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ABSTRACT
With the widespread of the Model-Driven Development (MDD)
and surfing on the success of the Unified Modeling Language
(UML), software development is shifting from being code-
centric to model-centric. Models become the key artefacts
in the software development process. The success of the
project relies on the quality of these models. Early detection
of errors by debugging and testing these models is manda-
tory in order to reduce development cost, ensuring quality
and preventing rework at later stages. The fUML standard
defines the precise semantics for executing a subset of UML
models by defining a virtual machine. The models are then
directly executed without transformation. However, the vir-
tual machine is defined to execute the model as an atomic
action and does not fulfil the requirements for debugging it.
We highlight in this paper the limit of the current specifica-
tion of fUML (v1.0) and propose an approach for extending
the virtual machine with the key functionality that enables
debugging of fUML models. A working UML debugger pro-
totype has been implemented and the use and evaluation of
the approach are made on a case study.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Monitors

Keywords
fUML, UML, Debugging, Testing, Execution

1. INTRODUCTION
One major advantage of executable models is that once

defined, they can be simulated, debugged and validated in
short incremental and iterative cycles. Thus, models will not
be considered anymore as a rough and abstract representa-
tion of the expected system’s structure and behavior, but as
the system itself. This makes them a powerful asset in the
development of complex and critical systems. In order to
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achieve such goal, modelers require not only precise and un-
ambiguous languages for modeling both the structural and
behavioral properties of the system but also the tooling sup-
port for executing, testing and debugging these models. In
the current state of the art of modeling languages used in
the industry, UML appears to be the de facto standard.
However in the actual UML specification, the operational
semantics remains unclear, imprecise and ambiguous. The
semantics is explained in natural language and dispersed
through the specification. Due to this fact, research and
commercial tools aiming to execute models have to do some
assumptions on the precise operational semantics. As a re-
sult, the same models may be executed differently from one
tool into another.

To overcome this lack, the OMG released fUML 1.0 (Se-
mantics of a Foundational Subset for Executable UML Mod-
els) [21], a new standard that precisely defines the execution
semantics for a subset of UML 2.3 in a form of an Execution
Model implemented in a virtual machine. However, in order
to ensure the success of the development [14], models need to
be verified at early stages of the development lifecycle. One
way to do this is to simulate models by testing and debug-
ging them. Although the simulation does not provide any
formal proofs, it can significantly increase the confidence in
the model, provide system understanding and give an early
direct experience with the system being designed [25]. More-
over, Baker et al. [5] show in their case study a reduction
of 30%-70% in the time needed to correctly fix bugs using
model simulation.

Debugging is a methodical process of finding and reducing
the number of bugs or defects in a program thus making it
behave as expected [26]. State of the art for software de-
bugging, testing, and verification in the case of code-centric
development is well known in the community [12]. In the
case of model-centric development and without the addi-
tional step of transforming the model to code, only few works
address it [23, 17, 8, 7, 10]. However, they do not use the
fUML standard for the execution semantics. Nowadays pro-
gramming without debugging support seems to be inconceiv-
able. Thus, since fUML is the standard for the execution of
UML models, the idea of providing the fUML virtual ma-
chine with a debugger comes quite naturally. However, the
implementation of the fUML virtual machine is defined to
execute the model as an atomic action and does not allow
any interaction with it. The only goal of the virtual ma-
chine is to execute models in an automatic way, i.e. given a
value for the inputs parameters of a behavior, the execution
returns values for their outputs. The execution is neither



controllable nor observable in the current specification of
fUML [19, 9]. By controllable, we mean that it is not pos-
sible to pause and resume the execution. By observable, we
mean that it is not possible to know what happens inside
the execution (e.g., be aware when a sub-activity starts or
when a variable is modified); monitoring of the execution
is not available. Thus, it is not possible to build a debug-
ger using the fUML virtual machine straightforwardly. In
order to obtain a wider adoption of model execution in the
industry, a tool based on a standard which provides correct
debugging support is strongly needed.

