Super-Absorption of Acoustic Waves with Bubble Meta-Screens
Valentin Leroy, Anatoliy Strybulevych, Maxime Lanoy, Fabrice Lemoult, Arnaud Tourin, John H. Page

To cite this version:

HAL Id: hal-01090207
https://hal.archives-ouvertes.fr/hal-01090207v2
Submitted on 12 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Super-Absorption of Acoustic Waves with Bubble Meta-Screens

Valentin Leroy, Anatoliy Strybulevych, Maxime Lanoy, Fabrice Lemoult, Arnaud Tourin, and John H Page
1Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), Paris, France
2Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
3ESPCI Paris Tech, PSL Research University, CNRS, Institut Langevin, F-75005 Paris
(Dated: December 3, 2014)

A bubble meta-screen, i.e., a single layer of gas inclusions in a soft solid, can be modeled as an acoustic open resonator, whose behavior is well captured by a simple analytical expression. We show that by tuning the parameters of the meta-screen, acoustic super-absorption can be achieved over a broad frequency range, which is confirmed by finite element simulations and experiments. Bubble meta-screens can thus be used as ultra thin coatings for turning acoustic reflectors into perfect absorbers.

Waves carry energy. In many situations, absorbing as much as possible of this energy is desirable. One may want, for instance, to convert the mechanical energy of ocean swell into electrical energy, or to detect very weak electromagnetic waves, or just to limit the nuisance due to acoustic noise. Absorbing all the energy of an incoming wave requires that two problems be tackled: not only must the transmission be reduced to zero, but the reflection as well. This means that a very dissipative medium is needed, i.e., one that is not impedance-matched to the environment. An absorber thus consists of a lossy material (to reduce transmission) with an impedance close to that of the environment (to reduce reflection). Perfect absorption can be achieved if the thickness of the material is large enough for all the energy to be dissipated. However, in practice, one often wants the absorber to be as small and light as possible, requiring a thin piece of material. Minimizing the thickness of the absorber and, ideally, reaching a sub-wavelength structure, is the issue of super-absorption.

Metamaterials are the key to achieve super-absorption. These materials are made of “meta-molecules”, i.e., local resonators that can couple to the incoming wave despite being small compared to the wavelength. By designing judiciously the structure of a metamaterial, one can obtain exotic properties such as negative refraction [1–4], invisibility cloaks [5–8], sub-wavelength focusing [9, 10], or super absorption [11–16]. Many types of resonators have been identified and investigated, from split rings for electromagnetic waves [11] to loaded membranes for acoustic waves [14, 15]. Here we consider a particularly simple resonator that is well known to couple strongly with water-borne acoustic waves: the gas bubble.

In this letter, we show how a very efficient absorber of acoustic waves can be constructed from a single deep-subwavelength layer of bubbles immersed in a soft elastic medium. It has been shown that, at low frequencies, providing that the aspect ratio of the cylinders is close to unity and the shear modulus \(\mu \) of the soft solid is not too high,

\[
\text{FIG. 1: Comparison between Eq. (1b) and simulation data extracted from figure 16 in Hladky-Henion et al. [20], for the transmission coefficient through a layer of air cylinders (} H = 2 \text{ cm, } D = 1.5 \text{ cm}) \text{ on a square lattice (} d = 5 \text{ cm}) \text{ in silicone.}
\]

The structure we consider is sketched in the inset of Fig. 1: the bubble meta-screen consists of a layer of gas cylinders in a soft solid, here organized on a square lattice. It has been shown that, at low frequencies, providing that the aspect ratio of the cylinders is close to unity and the shear modulus \(\mu \) of the soft solid is not too high.
\((\mu < 10 \text{ MPa}) \), the cavities can be modeled as spherical bubbles of the same volume \([17–19]\). In particular, the cavities exhibit a low-frequency resonance, similar to the Minnaert resonance: \(\omega_0 = \sqrt{(3\beta_0 + 4\mu)/\rho/a} \), where \(\beta_0 \) is the bulk modulus of the gas, \(\rho \) the density of the solid, and \(a \) the radius of the bubble \([a = (3D^2H/16)^{1/3}] \), with the notations of Fig. 1’s inset. Calculating the transmission and reflection coefficients for an incident longitudinal wave on such a structure is a complicated matter. Indeed, the coupling between the cavities is too strong to be neglected, and shear waves also need to be taken into account, two factors that make numerical simulations computationally intensive \([20, 21]\). However, a simple model was recently proposed \([22]\) to calculate the transmission and reflection from a single layer of bubbles. It predicts that an incoming plane pressure wave \(\exp[i(kx - \omega t)] \), at angular frequency \(\omega \) and with wavenumber \(k \), is reflected and transmitted with coefficient \(r \) and \(t \) given by

