
Monitoring of Quality of Service in Dynamically
Adaptive Systems

Sihem Loukil1, Slim Kallel1, Ismael Bouassida Rodriguez2,3, and Mohamed
Jmaiel1

1 ReDCAD Laboratory, University of Sfax, Tunisia
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France
sihem.loukil@redcad.org

Abstract. Dynamic reconfiguration has been widely recognized as an
effective approach to deal with the increasing complexity of dynami-
cally adaptive systems. One of the main challenges in such systems
is to provide guarantees about the required runtime quality of service
(QoS) attributes, such as performance, reliability, etc. Therefore, it is of
paramount importance to make these systems able to monitor the QoS
parameters that allow to evaluate such QoS attributes, analyze these
parameters in order to detect QoS changes and therefore trigger recon-
figuration actions. In this paper, we propose an approach that allows
monitoring the QoS parameters of a dynamically adaptive system in or-
der to detect QoS degradation. The proposed approach is based on the
Aspect-Oriented Software Development (AOSD) paradigm which allows
to keep the monitoring code separated from the business logic code.

1 Introduction

Dynamically Adaptive Systems that can automatically adapt to changes in their
environments are increasingly requested [1]. To further increase its usability and
reliability, such system needs to keep a certain Quality of Service (QoS) level
during its execution. Therefore, it should be able to monitor some quantifiable
parameters that allow to evaluate its QoS attributes. Such monitoring allows
detecting degradation in the QoS of the system and therefore adapt its structure
and/or behavior autonomously in response to this degradation.

As dynamically adaptive systems change behavior and structure at runtime,
the monitoring of the QoS of such system poses some challenges. First, these
systems need to continuously monitor QoS parameters in order to detect QoS
degradation. These parameters are collected from different interacting entities
that may be distributed which may require several QoS monitors displayed at
different levels. Second, the level of the QoS specification is relatively low which
requires access to source code to specify or modify QoS parameters such as data
rate, error rate, etc. Thus, it is desirable to specify QoS parameters at a higher
level of abstraction and then automatically map these specifications to source

2 S. Loukil et al.

code while providing sufficient flexibility. Third, the QoS concern need to be con-
sidered in several parts of the system. Mixing such concerns with business logic
concerns increases the complexity of the system and makes both its development
and maintenance more difficult [2].

In our previous work [3, 4], we presented an approach which mainly consists in
conceiving a whole development process of dynamically adaptive systems ranging
from modeling to code generation. This approach allows to specify component-
based systems and ensure their reconfiguration at runtime. It allows to handle
both the anticipated and unanticipated reconfigurations at design time. This
approach is based on the combination of the Architecture Analysis and Design
Language (AADL) [5] and its aspect oriented extension AO4AADL [6, 7].

In this paper, we present how our approach can be applied to monitor the
QoS of a dynamically adaptive system. For this purpose, we first define and
classify QoS parameters that can be monitored at runtime. The proposed classi-
fication is based on the architectural vision of distributed component-based sys-
tems. More specifically, this classification is tied to distributed component-based
systems specified using AADL concepts. Second, we detail how our approach al-
lows specifying QoS parameters at a high level of abstraction using the AOSD
paradigm. In fact, several aspects are defined in our work in order to monitor
QoS parameters at runtime. These aspects are specified at architectural level
using the AO4AADL language. These AO4AADL aspects will be the input of
an AspectJ generator, developed in our previous work [6, 7], in order to gener-
ate aspects in AspectJ [8]. These aspects will be automatically weaved with the
functional code of the system to obtain the final code to be executed. Third, we
present how these high level QoS specifications are automatically transformed to
executable code that allows the system to continuously monitor QoS parameters
at runtime in order to detect QoS degradation.

The remainder of this paper is structured as follows: In Section 2, we present
our proposed QoS classification for distributed component-based systems. Sec-
tion 3 presents the proposed approach to ensure the monitoring of QoS parame-
ters. An illustrative example is introduced in Section 4. Section 5 presents some
research studies related to our work. Finally, Section 6 concludes the paper and
gives some directions for future work.