In this paper we present a critical analysis on the newly
defined fUML standard and we address its lacks in terms of
controllability and observability, key issues for model execu-
tion and debug. An approach is proposed in order to extend
the standard with the set of concepts and facilities required
to debug models. The paper is organised as follows. Section
2 presents the fUML standard and a critical analysis of the
current specification. In Section 3, we propose an extension
of the fUML Execution Model enabling controllability and
observability of the execution, and we detail the modifica-
tions needed in order to incorporate the extension in the
Execution Model. Section 4 presents our implemented pro-
totype allowing to test and debug models. The evaluation
of the extension and the prototype is presented in Section 5.
Finally, related work is addressed in Section 6 and Section
7 concludes by sketching some future perspectives of this
work.

2. FUML
fUML is an OMG standard that precisely defines the ex-

ecution semantics of a subset of UML 2.3. The standard
defines a basic virtual machine (in the form of pseudo Java-
code) enabling compliant fUML models (i.e., UML models
using only elements comprised in the fUML subset) to be
executed. It can be decomposed in three principle parts (i)
the abstract syntax represented by a subset of UML, mainly
composed by the Class Diagram and most of the Activity

Diagram; (ii) the Execution Model which defines the exe-
cution semantics of the abstract syntax and (iii) the model
library which defines primitive types and behaviors. In this
section we present these three parts and then we highlight
the current limitations of the current specification.

2.1 Abstract syntax
The abstract syntax of fUML is structured in the same

way as UML but being a subset of the later, not all packages
are included. For modeling the structure, Classes are in-
cluded to deal with the basic modeling concepts and describe
the classes of a system, their attributes, operations and re-
lationships among each other. For modeling the behavior,
Actions, Activities and CommonBehaviors are partially in-
cluded. Indeed, some elements with a too high degree of
abstraction are excluded from the specification. Thus, the
Activity Diagram describes how the actions in the system
are executed using control and data flow between the ac-
tions.

2.2 Execution model
The Execution Model is itself a model, written in fUML,

that specifies how fUML models are executed. The execu-
tion semantics adopted by fUML is quite similar to Coloured
Petri Nets [15] and is based on the principle of offering

Figure 1: Regular call between semantic elements

and consuming object or control tokens between the differ-
ent activity’s constituents (i.e., Activity Nodes and Activity
Edges).

To illustrate this, Figure 1 shows a simple activity dia-
gram represented with one InitialNode, two Action nodes
and an ActivityFinalNode. Each of these nodes are con-
nected with a ControlFlow edge which represents that a
node starts after the previous one is finished. The sequence
diagram shows the corresponding calls between the nodes in
the Execution Model. The diagram is a simplified version
of what really happens during the execution and focuses on
the interaction between elements. ActionActivation and
ActivityEdgeInstance are the instantiation of the corre-
sponding abstract syntax (see below for the explanation of
the instantiation in the Execution Model using the visitor
pattern). When the fUML virtual machine invokes this ac-
tivity, it starts by inserting a token in each InitialNode

and other nodes with no inputs ControlFlow. Then, the
nodes with a token (i.e., the InitialNode in our example)
fire (i.e., execute their own behavior) and sendOffer on each
of their outputs ControlFlow. The ControlFlow is then able
to call on its target node A to receiveOffer. When the node
A receives an offer, if first checks if the prerequisites for its
execution have been satisfied as determined by isReady, if
yes, takes the offered tokens from inputs control flow and
fire. At the end of the fire operation, the node directly
sendOffer on its outputs ControlFlow. The execution of an
activity is then an extended chain of sendOffer -receiveOffer -
fire-sendOffer calls between the activity constituents. Each
abstract syntax element of an activity diagram has its own
semantics. For example, a DecisionNode will offer a token
only on one of its output edges determined during its fire ex-
ecution. Although the example looks very simple, in order
to execute, many actions have to be carried out.

The Execution Model contains a package called Loci (Fig-
ure 2), which contains the Locus, Executor, and Execution-

Factory classes that model a fUML execution engine and its
environment. The Executor provides the root abstraction
for executing a fUML model. It provides the basic interface
for evaluating value specifications and executing behaviors
(e.g., Activity). Every execution takes place at a specific
Locus. A Locus can be seen as an abstraction of a physi-
cal or virtual computer capable of executing fUML models.
Objects and links created during or before an execution are
associated to it. The Execution Model is based on the Vis-
itor pattern [11]. Using this pattern, each abstract syntax
metaclass has a corresponding visitor class in the Execu-
tion Model (named *Execution and *Activation). In this



Figure 2: Abstract of the Loci package

paper, we call semantic elements the corresponding visitor
class of the abstract syntax. All visitor classes in the Ex-
ecution Model are descendent, directly or indirectly from
the root SemanticVisitor class. To create a correspond-
ing visitor instance, the Executor uses an instance of the
ExecutionFactory class located at the execution Locus.

