was seen with MDDR1

(Table 7). Sensitivity, specificity, and AUC values in Table 7
showed that BBNC and LSVM produced the best performance
compared to other approaches. Table 9 showed that the value
of the Kendall coefficient, 0.751, is significant at the 0.01 level

Table 7. Sensitivity, Specificity, AUC, and Accuracy Rates for the Prediction Models with the MDDR1 Data Set

BBNC Naıv̈eB RBFN LSVM

activity index Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC

07707 1.00 1.00 1.00 0.99 1.00 0.99 0.63 1.00 0.82 0.98 1.00 0.99

07708 1.00 1.00 1.00 0.97 1.00 0.99 0.51 1.00 0.75 0.98 1.00 0.99

31420 0.99 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 1.00 1.00 1.00

42710 0.95 1.00 0.98 0.94 1.00 0.97 0.43 1.00 0.72 0.99 1.00 1.00

64100 0.99 0.99 0.99 0.95 1.00 0.97 0.97 0.90 0.94 1.00 1.00 1.00

64200 0.97 1.00 0.99 0.87 0.99 0.93 0.43 1.00 0.71 0.93 1.00 0.96

64220 0.98 1.00 0.99 1.00 1.00 1.00 0.95 0.97 0.96 1.00 1.00 1.00

64300 1.00 1.00 1.00 1.00 0.99 1.00 0.44 1.00 0.72 0.98 1.00 0.99

65000 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 0.90 1.00 1.00 1.00

75755 0.99 1.00 1.00 0.99 1.00 1.00 0.76 1.00 0.88 1.00 1.00 1.00

mean 0.99 1.00 0.99 0.97 1.00 0.98 0.69 0.98 0.84 0.99 1.00 0.99

accuracy 99.10 97.88 86.84 99.43

Table 8. Sensitivity, Specificity, AUC, and Accuracy Rates for the Prediction Models with the MDDR2 Data Set

BBNC Naıv̈eB RBFN LSVM

activity index Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC

09249 0.89 0.98 0.93 0.91 0.99 0.95 0.82 0.98 0.90 0.98 1.00 0.99

12455 0.69 0.98 0.83 0.88 0.97 0.92 0.66 0.98 0.82 0.96 0.99 0.98

12464 0.75 0.98 0.86 0.85 0.99 0.92 0.75 0.95 0.85 0.92 1.00 0.96

31281 0.91 1.00 0.96 0.94 1.00 0.97 0.53 1.00 0.76 0.98 1.00 0.99

43210 0.86 0.95 0.91 0.84 0.99 0.91 0.78 0.97 0.87 0.96 0.99 0.98

71522 0.94 0.87 0.90 0.82 0.99 0.91 0.75 0.97 0.86 0.94 1.00 0.97

75721 0.95 0.98 0.97 0.91 0.99 0.95 0.86 0.98 0.92 0.99 1.00 0.99

78331 0.71 0.97 0.84 0.81 0.96 0.89 0.79 0.93 0.86 0.84 0.99 0.91

78348 0.85 0.93 0.89 0.65 0.99 0.82 0.74 0.96 0.85 0.91 1.00 0.95

78351 0.68 0.98 0.83 0.82 0.94 0.88 0.59 0.96 0.78 0.94 0.98 0.96

mean 0.82 0.96 0.89 0.84 0.98 0.91 0.73 0.97 0.85 0.94 0.99 0.97

accuracy 80.40 83.99 71.23 94.37

Table 9. Rankings of Prediction Approaches Based on
Kendall W Test Resultsa

data set W P ranking

AUC (DS1−5) 0.549 <0.05 LSVM > BBNC = NaiveB >
RBFN

AUC (Norine) 0.845 <0.01 LSVM > BBNC > RBFN >
NaiveB

AUC (MDDR1) 0.751 <0.01 BBNC > LSVM > NaiveB >
RBFN

AUC (MDDR2) 0.825 <0.01 LSVM > NaiveB > BBNC >
RBFN

Accuracy (all Data
sets)

0.622 <0.05 LSVM > BBNC > NaiveB >
RBFN

aThe contents of the columns above show the different performance
measure for data set type, the value of the Kendall coefficient, the
associated significance probability, and the ranking of the methods,
respectively. The methods are ranked in decreasing order of prediction
performance.
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of statistical significance. Given that the result is significant, we
can hence conclude that the overall ranking of the different
methods is BBNC > LSVM > NaiveB > RBFN. This
outstanding performance could be due to the low diversity of
MDDR1 data set.
Returning to Table 5, BBNC and others showed lower

prediction results (∼72%) for MUT compared to the first four
data sets (COX2, BZR, DHFR, and ER). However, that was
because the MUT data set involves the most heterogeneous
activity class of those data sets. The same results can be
observed for MDDR2 in Table 8. The results in Tables 8 and 9
showed that the BBNC ranked third after LSVM and NaiveB.
The MUT and MDDR2 results are of particular interest since
they involved the most heterogeneous activity classes in the
eight data sets used in this study (except for Norine data set)
and thus provided a stiff test of the effectiveness of a prediction
method.
Visual inspection of the results in Tables 5−9 showed that

BBNC provides an interesting and promising method for
activity prediction. Beside the good performance of BBNC
method, BBNC was also very fast in comparison to other
machine learning algorithms, since building of the BBNC
model only depends on statistical calculation from active and
inactive training data.
Results in Tables 5−9 clearly showed that the performance

of each method was different from one data set to another and
even from one activity to another. Thus, it is important to stress
that no prediction method is better than the others and able to
deal with all the data sets. However, we believe that using
different methods for target prediction can help a better
understanding of data. Thus, we introduce BBNC as a useful
addition to the computational chemist’s toolbox.

■ CONCLUSION

This paper has further investigated the use of Bayesian belief
network classifier for ligand-based target or activity prediction.
We applied the BBNC method on eight well-known data sets
from the literature and compared its performance to three
machine learning algorithms. Experiments showed that BBNC
provides interesting prediction rates (from 79% accuracy for a
high diverse data set to 99% for low diverse data set) with short
time calculation for activity prediction. Experiments also
showed that BBNC is particularly effective for homogeneous
data sets but performs less well with structurally heterogeneous
ones. However, it is important to stress that we believe that
using several approaches, whenever possible, for target
prediction can often give a broader understanding of the data
than using only one approach alone. Thus, we see BBNC being
a useful addition to the computational chemist’s toolbox.
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