\[
\begin{align}
\frac{1}{r} & = \frac{1}{(\omega_0^2 - \omega^2) - i(\delta + Ka)^2} - iKa \\
\frac{1}{t} & = \frac{1}{(\omega_0^2 - \omega^2) - i(\delta + Ka)^2} + iKa,
\end{align}
\]

where \(K = 2\pi/(kd^2) \), \(I = 1 - Ka \sin(kd/\sqrt{\pi}) \), and \(\delta \) is the dissipative damping constant. This model has been experimentally confirmed for bubbles in a yield-stress fluid \([22]\) and for air cylinders in an elastomer \([17]\), in the ultrasonic frequency range. In Fig. 1, we show it also gives good agreement with simulations in the audible frequency range, for cylindrical cavities in silicone \([20]\). Hence, Eqs. (1) provide a reliable analytic expression for predicting the response of a bubble meta-screen. The interest is twofold: an analytic formula allows one to identify the mechanisms involved in the response, and it also makes easier the analysis of the role of each parameter, in the perspective of an optimization process for instance.

The strong coupling between the resonators is taken into account by the model with the two terms \(I \) and \(K \). The first one is responsible for a slight shift in the resonance of the structure, which occurs at \(\omega_0/\sqrt{I} \) instead of \(\omega_0 \) for independent scatterers. The second one is crucial because it determines the way the meta-screen couples to the longitudinal waves. Indeed, the term \(Ka \) that appears in Eqs. (1) can be interpreted as a super-radiative damping term. When a bubble oscillates, it loses energy because of dissipation, but also because it radiates acoustic energy into the surrounding medium. For a single bubble, the corresponding damping term is \(ka \). When \(N \) bubbles oscillate in phase, they radiate \(N \) times more intensely \([23]\). In a layer of bubbles, the number of bubbles coupled in phase with each other can be estimated by \(N = \lambda \sqrt{\lambda/k} \), where \(\lambda = 2\pi/\kappa \) is the wavelength. So \(Ka \) can be written as \(Nka/(2\pi) \), i.e., a damping term proportional to \(N \) times the radiative damping of a single bubble. As the Minnaert resonance is at low frequency, \(N \) is large. For instance in Fig. 1, \(\lambda \simeq 70 \text{ cm} \) at minimum of transmission, which yields \(N \simeq 200 \) and \(Ka \simeq 3 \).

As illustrated by Fig. 1, a layer of bubbles is very efficient for blocking acoustic waves at frequencies close to the resonance frequency of the bubbles. However, one should not conclude that the incident energy is dissipated by the bubbles. At the minimum of transmission (i.e., for \(\omega = \omega_0/\sqrt{I} \), Eq. (1a) predicts a reflection coefficient of \(r = -(ka/(\delta + Ka)) \). In general, \(\delta \ll Ka \), which results in \(r \simeq -1 \): the bubble layer acts as a nearly perfect mirror.

From Eqs. (1), it is easy to show that the energy absorption of a layer of bubbles \(A = 1 - |r|^2 - |t|^2 \) is given, at the minimum of transmission, by

\[
A = \frac{2\delta Ka}{(\delta + Ka)^2}.
\]

This expression indicates that an optimal absorption of \(A = 1/2 \) can be achieved if \(\delta = Ka \). The dissipative damping factor includes two sources of losses: thermal and viscous. For cavities in a soft-elastic medium, the viscous losses generally dominate and are given by \(\delta = \eta/(\rho a^2 \omega) \) \([24]\), where \(\eta \) and \(\rho \) are the viscosity and density of the medium, respectively. One can thus define an optimal viscosity \(\eta^* = (\pi Z a^2)/(2kd^2) \) for which the condition \(\delta = Ka \) is satisfied \((Z = \text{the acoustic impedance of the medium}) \). Interestingly, \(\eta^* \) does not depend on frequency, which means that the critical coupling can be satisfied for a wide frequency range.