The ExecutionFactory maintains the set of primitive be-
haviors available to be called. In fUML, primitive behaviors
are defined syntactically as instances of OpaqueBehavior.
For each OpaqueBehavior instance representing a primitive
behavior, the execution factory maintains a corresponding
prototype instance of OpaqueBehaviorExecution. The Ex-

ecutionFactory contains also some instances of Semantic-

Strategy to deal with the semantic variation points of UML
(e.g., event dispatch scheduling).

To configure the execution environment, it is necessary to
instantiate a set of collaborating objects from classes within
the Execution Model that provide the initial execution en-
vironment.

2.3 Limitations
The major limitation of the Execution Model comes from

the fact that the execution is not controllable. The Execu-

tor only provides few operations to evaluate a value spec-
ification and to execute synchronously or asynchronously a
behavior. Then, given a value for its input parameters, the
execution returns values for its output behaviors. As ex-
plained in Section 2.2 and shown on Figure 1, the execution
is computed directly through the chain of calls between the
semantic elements. No interaction or insight about what
happens is provided. The execution of a behavior can be
seen as an atomic operation in the Execution Model since
no interactions with the execution are provided.

Another limitation comes from the fact that the Execu-
tion Model is not observable. During the execution the only
information available is some printing from each semantic el-
ements of the Execution Model (e.g., inside the fire method
of the ActionActivation, the printing corresponds to “fire
node nodeName”). Obviously this printing is useful for de-
bugging the implementation of the fUML Execution Model
but is not suitable to observe the execution. It is not pos-
sible to set listeners on elements (e.g., be aware when a sub
Activity starts), or on objects instantiated on the Locus

(e.g., be aware when an attribute of an object is modified).
More generally, monitoring the execution is not possible.
We are only aware when behavior starts and when it fin-
ishes. These limitations prevent to link the execution to a
prototyping user interface to understand the end-user use
cases and to find interaction bottlenecks.

fUML also lacks of some generic extension mechanisms

Figure 3: Outline of the fUML extension

for customizing the semantics of modeling concepts. For
example, the use of UML profiles is not addressed in the
standard.

Moreover, as highlighted in the specification, there are
some semantics areas which are not explicitly constrained
by the Execution Model: (i) the execution is agnostic about
time, both discrete and continuous time can be used; (ii) the
semantics of concurrency includes an implicit concept of con-
current threading, the execution tool only needs to respect
the various creation, termination, and synchronization con-
straints of the model (i.e., a ForkNode in the model does not
imply to run multiple threads); (iii) the semantics of inter-
object communications mechanisms assumes that all com-
munications are perfectly reliable and deterministic. The
result is that some execution tools can still be conformant
to the semantics specified by the Execution Model for fUML
and semantically vary in the above areas while executing the
same model. This lack of constraints is an important prob-
lem of fUML since it breaks the interoperability of tools,
the same model may not be executed in the same way on
different tools.

The purpose of this work is not to address all of these
limitations but to focus on the limitations which prevent to
debug models using the fUML virtual machine.

3. FUML EXTENSION
This section presents our extension to fUML in order to

control and to observe the Execution Model at runtime.

3.1 Tokens and Lifecycle Controller
Section 2.3 shows that the fUML execution is considered

as an atomic action with no control over it. To bring con-
trollability in the Execution Model, we propose to add to
the Locus a new class Controller allowing to control the
execution (Figure 3).