2 Quality of Service : parameters and classification

We propose a classification of the QoS parameters in order to make easier the
evaluation of the QoS attributes of a software system. This classification is in-
spired from the one proposed by the standard ISO/IEC 9126 [9]. This standard
proposes to classify the QoS attributes into two categories : (1) internal quality
attributes which are properties of subsystems and components, and (2) external
ones that are visible on the system level. Inspired from this classification, we
propose to classify the QoS parameters based on the architectural vision of a
distributed component-based system specified using AADL concepts.

Monitoring of Quality of Service in Dynamically Adaptive Systems 3

From an architectural perspective, the software architecture of a distributed
component-based system (system in AADL) is composed of a set of commu-
nicating composite components (processes in AADL). Similarly, each composite
component is composed of a set of interconnected indivisible components (threads
in AADL). The communication between components is ensured via a set of con-
nections (connection in AADL). Our idea consists in classifying QoS parameters
according to the level at which such parameter can be monitored. An indivisible
component and a composite component in AADL have the same architectural
structure. For this reason, we consider that QoS parameters that can be moni-
tored at indivisible component level and at composite component level are the
same. We distinguish three levels of QoS monitoring according to the structure
of distributed component-based systems : indivisible component/composite
component level, architecture level and communication level.

The adopted generic QoS attributes that can be measured and evaluated at
runtime for a distributed component based system are :

– Performance is an indication of the responsiveness of a system. It can be
measured in terms of throughput, latency and processing time.

– Reliability is the ability of a system to remain operational over time. It can
be measured through the loss rate of transmitted messages.

– Load Balancing is the distribution of workloads across system components.
It can be measured as the distribution of the components on the system.

3 Overview of the proposed approach

In this section, we present a general overview of our proposed approach towards
specifying and monitoring QoS parameters in order to detect QoS degradations.

Our approach involves a main component namely a QoS manager. This later
is defined at two levels : at the composite component level (process level) to
be able to manage QoS parameters of its interacting AADL subcomponents
(threads), and at the architecture level to manage the QoS parameters of the
interacting AADL composite components (processes) that form the whole system
architecture. At both levels, the QoS manager is in change of monitoring QoS
parameters, analyzing collected data and perform reconfiguration actions when
QoS degradations are detected. Therefore, the activity of the QoS manager is
divided into three main modules.

– A QoS monitor module : This module is composed of a set of monitoring
aspects responsible for monitoring and collecting QoS parameters. Gathered
QoS parameters are stored into a QoS database for further retrieval.

– A QoS analyzer module : Towards inspecting the collected information and
track down QoS degradation. This module sends notifications to the re-
configuration module when QoS degradation is detected in order to trigger
appropriate reconfiguration actions.

– A reconfiguration module : Defines a list of reconfiguration actions that
can be applied to the system when QoS degradations are detected. These
reconfigurations are encapsulated into a set of reconfiguration aspects.

4 S. Loukil et al.

The proposed QoS manager is then able to handle a closed feedback loop
(MAPE) with four phases : Monitoring, Analysis, Planning and Execution. In
this paper, we focus on the first phase of the MAPE loop. For this purpose, we
detail in the following how the QoS parameters are specified at architectural
level using AO4AADL aspects. We present also some examples of the generated
AspectJ code from such AO4AADL specifications. These AspectJ aspects will
ensure the monitoring of the QoS parameters at runtime.

3.1 QoS monitoring

Monitoring the QoS of a dynamically adaptive system aims to observe its con-
stituting components to collect data about QoS parameters. This monitoring is
performed through a set of AspectJ aspects that are automatically generated
from a high level QoS specification using the AO4AADL language. In fact, our
proposed QoS monitor module is composed of a set of architectural monitor-
ing aspects specified in AO4AADL. These aspects are intended to intercept the
architectural elements through which QoS parameters can be captured.