Figure 2a shows the model predictions (lines) for a meta-layer of 8 \(\mu \text{m} \)-radius bubbles separated by \(d = 50 \mu\text{m} \) in a soft solid characterized by \(\mu = 1 \text{ MPa}, Z = 1 \text{ MRay} \) and a viscosity of \(\eta = 0.32 \text{ Pa.s} \). Interestingly, the magnitudes of the reflection and transmission coefficients are close to 0.5 over an extended range of frequencies, not just at the resonance. This result comes from the fact that, as the resonator is over-damped, \(\delta \) and \(Ka \) govern its response, and since both vary as the inverse of the frequency, the equality \(Ka = \delta \) remains valid over a wide frequency range. Another consequence is that by changing the coupling between the bubbles, one can tune the values of \(|t| \) and \(|r| \). This is illustrated in Fig. 2b where the magnitude of the transmission and reflection coefficients at 2 MHz (i.e., on the plateau) are reported as functions of the bubble spacing \(d \). Thus, any value of \(\delta \) between 0 and 1 can be achieved by choosing the proper spacing. Concentrated meta-screens (small \(d \)) efficiently block transmission, whereas dilute meta-screens (large \(d \)) are transparent. With the optimal spacing (50 \(\mu\text{m} \) here), the meta-screen absorbs half of the energy, radiating the other half equally forward and backward. Finite element simulations were performed with cylindrical cavities with the same volume \((D = H = 14 \mu\text{m})\), and good agreement was found (symbols in Fig. 2).

An interesting question is to determine whether the bubble meta-screen is an acoustic equivalent of plasmonic devices encountered in optics. Indeed, its geometry and
other situation in which a much larger absorption can be achieved: the case of a bubble meta-screen close to a reflector, as depicted in the inset of Fig. 3a. A simplified analysis of the total reflection by this structure considers only the interferences between the direct reflection from the bubble layer, and the multiple reflections between the layer and the reflector, which gives

$$r_{\text{tot}} = r + \frac{r' r \exp(2 i k h)}{1 - r r' \exp(2 i k h)},$$

where r' is the coefficient of the reflector and h the distance between the layer and the reflector. As shown on the right part of the inset of Fig. 3a, the direct reflection from the bubbles brings a π shift, whereas the reflection from steel has a zero phase. As a consequence, there is destructive interference between the two paths. If h is small compared with the wavelength, the phase induced by the propagation over this distance can be neglected and the total reflection reduces to $r_{\text{tot}} = (r + r' + 2 r r')/(1 - r r')$, which is zero for $r = -r'/ (1 + 2 r')$. In the case of a perfect reflector ($r' = 1$), one thus needs $r = -1/3$. Equation (1a) predicts that such a reflection coefficient is obtained for $\delta = 2 K a$, i.e., $\eta = 2 \eta^*$. Hence a bubble meta-screen with the proper bubble spacing should be able to transform a perfect reflector into a perfect absorber.

We have checked this prediction experimentally. Bubble meta-screens were fabricated by soft lithography [17]: cylindrical cavities of diameter $D = 24 \mu m$ and height $H = 13 \mu m$ ($a = 11 \mu m$) were made in PDMS, whose acoustic impedance was $Z = 1 \text{MRay}$ and rheological properties estimated from experiments to be $\mu = 0.6 + 0.7 f \text{MPa (in MHz)}$ and $\eta = 0.3 \text{Pa.s}$ [28]. With such parameters, super-absorption was predicted for a bubble spacing of $d = \sqrt{\pi Z a^2 / \eta} = 118 \mu m$. Two samples of the same thickness ($e = 230 \mu m$) were made with different spacing: $d = 120 \mu m$ and $d = 50 \mu m$. Acoustic experiments were performed by placing the cavities directly on a steel block ($h = H/2$) and measuring the reflection and transmission by standard ultrasonic techniques.