The key idea is to redirect the communication call from
the semantic elements to the Controller. The commu-
nication corresponds to the methods which offer and con-
sume objects and control tokens (e.g, receiveOffer, send-
Offers...). Figure 4 shows the call of methods using a con-



Figure 4: Modified call between semantic elements

troller. When the action A finishes, instead of directly do
sendOffer to their outputs edges, the node A sends this in-
formation to the controller. The controller is then able to
transmit the information itself to the edge. The implemen-
tation of the controller on Figure 4 mimics the normal Ex-
ecution Model and just transmits the information. Using a
controller gives many benefits. By interfacing the controller
with a graphical interface, it is possible to control the execu-
tion in a finer grain. For instance, blocking the execution on
each receiveOffer method corresponds to setting a break-
point on each node before its execution. The controller is
then able to give insights about what happens during the
execution of the behavior. The TokensController interface
contains the methods which consume and offer tokens be-
tween the activity constituents.

By taking advantage of the TokensController, it is possi-
ble to add some lifecycle control to the execution by tempo-
rally blocking the transmission of tokens. The LifeCycle-

Controller interface defines methods to start, stop, pause
and resume the execution.

The Controller implements both TokensController and
LifeCycleController and keeps a reference to the Execu-

tor to be able to run parts of the model without explicitly
writing entry points (e.g, writing a ”main” activity to test a
sub-activity).

The Controller owns a Monitor which keeps records of
all received Event during the execution. ActivityEvent and
ActivityNodeEvent correspond to the entry/exit point of an
activity and node. SignalEvent happens when signals are
sent to the event pools (e.g, when a node SendSignalAc-

tion is executed). ExtensionalValueEvent corresponds to
the execution of a node from the IntermediateActions of
the Actions package (e.g, CreateObjectAction, ReadStruc-
turalFeatureAction, WriteStructuralFeatureAction...) ;
these actions create, modify, read and delete objects or links
instantiated at the Locus (Figure 2). By using the Monitor,
it is possible to observe the execution by listening to Event

happening in the Execution Model.
The Java Virtual Machine proposes a Tool Interface (JVM

TI) which provides both a way to inspect the state and to
control the execution of running applications. It supports
the full breadth of tools that need access to the JVM state.
We argue that the fUML virtual machine should empower
the use of both the Controller and Monitor concepts inside
the Execution Model to bring such flexibility, controllabil-
ity and observability during the execution. Thus, the Con-

troller answers the lack of controllability while the Monitor
handles the need of observability.

3.2 Debug Controller

In a debugger, setting breakpoints corresponds to an in-
tentional stopping or pausing place in a program. More
generally, putting a breakpoint on the model is a means of
acquiring knowledge about the execution. During the in-
terruption, the modeler can inspect the environment to find
out whether the executed model is working as expected. A
watchpoint corresponds to a specific breakpoint, such that
the reading, writing, or modification of a specific variable
triggers it. The DebugController which extends the Con-

troller handles a list of Breakpoint. By using the Monitor

and comparing the Event happening during the execution
with the Breakpoint signature, the Controller can check if
the Breakpoint holds and then pause the execution. Break-
point and ConditionalBreakpoint are set on the nodes of
an activity while Watchpoint are set on instantiated objects
and links.
DebugController defines methods directly related to the

need of a debugger. One important point to effectively de-
bug is to be able to roll-back the execution. Since the execu-
tion formalism is based on the Coloured Petri Nets, tokens
and their contents on the system represent the actual execu-
tion state. The DebugController saves information about
the position and the contents of the tokens (at every change
or under certain conditions in order to keep memory effi-
ciency in the case of big models) in a TokensState. The
DebugController is then able to roll-back the execution by
swapping all the tokens with an old TokensState. The De-

bugController proposes also to change the SemanticStrat-
egy (the semantic variation points of UML) and the value
of objects and links instantiated in the Locus dynamically
during the execution. By rolling-back the execution and
changing the semantic variation points or/and the value of
objects and links, it is possible to re-execute a part of the
model and to compare the obtained results.

Additionally, the DebugController defines methods to dy-
namically insert, move and delete tokens from nodes. In-
stead of following the normal execution defined by the work-
flow of the activity (i.e., tokens offered and consumed by
the activity’s constituents), these methods allow to directly
jump at different locations in the activity by moving tokens.