As mentioned previously, the QoS parameters can be monitored at three
levels. For each level, we define the considered QoS parameters and we give
some examples of the structure of the AO4AADL aspects used to specify such
QoS parameters. Such aspect is composed of two parts : pointcut and advice. The
pointcut defines the architectural element to intercept in order to get the value
of the corresponding QoS parameter. The advice defines the information value
to save in the QoS database. We present also some examples of the generated
AspectJ code from AO4AADL specifications to ensure the monitoring of QoS
parameters at runtime.

QoS parameters monitored at indivisible/composite component level

Throughput is the number of sent messages through a set of output ports
of a given indivisible or composite component within a time interval. Formula 1
is used to calculate this information.

Throughputc =
∑

Throughputoutporti (1)

– i={1..p}, p ≤ n and n = the number of output ports of the component.
– Throughputoutporti is the number of sent messages through an output port

of the component within a given time interval.

The monitoring of the throughput is achieved through one AO4AADL aspect
whose structure is given in Listing 1.1. The pointcut (lines 2–3) of such an aspect
intercepts the set of output ports of the given component to be monitored. The
advice (lines 7–13) captures the number of sent messages through this set of
output ports. Once the time interval of monitoring is elapsed, this advice sends
the captured number of sent messages to the QoS database.

Monitoring of Quality of Service in Dynamically Adaptive Systems 5

1 aspect Monitoring_Throughput_<Identifier> {
2 pointcut Throughput_<Identifier>(): execution(outport(<Out_port_identifier_1>(..)))
3 || ... ||execution (outport(<Out_port_identifier_n>(..)));
4 variables{counter : Integer_Type; t : Time_Type;}
5 initially{counter = 0; t=System.currentTimeMillis()+period;}
6

7 advice after(): Throughput_<Identifier> (){
8 if(System.currentTimeMillis()<t){counter:=counter+1;}
9 else if(System.currentTimeMillis()=t){

10 counter:=counter+1;
11 send_Value!(counter);
12 counter=0;
13 t=System.currentTimeMillis()+period;}}}

Listing 1.1: Monitoring the throughput of a component

Listing 1.2 presents the generated AspectJ code from Listing 1.1. The inter-
ception of the execution of the output port is transformed to the interception of
the method sendOutput() of the PortsRouter class (lines 3–4). This class carries
out the correct routing of messages through ports. Moreover, the subprogram
send Value is transformed to a simple execution of the method send ValueImpl()
of a generated SubPrograms class (line 14).

1 aspect Monitoring_Throughput_<Identifier> {
2 pointcut Throughput_<Identifier>():
3 execution(* PortsRouter.sendOutput(<Out_port_identifier_1>(..)))
4 || ... ||execution (* PortsRouter.sendOutput(<Out_port_identifier_n>(..)));
5

6 public static final GeneratedTypes.IntegerType COUNTER = new GeneratedTypes.IntegerType(0);
7 public static final GeneratedTypes.TimeType T =
8 new GeneratedTypes.TimeType(System.currentTimeMillis()+period);
9

10 void after(): Throughput_<Identifier> (){
11 if(System.currentTimeMillis()<T){COUNTER = COUNTER+1;}
12 else if(System.currentTimeMillis()==T){
13 COUNTER = COUNTER+1;
14 SubPrograms.send_ValueImpl(COUNTER);
15 COUNTER=0;
16 T=System.currentTimeMillis()+period;}}}

Listing 1.2: Generated AspectJ code from Listing 1.1

Loss rate of messages defines, within a time interval, the percentage of
unprocessed messages compared with the number of received messages by a given
component. This information can be measured only for components character-
ized as follows: To each input port that receives a message corresponds an output
port that sends a result. To compute this information, we use formula 2.

Lossc = 1−
∑

Throughputoutporti∑
Inputinporti

(2)

– i={1..p}, p ≤ n and n = the number of output ports of the component.
– Inputinporti is the number of received messages through an input port of the

component within a given time interval.

