Skip to Main content Skip to Navigation
Journal articles

Comparison of solutions of Boussinesq systems

Youcef Mammeri 1, * Yumeng Zhang 2, 3
* Corresponding author
2 COFFEE - COmplex Flows For Energy and Environment
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR7351
Abstract : We compare the solution of the generalized Boussinesq systems, for various values of a,b,c,d, \begin{eqnarray}\nonumber \eta_t +u_x +\varepsilon ((\eta u)_x +au_{xxx}-b\eta_{xxt}) &=& 0 \\\nonumber u_t +\eta_x +\varepsilon (uu_x +c\eta_{xxx} -du_{xxt}) &=&0.\end{eqnarray}These systems describe the two-way propagation of small amplitude long waves in shallow water. We prove, using an energy method introduced by Bona, Pritchard and Scott, that respective solutions of Boussinesq systems, starting from the same initial datum, remain close on a time interval inversely proportional to the wave amplitude.
Document type :
Journal articles
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01090296
Contributor : Youcef Mammeri Connect in order to contact the contributor
Submitted on : Wednesday, December 3, 2014 - 12:04:22 PM
Last modification on : Thursday, January 20, 2022 - 4:13:39 PM
Long-term archiving on: : Saturday, April 15, 2017 - 1:48:45 AM

File

2014_03_CompBouss_preprint.pdf
Files produced by the author(s)

Identifiers

Citation

Youcef Mammeri, Yumeng Zhang. Comparison of solutions of Boussinesq systems. Advances in Pure and Applied Mathematics, De Gruyter, 2014, 5 (2), pp.101-115. ⟨10.1515/apam-2014-0013⟩. ⟨hal-01090296⟩

Share

Metrics

Les métriques sont temporairement indisponibles