3.3 Modification of the Execution Model
Section 3.1 and 3.2 present the extension of the fUML

Execution Model. In order to incorporate this extension in
the Execution Model, two minor modifications are needed :
(i) using the Controller, we need to change in the seman-
tic elements every call of method on which tokens transit
(e.g, receiveOffer) to the equivalent method in the Con-

troller (TokensController interface); (ii) concerning the
monitoring of Event, in the same way that the Execution
Model contains some printing in each semantic elements,
we need to add some calls to the Monitor to notify which
events are happening (e.g, the execution of a ReadStruc-

turalFeatureAction node will trigger the occurrence of an
ExtensionalValueEvent on the Monitor). The drawback
of these modifications is that they require to modify many
semantic elements, even if the modification is trivial.

Another approach is to use aspect-oriented programming
(AOP) [16], by setting an around advice on every call of
methods on which tokens transit, it is possible to bypass the
call and to redirect it to the Controller [13]. Moreover, it
is possible to weave aspects before or after the execution of
methods in order to trigger a specific Event to the Monitor.



Figure 5: Prototype of the UML debugger using the
fUML virtual machine

The major advantage of this approach is that it does not
require to modify the current specification of fUML. The
aspects are woven in the Execution Model at runtime.

Then, we propose the two solutions to modify the Ex-
ecution Model in order to incorporate the controller. The
AOP solution is clearly a better way since it does not require
to modify the actual Execution Model but only extending
it with aspects. It is worth noticing that our extension of
fUML does not modify the normal semantics execution of
fUML, i.e. with or without our extension, an fUML model
will be executed the same way (see Section 5.1).

4. PROTOTYPE
The prototype we developed is currently provided as an

Eclipse EMF plugin. It accepts UML models in the form
of XMI files as input. It uses the fUML Reference Imple-
mentation [27] with the extension proposed in Section 3 and
uses the Papyrus plugin [1] for the graphical representations
of the model. We have chosen the AOP approach from Sec-
tion 3.3 in order to extend the fUML Execution Model. The
intent of this prototype is to assist UML modelers by sim-
ulating and debugging their models using the operational
semantics of the fUML virtual machine. The models are
directly interpreted without an intermediate transformation
step.

Figure 5 shows a screenshot of the prototype executing a
test of the Online Book Store (OBS), taken from [20]. The
prototype follows the concepts of the Eclipse Java debugger
and offers equivalent views for rich UML-debugging capabil-
ities. A description of each view is provided below.

Model (label 1) It displays the model being executed us-
ing both the Eclipse UML2 tree editor plugin and the
Papyrus plugin. Both plugins are extended to show
information and the tokens present in the activity dia-
gram. The node ready to be executed are highlighted
on the diagram. By selecting nodes, it is possible to
add breakpoints. It allows also to directly run an ac-
tivity from the model without explicitly writing entry

Figure 6: Timing execution comparison between
fUML and fUML with our extension

points. If the activity contains input parameters, the
plugin will ask the user to enter them.

Execution Events (label 2) It shows information about
the events happening during the execution. It repre-
sents the detailed trace-log of the simulation.

Objects and Links (label 3) It shows all the created ob-
jects and links. By selecting an item in the view, it
is possible to set a watchpoint on it or see attributes
values in the Properties view. It is also possible to
manually create, remove and modify these values.

Breakpoints (label 4) It displays all the breakpoints and
watchpoints currently set during the execution. It is
possible to remove and disable breakpoints.

Debug (label 5) It shows the current call stack, displaying
the nodes ready to be executed in a tree of the called
sub-activities. The debugger supports both breakpoint
based and stepwise debugging. Multiple actions are
available to control the execution such as resume, sus-
pend, terminate, step into, step over and step return.

Tokens State (label 6) It shows all the saved TokensState.
The TokensState are saved manually. By selecting a
TokensState in the list, it is possible to roll-back the
execution to this precedent state.

Configuration (label 7) It displays the available and the
used semantic variation points of the Execution Model.
It allows to change the variation points before or dur-
ing the execution.

Properties (label 8) It displays information about the se-
lected item from other views.

5. EVALUATION
This section presents the evaluation of our fUML exten-

sion by first, comparing our prototype with other debuggers
from the literature and finally, by testing it with a case study.