6 S. Loukil et al.

To monitor the loss rate of messages within an indivisible/composite compo-
nent, two architectural aspects are needed. The first aspect is intended to capture
the throughput of the considered component. The second aspect captures the
number of received messages through the set of input ports of the component.

Processing time measures the elapsed time to execute an operation within
a given component. It is measured using the following formula:

TimeProcop = TimeEndExecop − TimeStartExecop (3)

– TimeEndExecop is the end time of execution of the operation.
– TimeStartExecop is the start time of execution of the operation.

One architectural aspect is needed to monitor the processing time. This as-
pect intercepts the execution of the subprogram that corresponds to the opera-
tion to be monitored. Two types of advices are defined in this aspect : a before
advice which will capture the start time of the execution and an after advice
that will capture the end time of execution.

QoS parameters monitored at architecture level
Distribution measures the dispersion rate of a specified component type Ci

on the set of composite components of the system. This information is related
to the architectural style of the system. It is monitored at architecture level
since its computation requires knowledge of the total number of components
deployed throughout the system. It is measured for each composite component
using formula 4:

Distributionnode =
Nodecomponents(Ci)

Systemcomponents(Ci)
(4)

– Nodecomponents(Ci) is the number of components of type Ci deployed in a
given composite component.

– Systemcomponents(Ci) is the number of components of the same type Ci de-
ployed in the whole system.

The monitoring of the distribution parameter is performed through a set of
aspects. One aspect is attached to every composite component that may contain
components of type Ci. The structure of the corresponding AO4AADL aspect
is given in Listing 1.3. The number of components of type Ci deployed on one
composite component can change due to reconfiguration actions that can affect
the system during its execution. To be able to capture the new number of compo-
nents of type Ci within one composite component, the aspect should intercept
the reconfiguration actions related to the addition, removal and migration of
components (lines 2–4). Therefore, after each invocation of one of these recon-
figuration actions, the aspect transmits the new number of components of type
Ci to the QoS database module (lines 8–12).

Monitoring of Quality of Service in Dynamically Adaptive Systems 7

1 aspect Monitoring_Distribution {
2 pointcut Distribution(): execution(subprogram(addThread(ComponentType,..)))
3 || execution(subprogram(removeThread(ComponentType,..)))
4 || execution(subprogram(migrateThread(ComponentType,..)));
5 variables {counter:Integer_Type;}
6 initially {counter=0};
7

8 advice after(): Distribution (){
9 if (this="addThread") {counter:=counter+1;}

10 else if((this="removeThread") or (this="migrateThread")) {counter:=counter-1;}
11 send_Value!(counter);
12 }
13 }

Listing 1.3: Monitoring the distribution on a composite component

Distribution can refer also to the dispersion rate of a specified composite
component type Ni on the system. This information is monitored on a cluster of
composite components. The formula used to monitor such parameter is similar to
formula 4 except that here we are interested in composite components instead of
indivisible components. To monitor such paramter, an aspect is attached to each
composite component of the cluster. Such aspect intercepts the reconfiguration
action related to the connection and disconnection of composite components of
type Ni and transmits the new number of these components to the QoS database.

QoS parameters monitored at communication level
Loss rate of messages measures, within a time interval, the percentage of lost
messages through a connection. This parameter is computed using formula 5.

Lossconn =
Receivedmsg

Sentmsg
(5)

– Received msg is the number of received messages through the destination
port of the connection.

– Sent msg is the number of sent messages through the source port of the
connection.

Two architectural aspects should be specified to monitor such QoS parameter.
One aspect is used to monitor the throughput of the source output port of the
connection. The other aspect is intended to monitor the number of received
messages through the destination input port of the connection.

Latency represents the elapsed time to transfer a message through a given
connection. Formula 6 is used to compute this parameter.

Latencyconn = TimeReceiptmsg − TimeSendingmsg (6)

– TReceiptmsg is the receipt time of the message on the destination port.

