GATB: Toolbox for developing efficient NGS software
Erwan Drezen, G Rizk, R Chikhi, Charles Deltel, C Lemaitre, P Peterlongo, D Lavenier

To cite this version:
Erwan Drezen, G Rizk, R Chikhi, Charles Deltel, C Lemaitre, et al.. GATB: Toolbox for developing efficient NGS software. 9th Brazilian Symposium on Bioinformatics, BSB 2014, Oct 2014, Belo Horizonte, Brazil. hal-01088828
1. What is GATB?

Motivation
NGS technologies produce terabytes of data. Efficient and fast NGS algorithms are essential to analyze them.

Objective
The Genome Assembly Tool Box (GATB)
- is an open-source software
- provides an easy way to develop efficient and fast NGS tools
- is based on data structure with a very low memory footprint
- allows complex genomes to be processed on desktop computers

2. Software Solution

The GATB philosophy proposes a 3-layer construction to analyze NGS datasets

1. **GATB-CORE**: a C++ library holding all the services needed for developing software dedicated to NGS data.
2. **GATB-TOOLS**: a set of elementary NGS tools mainly built upon the GATB library (k-mer counter, contigter, scaffold, variant detection, etc.).
3. **GATB-PIPELINE**: a set of NGS pipeline that links together tools from the previous layer.

3. Compact de Bruijn graph data structure

The core data structure of GATB is a de Bruijn graph that encodes the main information from the sequencing reads.

Strength of GATB
GATB makes this graph compact by using a Bloom filter (a space efficient probabilistic data structure) and by using a CFP additional structure that avoids false positive answers from the Bloom filter due to its probabilistic nature.

4. Workflow

Here is a typical workflow when working with GATB

GATB-CORE transforms the reads into a de Bruijn graph, saves it in a HDF5 file that can be opened by other tools developed with the GATB-CORE API.

5. GATB helps you as a NGS user

GATB’s de Bruijn graph: a basis for families of tools
- Data error correction
- Assembly
- Biological motif detection

Several tools based on GATB are already available
- **Bloocoo**: K-mer spectrum based read error corrector for large datasets
- **Minia**: Short read assembler based on a de Bruijn graph. Results are of similar contiguity and accuracy to other de Bruijn assemblers (e.g. Velvet)
- **DiscoSNP**: Discover Single Nucleotide Polymorphism (SNP) from non-assembled reads
- **TakeABreak**: Detects inversion breakpoints without a reference genome by looking for fixed size topological patterns in the de Bruijn graph

6. GATB helps you as a NGS developer

The GATB C++ library gives you the opportunity to quickly develop new NGS tools that fit your needs.

Major facts about the GATB C++ library
- Object Oriented Design
- Simple and powerful graph API
- Simple and powerful multithreading model
- HDF5 usage for data storage
- Fully documented with numerous code samples
- Complete test suite

Publications
R. Chikhi, G. Rizk: Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms for Molecular Biology 2013, 8:22

License & Web Site
GATB is released under the GNU Affero General Public License. Proprietary licencing for software editors or services providers is currently being studied.

For more details on GATB: http://gatb.inria.fr

Partners