5.1 The extension of the Execution Model
We empirically evaluated our extension on 30 fUML mod-

els from the fUML Reference Implementation [27]. The goal
of these models is to test the implementation of fUML. The
size of the models is varying, ranging from few nodes to 50
nodes. The purpose of this evaluation is twofold: (i) to ver-
ify that our extension does not break the semantic execution
of fUML and (ii) to evaluate the additional workload added
by our extension.

We run these models using both the fUML Reference Im-
plementation and through our prototype without setting any



breakpoints (on a MacBook Air 2011 with the Intel Core i5
processor and 4 GB of RAM). We obtained the same outputs
from both executions assuring us that the semantic execu-
tion remains the same. Figure 6 shows the timing execution
with and without our extension. We take the average timing
of 100 executions on each model. Due to the CPU’s schedul-
ing and the use of small models, the timing execution of the
same model can differ from one execution into another. It
can be difficult to measure the difference using the extension.
Thus, the measured timing execution remains close due to
the fact that our extension only adds a lightweight workload
by means of additional calls from and to the controller.

5.2 Debuggers requirements
Following the state-of-art of debugging features [24, 22]

and by testing many of the most important language-debuggers
available nowadays (i.e., debuggers for C, C#, Java ...), we
synthesize the most important features that every debuggers
should support:

Controlling controlling the execution of the program (i.e.,
step-by-step, pause, resume...).

Breakpoints pausing the program at a specified place.

Conditional Breakpoints breakpoints that are triggered
when reached only if a particular condition is true.

Watchpoints ”data” breakpoints that are triggered when
a variable is read or written.

Visualization visualizing graphically or textually the cur-
rent position in the program.

State-reading the ability to inspect variables of the run-
ning program.

State-modifying the ability to modify the variables of the
running program.

Trace-log the ability to log what happens during the exe-
cution.

Jumping the ability to continue the execution at a different
location in the program.

Reverse-execution the ability to roll back the execution
to a previous program state.

Hot code replace the ability to modify some parts of the
code without restarting the debugging from the start.

However, debugging models and code is quite different.
Debugging models happens at a higher level of abstraction
and implies some conceptual differences. For example, in-
stead of visualizing threads and operation call stack, the vi-
sualization corresponds to the activity diagram with tokens
and offers positions. Variable corresponds to the objects and
links instantiated in the Locus and so on. Moreover, UML
is full of semantic variation points which explicitly identify
the areas where the semantics are intentionally under spec-
ified to provide leeway for domain-specific refinements. The
debuggers have to consider the choice of these semantic vari-
ation points. One particularity of the models over the code is
that some aspects of a system can be modeled very precisely
whereas others parts remain imprecise leading to incomplete
models [18]. Though, models still need to be debugged at
early stage to ensure quality.

Thus, the debuggers have to propose views adapted to
models and support also some additional features related to
the model world:

Incomplete models the ability to debug incomplete mod-
els.

Figure 7: Excerpt of the Update activity

Semantic variation points the ability to choose and change
dynamically the variation points.

Table 1 shows these requirements handled by our pro-
totype (column 1). Two requirements which imply deeper
change of the architecture of the virtual machine remains
open. As currently defined by the OMG, the Execution
Model attempts to execute valid and syntactically verified
models as inputs [21]. However, these assumptions are not
always satisfied when debugging incomplete models, which
results in errors during the instantiation (e.g., NullPoint-
erException) in the virtual machine. Concerning the hot
code replace feature (e.g., modifying the sequencing of ac-
tions of an activity at runtime), early experimentation re-
veals that it is possible, but still requires a heavy extension
of the Execution Model. Due to space limitation, this high-
level feature is not presented here.

5.3 Case study
The use of our prototype has been evaluated on a simple

model. This model has been chosen because, it is representa-
tive of a case in which the use of a debuggers is particularly
useful.

Figure 7 shows the Update activity from a robotic sys-
tem. This activity is in charge of updating the position of
the robot and adapting the sensor accordingly. The activ-
ity starts by some re-initialization by calling ReInitialize,
then starts in parallel using a ForkNode three sub-activities
(CallBehaviorAction): (i) UpdateSensor updates the sen-
sor for adapting the move of the robot; (ii) UpdatePosition
updates the position of the robot on the map; (iii) LogInfo
logs the current information. The JoinNode is present to
synchronize the execution of UpdatePosition and LogInfo.
When both calls are done, all the input flows of the JoinN-

ode are offered, then the JoinNode can fire. The MergeNode

can fire when one of its inputs is offered. Before the activity
finishes, NotifyPart is called to notify the other parts of the
systems that the position has been updated.