– TSendingmsg
is the sending time of the message through the source port.

8 S. Loukil et al.

The monitoring of this QoS parameter needs the specification of two architec-
tural aspects as mentioned in the previous QoS parameter. The only difference
here lies in the advice part. In fact, the first aspect in this case is intended to
capture the sending time of the message through the source output port of the
connection and the second one is responsible of capturing the receipt time of
this message on the destination input port of the connection.

All gathered QoS parameters from the monitoring module are stored in a
QoS database for later use by the analysis module in order to be able to detect
QoS degradations. This QoS database allows keeping a trace of all the captured
QoS parameters for further retrieval when needed.

4 Illustrative example

To demonstrate the benefits of our approach, we introduce the Flood Prediction
System (FPS) [10] as an illustrative example. This system presents a set of nodes
that communicate and cooperate to carry out flood predictions. Three types of
components are considered : sensor nodes, computation nodes and office nodes.

Sensor nodes sense and collect the data relevant for calculations such as
pressure, rainfall, and temperature. Sensed data are periodically transmitted to
the corresponding computational node. Computation nodes connect the sensor
nodes, examine the data correctness and maintains a record of all draw values.
Some calibrations are performed on the draw data. Later, a prediction operation
is invoked to execute some static measurements in order to provide prediction
on river flow. This prediction is transmitted to the office node. The Office Node
verifies the results with the available online information, predicts for the entire
region, issues alerts and initiates evacuation procedures.

In the following, we will detail the usefulness of monitoring the considered
QoS parameters using aspects.

Processing time To ensure more system reliability, the processing time of
data within computation nodes should not be out of a certain time interval. Re-
sults provided so quickly or so late are not reliable for prediction measurements
performed at the office node level. Therefore, the processing time of subprograms
responsible for data checking, calibration and prediction should be monitored.
Listing 1.4 presents the AO4AADL aspect to monitor such QoS parameter.

1 aspect Monitoring_ProcTime_CompNode {
2 pointcut ProcTime_CompNode(): execution(subprogram(Data_Checking(..)))
3 || execution(subprogram(Calibration(..)))
4 ||execution(subprogram(Prediction(..)));
5

6 advice before(): ProcTime_CompNode(){send_Time!(System.currentTimeMillis());}
7 advice after(): ProcTime_CompNode(){send_Time!(System.currentTimeMillis());}}

Listing 1.4: Monitoring the processing time

Distribution Due to several reconfiguration actions or to nodes failure, the
distribution of sensor nodes may be unfair. For example, let’s suppose that we

Monitoring of Quality of Service in Dynamically Adaptive Systems 9

dispose of three computation nodes. The first one is connected to six sensor nodes
(2 sensor nodes of each type), the second one is connected to three sensor nodes
(one sensor node of each type), however, no sensor node is connected to the third
one. To ensure a fair distribution of sensor nodes along the river, three sensor
nodes (one of each type) which are connected to the first computation node
should be disconnected from this later and connected to the third computation
node. Listing 1.5 presents the structure of the AO4AADL aspect responsible for
monitoring the distribution. This aspect is attached to every computation node
of the system and intercepts the addition and removal of connections between a
sensor node and a computation node.

1 aspect Monitoring_Distribution_Cluster {
2 pointcut Distribution_Cluster():
3 execution(subprogram(ConnectNodes(SensorNode, ComputationNode)))
4 || execution(subprogram(ConnectNodes(SensorNode, ComputationNode)))
5 || execution(subprogram(DisconnectNodes(SensorNode, ComputationNode)))
6 || execution(subprogram(DisconnectNodes(SensorNode, ComputationNode)));
7

8 variables {counter:Integer_Type;}
9 initially {counter=0};

10

11 advice after(): Distribution_Cluster (){
12 if (this="ConnectNodes") {counter:=counter+1;}
13 else if(this="DisconnectNodes"){counter:=counter-1;}
14 send_Value!(counter);}}

Listing 1.5: Monitoring the distribution on a cluster of nodes

5 Related work

Authors in [11] propose an approach for monitoring the QoS of web services.
This approach relies on monitoring tools such as Jpcap for latency measure-
ment. It is based on aspect-oriented programming and requires implementation
details. Therefore, this approach stills implementation dependent, as the lan-
guage of coding aspect is dependent on the selected programming language. Our
approach is different since it allows the monitoring of QoS parameters through
specifying architectural aspects at a high level of abstraction (architectural level)
independently from the programming language.

