@. Bankevich, A. Nurk, S. Antipov, D. Gurevich, A. Dvorkin et al., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, Journal of Computational Biology, vol.19, issue.5, pp.455-477, 2012.
DOI : 10.1089/cmb.2012.0021

@. Bradnam and K. , Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species, GigaScience, vol.2, issue.1, p.10, 2013.
DOI : 10.1186/2047-217X-2-10

URL : https://hal.archives-ouvertes.fr/hal-00868822

@. Chikhi, R. Risk, and G. , Space?efficient and exact de?Bruijn graph representation based on a Bloom filter (2012) Algorithms in, Bioinformatics, pp.236-248

@. Compeau, P. Pevzner, P. , and T. Glen, How to apply de Bruijn graphs to genome assembly, Nature Biotechnology, vol.7, issue.11, pp.987-991, 2011.
DOI : 10.1038/nbt.2023

@. Doring, A. Wesse, D. Rausch, and T. , SeqAn An efficient, generic C++ library for sequence analysis, BMC Bioinformatics, vol.9, issue.1, p.11, 2008.
DOI : 10.1186/1471-2105-9-11

C. @bullet-lemaitre, L. Ciortuz, and P. Peterlongo, Claire Lemaitre, Liviu Ciortuz, Pierre Peterlongo: Mapping?free and Assembly?free Discovery of Inversion Breakpoints from Raw NGS Reads, 2014.

@. Li, H. Durbin, and R. , Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-60, 2009.
DOI : 10.1093/bioinformatics/btp324

@. Liu, Y. Schröder, J. Schmidt, and B. , Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data, Bioinformatics, vol.29, issue.3, pp.308-315, 2013.
DOI : 10.1093/bioinformatics/bts690

@. Liu, Y. Schmidt, B. Maskell, and D. , CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform, Bioinformatics, vol.28, issue.14, pp.1830-1837, 2012.
DOI : 10.1093/bioinformatics/bts276

@. Luo, R. Liu, B. Xie, Y. Li, Z. Huang et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, GigaScience, vol.1, issue.1, p.18, 2012.
DOI : 10.1186/2047-217X-1-18

@. Markovits, NGS++: a library for rapid prototyping of epigenomics software tools, Bioinfor? matics, issue.15, pp.29-1893, 2013.

N. @bullet-philippe, M. Salson, T. Commes, and E. Rivals, CRAC: an integrated approach to the analysis of RNA-seq reads, Genome Biology, vol.14, issue.3, p.30, 2013.
DOI : 10.1371/journal.pone.0012271

@. Rizk, G. Lavenier, and D. , GASSST: global alignment short sequence search tool, Bioinformatics, vol.26, issue.20, pp.2534-2540, 2010.
DOI : 10.1093/bioinformatics/btq485

URL : https://hal.archives-ouvertes.fr/hal-00531499

@. Rizk, G. Lavenier, D. Chikhi, and R. , DSK: k-mer counting with very low memory usage, Bioinformatics, vol.29, issue.5, pp.652-653, 2013.
DOI : 10.1093/bioinformatics/btt020

URL : https://hal.archives-ouvertes.fr/hal-00778473

@. Salikhov, K. Sacomoto, G. Kucherov, and G. , Using Cascading Bloom Filters to Improve the Memory Usage for de Brujin Graphs, Algorithms in Bioinformatics Lecture Notes in Computer Science, vol.8126, pp.364-376, 2013.
DOI : 10.1007/978-3-642-40453-5_28

URL : https://hal.archives-ouvertes.fr/hal-00971576

@. Simpson, J. Wong, K. Jackman, S. Schein, J. Jones et al., ABySS: A parallel assembler for short read sequence data, Genome Research, vol.19, issue.6, pp.1117-1123, 2009.
DOI : 10.1101/gr.089532.108

@. Zhao and S. , Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing, BMC Genomics, vol.14, issue.1, p.425, 2013.
DOI : 10.1002/ijc.27817

@. Zerbino, D. Birney, and E. , Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Research, vol.18, issue.5, pp.821-829, 2008.
DOI : 10.1101/gr.074492.107