Using our prototype and executing this activity stepwise,
the modeler realizes that sometimes it does not execute the
activity as expected. By rolling back the execution and ex-
ecuting multiple times this activity, it happens that many
unintended execution paths exist in the diagram. Table 2
shows some of the execution paths starting after the ForkN-

ode to the execution of the ActivityFinalNode. Only the
CallBehaviorAction are presented on the table. There are
two issues : (i) NotifyPart may be fired 2 times (e.g., exe-
cution paths 3 and 6); (ii) UpdateSensor or UpdatePosition
and LogInfo may be never fired (e.g., execution paths 1 and



Academic Commercial
Our prototype Dotan et al. Populo Cameo Simu-

lation Toolkit
AM|USE 2.0 Eclipse Java

Debugger
Generic features

Controlling yes yes yes yes yes yes
Visualization callstack,

graphical
callstack,
graphical

callstack, tex-
tual

callstack,
graphical

graphical callstack, tex-
tual

Breakpoints yes yes yes yes yes yes
Cond. Breakpoints yes no no yes no yes
Watchpoints yes no no no no yes
Trace-log yes yes yes yes yes no
State-reading yes yes yes yes yes yes
State-modifying yes no no no no yes
Jumping yes no no no no no
Hot code replace no no no no no yes
Reverse-execution yes no no no no no

Models features
fUML semantics yes no no yes yes -
Incomplete models no partial no no no -
semantic variation points yes no partial no no -

Table 1: Comparison of UML Debuggers using direct simulation

N. Intended? Execution path
1 no UpdateSensor→NotifyPart

2 yes UpdateSensor→UpdatePosition→LogInfo→NotifyPart

3 no UpdateSensor→LogInfo→UpdatePosition→NotifyPart→NotifyPart

4 no UpdatePosition→LogInfo→NotifyPart

5 yes UpdatePosition→UpdateSensor→LogInfo→NotifyPart

6 no UpdatePosition→UpdateSensor→LogInfo→NotifyPart→NotifyPart

7 . . . . . .

Table 2: Some execution paths of the Update activ-
ity

4). This problem is known as a lack of synchronization, i.e.
joining the concurrent fork path with a merge structure. A
lack of synchronization at a merge structure results in unin-
tentional multiple activations of nodes that follow the merge
node. Moreover, a lack of knowledge from the modeler con-
cerning the semantics of the ActivityFinalNode leads to
the second issue. Indeed, when a ActivityFinalNode fires,
the whole activity terminates even if some control tokens
remain on the diagram. For example, the execution path
1 shows that the ActivityFinalNode has been fired before
UpdatePosition and LogInfo receive their offer (receiveOffer)
from the ForkNode. It can be difficult for a naive modeler to
understand why the activity does not work properly without
the debugging capabilities.

The modeler corrects the problem by removing the MergeN-
ode and changing the target of the output ControlFlow of
UpdateSensor to the JoinNode. The JoinNode can then syn-
chronize the execution of UpdateSensor, UpdatePosition and
LogInfo before continuing to NotifyPart. The modeler also
sets a breakpoint on the Update activity and re-starts the
debugging to directly test this part of the system.

Using our prototype, the modelers can get a better un-
derstanding on how fUML is executing their models, and
solve some conceptual and architectural issues in their mod-
els. Both novices and experienced modelers can benefit from
the debugging functionality, helping novices to identify im-
proper use of modeling constructs and experienced modelers
to better understand the designs that other modelers create.

6. RELATED WORK
There are many research and commercial tools enabling

the execution of UML models. The execution approach can
be divided into two fields: the transformations of the models
into executable code such as Executable UML introduced by
Mellor et al. [20], and the direct interpretation. Due to

space limitations, we only present the work based on the
direct interpretation.