Authors in [12] present an approach to Cloud service monitoring based on
Aspect-Oriented Programming. This approach monitors QoS parameters using
AspectJ aspects. Similarly to [11], aspects are hard coded and the approach is
dependent on the selected programming language.

The work presented in [13] proposes an aspect-oriented QoS specification
method based on the combination of UML and RTL. The main objective of this
approach is to specify the QoS parameters separately from the system concerns
and facilitate their monitoring. Similarly to our approach, this work allows to
specify the QoS parameters at a high level of abstraction. However, no details
are mentioned about the code generation of these aspects.

10 S. Loukil et al.

6 Conclusion and Future work

In this paper, we have proposed an approach for monitoring QoS attributes in
dynamically adaptive systems. For this purpose, we proposed a QoS parameters
classification taking into account the level at which a QoS parameter can be
monitored in the case of a distributed component-based system specified using
AADL concepts. We presented later how our approach ensures the monitoring of
the QoS parameters using the AOSD paradigm. First, these QoS parameters are
specified into AO4AADL. Then, they are automatically translated into AspectJ
code to ensure the monitoring of these parameters at runtime.

As future work, we aim to focus on the analysis and reconfiguration phases.
We plan to apply our approach to specific domains such as event-based systems.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4 (2009) 1–42

2. Dowling, J., Cahill, V.: The k-component architecture meta-model for self-adaptive
software. In: Proceedings of the Third International Conference on Metalevel Ar-
chitectures and Separation of Crosscutting Concerns. (2001) 81–88

3. Loukil, S., Kallel, S., Jmaiel, M.: Managing architectural reconfiguration at run-
time. International Journal of Web Portals 5 (2013) 55–71

4. Loukil, S., Kallel, S., Jmaiel, M.: Verifying runtime architectural reconfiguration
of dynamically adaptive systems. (2013) 169–176

5. SAE: Architecture Analysis & Design Language. (2004)
6. Loukil, S., Kallel, S., Zalila, B., Jmaiel, M.: Toward an Aspect Oriented ADL for

Embedded Systems. In: Proceedings of the 4th European Conference on Software
Architecture. (2010)

7. Loukil, S., Kallel, S., Zalila, B., Jmaiel, M.: Ao4aadl: Aspect oriented extension
for aadl. Central European Journal of Computer Science 3 (2013) 43–68

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: Proceedings of the 15th European Conference on Object-
Oriented Programming. (2001) 327–353

9. Organization, I.: ISO/IEC 9126: Information Technology - Software Product Eval-
uation - Quality Characteristics and Guidelines for Their Use. (1991)

10. Hughes, D., Greenwood, P., Coulson, G., Blair, G.: Gridstix: Supporting flood
prediction using embedded hardware and next generation grid middleware. In:
Proceedings of the 2006 International Symposium on on World of Wireless, Mobile
and Multimedia Networks. (2006) 621–626

11. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-
ability attributes of web services. In: Proceedings of the IEEE International Con-
ference on Web Services (ICWS06. (2006) 205–212

12. Mdhaffar, A., Halima, R.B., Juhnke, E., Jmaiel, M., Freisleben, B.: Aop4csm: An
aspect-oriented programming approach for cloud service monitoring. In: Proceed-
ings of the 11th International Conference on Computer and Information Technol-
ogy. (2011) 363–370

13. Zhang, L.: Aspect-oriented qos modeling for cyber-physical systems. Journal of
Software 7 (2012) 1083–1093