Figure 3 reports the parts of the energy that are reflected (a), transmitted (b) and absorbed (c). For the steel block alone (thick horizontal lines), 88% of the energy is reflected and 12% transmitted. As expected, when the block is covered by the $d = 120 \mu m$ meta-screen, the reflectance is drastically reduced (black circles in Fig. 3a), especially between 1.4 and 2.9 MHz where less than 6% of the energy is reflected, with the measured reflectance dropping nearly to zero at 1.6 MHz. Note that the oscillations in the measured coefficient are due to the extra reflection because of the impedance mismatch between PDMS and water. The model can take this extra reflection into account, and it captures well the experimental data. The importance of choosing the optimal bubble spacing is illustrated by the low reflectance reduction brought by the non-optimized meta-screen (white circles). Interestingly, the meta-screens also reduce the transmission (Fig 3b), the $d = 50 \mu m$ sample having
FIG. 3: Experimental measurements (symbols) of the reflectance (a), transmittance (b) and absorption (c) for two different meta-screens on a steel block. Solid thick horizontal lines are the values for the bare steel block. Solid and dashed lines show the prediction by the analytical model.

A striking application of bubble meta-screens is to make immersed objects invisible to sonar. In fact, many submarines are already equipped with anechoic coatings made of perforated soft solids. However, the optimization of such coatings is still an issue, which is usually tackled by numerical simulations. In the literature, the best reflectance reduction over the 8-22 kHz frequency range (relevant for sonar applications) was calculated at 22 dB by Ivansson for a 12 mm thick rubber with bi-disperse superellipsoidal inclusions [12]. As shown in the supplemental material, our analytical model predicts that a 35 dB reduction can be obtained with a 4 mm thick meta-screen [30], showing the advantage of our experimentally-validated fully analytic approach.

In conclusion, we have shown how acoustic superabsorption can be achieved using a meta-screen based on a periodic arrangement of bubbles embedded in a soft elastic matrix. Our analytical description provides a thorough understanding of the phenomenon and allows meta-screens to be designed with fully tunable and optimized absorption properties over wide frequency ranges. This approach differs from methods based on iterative optimization, e.g., with genetic algorithms, and has the advantage of clearly identifying how the key material parameters (in our case, bubble size and separation, as well as matrix viscosity) should be adjusted to achieve optimized performance. Our approach has the merit of fully incorporating, and greatly benefiting from, the strong coupling between the local resonators, a point which is often neglected in metamaterials applications. This should therefore motivate the development of analogous methods, not only in acoustics but in optics, microwaves and plasmonics as well.
One of the authors thanks B. Dubus for fruitful discussions. This work was supported by LABEX WIFI (Laboratory of Excellence ANR-10-LABX-24) within the French Program “Investments for the Future” under reference ANR-10- IDEX-0001-02 PSL*. Support from the Discovery Grants Program of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

[30] See Supplemental Material, which includes Ref [29], for details on the optimization.
We show that having a fully analytic expression, and a better physical insight into the problem, allows us to design meta-screens with better performance than has been predicted previously. The first step is to tune the resonance to the desired frequency.

Two main parameters affect the resonance frequency: the size of the bubbles and the shear modulus of the solid. As we want the bubbles to be as small as possible (to reduce the thickness of the meta-screen), a low value of the shear modulus is preferable. Let us take for instance $\mu = 0.2\,\text{MPa}$, which makes a very soft material, but still hard enough for centimeter-thick slabs not to lose their shape under their own weight. With such a value of the shear modulus, bubbles of 1 mm radius resonate at 6 kHz. This is below our range of interest for sonar applications, but we know that coupling between bubbles tends to increase the resonance frequency. To be sure there is enough material around each bubble to efficiently dissipate the energy, let us make the thickness of the solid twice the diameter of the bubbles: $e = 4\,\text{mm}$.

The next step is to choose the viscosity of the solid. Obviously, the higher the better, because high damping makes the super-absorption broader in frequency. We pick a value of $\eta = 100\,\text{Pa.s}$, which is very high (10 times the viscosity of honey) but easily reached by silicone oils [S1]. We then choose $d = 7\,\text{mm}$, following the super-absorption prescription $\eta = 2\eta^*$. Note that we assume that the solid is impedance matched with water, to avoid reflection on the front face of the meta-screen [S2]. Figure S1 shows that our optimization beats the best performance prediction in the literature by Ivansson [S3]. It appears that, in his simulations, Ivansson did not explore high enough values of viscosity to reach η^*. Note, however, that the performance of the meta-screen is found to be quite sensitive to the exact bubble spacing: the reflectance reduction drops to 32 dB for $d = 7.2\,\text{mm}$.

References:

[S2] Note that it should be possible in practice to achieve perfect impedance matching for longitudinal waves by adding appropriate submicron filler particles to the soft solid, so as to tailor its acoustic effective medium properties.