The first work was from Riehle et al. [23] which present
the architecture of a virtual machine for UML that interprets
directly the model without transformation steps. Dotan et
al. [17, 8] present a UML debugger based on their own
generic model execution engine. The debugger proposes to
execute the model stepwise, set breakpoints, inspect vari-
ables, and visualize the execution. Moreover, it supports
the execution of incomplete models, i.e. when there is miss-
ing information regarding the next step, the debugger asks
the user what do to. Crane et al. [7] propose an interpreter
for UML 2 Actions and Activities. This work was done after
the refinements of the activity package in the second version
of UML, when the semantics changes to the Petri-Net one.
The interpreter offers analysis capabilities, random execu-
tion, reachability properties, assertion and deadlock check-
ing. Fuentes et al. [10] present Populo, a UML model de-
bugger compliant with the UML 2 standard for executing
models. The particularity of Populo is that the UML action
language can be customised to meet the needs of a specific
profile.

However, these works are not based on the new fUML
standard and have done some assumptions on the precise op-
erational semantics which creates tool-interoperability and
extensibility problems. Moreover, the semantics richness of
these approaches are less complete than fUML, many simpli-
fications have been done and the semantic variation points
are never addressed. Some features such as the roll-back sup-
port and the configuration of the semantic variation points
are only supported by our approach.

Mayerhofer [19] explains some limitations of fUML but
does not provide any solution to it. They present their re-
search direction that has given rise to the moliz project [3]
which aims to implement a novel model execution environ-
ment based on fUML.

Recently, some commercial UML tools have implemented
fUML in their own environment enabling execution and ba-
sic debugging capabilities (e.g., The Cameo Simulation Toolkit
for the MagicDraw tool and AM|USE 2.0 by LieberLieber
for the Enterprise Architect tool). They offer some non-
standard functionalities such as the support of state ma-
chine (W3C SCXML standard) and multiple action lan-
guages (e.g., Javascript, Ruby, Python...). These tools are
compared to our prototype on Table 1.

Concerning the approach which extend the fUML stan-



dard, Ellner et al. have also observed the lack of “human
interaction” (i.e., controllability) while using fUML to enact
software process models [9]. The authors propose some ex-
tensions to support distributed execution, suspending and
resuming execution on different nodes and a request exten-
sion to interact with the fUML virtual machine. Benyahia
et al. [6] present a lightweight modification of fUML to cope
with the need of real-time systems concerning the scheduling
and concurrency within the Execution Model. They intro-
duce a Scheduler class to dispatch actions and therefore
break the sequential execution of fUML.

Abdelhalim et al. [4] present an approach to represent an
fUML models into the process algebraic specification lan-
guage CSP (Communicating Sequential Processes) and use
the FDR (Failures-Divergences Refinement) model-checker
to check if the model is deadlock free. When a deadlock is
found, a counter-example trace which led to the deadlock is
generated. The verification of the models is done through
automatic model-checking instead of simulation as we pro-
mote it in our approach.

7. CONCLUSIONS AND FUTURE WORK
This paper presented an approach which extends the fUML

Execution Model with a controller to enable the implemen-
tation of a debugger that takes advantage of the fUML vir-
tual machine. The approach covers the major features of
code-based debuggers such as stepwise execution, setting
of breakpoints/watchpoints, inspection and manipulation of
values, trace-logs, roll-back, and interactive visualisation of
the execution.

The developed prototype allows to directly simulate UML
models to gain system understanding, detect errors, and
check whether the system conforms to engineer expectation
and user requirements. Moreover, it can significantly reduce
development cost and time by ensuring quality and prevent-
ing rework at later stages.

It is worth noticing that our prototype is modeling-tool
independent and that the proposed extensions of fUML do
not change the regular execution semantics.

The new controller is not only useful for debugging pur-
poses, it also brings more flexibility, controllability and ob-
servability to the Execution Model raising the possibility of
using the operational semantics of fUML to more areas (e.g,
using fUML as an engine to execute processes and workflow).
Moreover, due to the fact that generally software engineers
lack of skills in formal techniques, we investigate the use
of a Model Checker in our prototype to analyse automati-
cally the behaviors of activities in order to detect deadlocks,
livelocks and to calculate reachability coverage.
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