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Abstract

Various genome evolutionary models have been proposed these last decades to predict the
evolution of a DNA sequence over time, essentially described using a mutation matrix. By essence,
all of these models relate the evolution of DNA sequences to the computation of the successive
powers of the mutation matrix. To make this computation possible, hypotheses are assumed
for the matrix, such as symmetry and time-reversibility, which are not compatible with mutation
rates that have been recently obtained experimentally on genes ura3 and can1 of the Yeast
Saccharomyces cerevisiae. In this work, authors investigate systematically the possibility to relax
either the symmetry or the time-reversibility hypothesis of the mutation matrix, by investigating all
the possible matrices of size 2ˆ 2 and 3ˆ 3. As an application example, the experimental study on
the Yeast Saccharomyces cerevisiae has been used in order to deduce a simple mutation matrix,
and to compute the future evolution of the rate purine/pyrimidine for ura3 on the one hand, and of
the particular behavior of cytosines and thymines compared to purines on the other hand.
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1 Introduction
Due to mutations or recombination, some variations occur in the frequency of each codon, and these
codons are thus not uniformly distributed into a given genome. Since the late ‘60s, various genome
evolutionary models have been proposed to predict the evolution of a DNA sequence as generations
pass. Mathematical models allow the prediction of such an evolution, in such a way that statistical
values observed in current genomes can be at least partially recovered from hypotheses on past
DNA sequences. Moreover, it can be attractive to study the genetic patterns (blocs of more than
one nucleotide: dinucleotides, trinucleotides...) that appear and disappear depending on mutation
parameters.

A first model for genomes evolution has been proposed in 1969 by Thomas Jukes and Charles
Cantor [1]. This first model is very simple, as it supposes that each nucleotide has the probability m
to mutate to any other nucleotide, as described in the following mutation matrix,

¨

˚

˚

˝

˚ m m m
m ˚ m m
m m ˚ m
m m m ˚

˛

‹

‹

‚

.

In that matrix, the nucleotides are ordered as pA,C,G, T q, so that for instance the coefficient in row
3, column 2 represents the probability that the nucleotide G mutates into a C during the next time
interval, i.e., P pG Ñ Cq. As diagonal elements can be deduced by the fact that the sum of each row
must be equal to 1, they are omitted here.

This first attempt has been followed up by Motoo Kimura [2], who has reasonably considered
that transitions (A ÐÑ G and T ÐÑ C) should not have the same mutation rate than transversions
(A ÐÑ T , A ÐÑ C, T ÐÑ G, and C ÐÑ G), this model being refined by Kimura in 1981, with
three constant parameters to make a distinction between natural A ÐÑ T , C ÐÑ G and unnatural
transversions, leading to:

¨

˚

˚

˝

˚ c a b
c ˚ b a
a b ˚ c
b a c ˚

˛

‹

‹

‚

.

Joseph Felsenstein [3] has then supposed that the nucleotides frequency depends on the kind of
nucleotide A,C,T,G. Such a supposition leads to a mutation matrix of the form:

¨

˚

˚

˝

˚ πC πG πT

πA ˚ πG πT

πA πC ˚ πT

πA πC πG ˚

˛

‹

‹

‚

with πA, πC , πG, and πT denoting the frequency of occurance of each nucleotide, respectively.
Masami Hasegawa, Hirohisa Kishino, and Taka-Aki Yano [4] have generalized the models of [2] and
[3], introducing in 1985 the following mutation matrix:

¨

˚

˚

˝

˚ απC βπG απT

απA ˚ απG βπT

βπA απC ˚ απT

απA βπC απG ˚

˛

‹

‹

‚

.
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Mutation ura3 can1
T Ñ C 4 4
T Ñ A 14 9
T Ñ G 5 5
C Ñ T 16 20
C Ñ A 40 21
C Ñ G 11 9
A Ñ T 8 4
A Ñ C 6 5
A Ñ G 0 1
G Ñ T 28 20
G Ñ C 9 12
G Ñ A 26 40
Transitions 46 65
Transversions 121 85

Table 1: Summary of sequenced ura3 and can1 mutations [12]

These efforts have been continued by Tamura, who proposed in [5, 6] a simple method to
estimate the number of nucleotide substitutions per site between two DNA sequences, by extending
the model of Kimura (1980). The idea is to consider a two-parameter method, for the case where a
GC bias exists. Let us denote by πGC the frequency of this dinucleotide motif. Tamura supposes that

πG “ πC “
πGC

2
and πA “ πT “

1 ´ πGC

2
, which leads to the following rate matrix:

¨

˚

˚

˝

˚ κp1 ´ πGCq{2 p1 ´ πGCq{2 p1 ´ πGCq{2
κπGC{2 ˚ πGC{2 πGC{2

p1 ´ πGCq{2 p1 ´ πGCq{2 ˚ κp1 ´ πGCq{2
πGC{2 πGC{2 κπGC{2 ˚

˛

‹

‹

‚

.

All these models are special cases of the GTR model [7], in which the mutation matrix has the
form (using obvious notations):

¨

˚

˚

˝

˚ fACπC fAGπG fATπT

fACπA ˚ fCGπG fCTπT

fAGπA fCGπC ˚ πT

fATπA fCTπC πG ˚

˛

‹

‹

‚

.

Non-reversible and non-symmetric models have, for their part, been considered in practical inferences
since at least a decade for phylogenetic studies, see for instance [8, 9, 10]. As they are more regarded
for their interest in practical inference investigations than on the theoretical side, they will not be
developed in this article.

Due to mathematical complexity, matrices theoretically investigated to model evolution of DNA
sequences are thus limited either by the hypotheses of symmetry and time-reversibility or by the
desire to reduce the number of parameters under consideration. These hypotheses allow their
authors to solve theoretically the DNA evolution problem, for instance by computing directly the
successive powers of their mutation matrix. However, one can wonder whether such restrictions
on the mutation rates are realistic. Focusing on this question, we used in [11] a recent research work
of Lang and Murray [12], in which the per-base-pair mutation rates of the Yeast Saccharomyces
cerevisiae have been experimentally measured (see Table 1), allowing us to calculate concrete
mutation matrices for genes ura3 and can1. We deduced in [11] that none of the existing genomes
evolution models can fit such mutation matrices, implying the fact that some hypotheses must be
relaxed, even if this relaxation implies less ambitious models: current models do not match with what
really occurs in concrete genomes, at least in the case of this yeast. Having these considerations in
mind, the data obtained by Lang and Murray have been used in [11] in order to predict the evolution of
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the rates or purines and pyrimidines in the particular case of ura3. Mathematical investigations and
numerical simulations have been proposed, focusing on this particular gene and its associated matrix
of size 2ˆ2 (purines vs. pyrimidines), and of size 3ˆ3 (cytosines and thymines compared to purines).
Instead of focusing on two particular matrices, this extension of [11] investigates systematically all
the possible mutation matrices of sizes 2 ˆ 2 and 3 ˆ 3. Thus, the study is finalized in this article, by
investigating all the possible cases, and discussing about their mathematical and biological relevance.

The remainder of this research work is organized as follows. First of all the case of mutation
matrices of size 2ˆ2 is recalled in Section 2 and applied to the ura3 gene taking into account purines
and pyrimidines mutations. A simulation is then performed to compare this non reversible model to
the classical symmetric Cantor model. The next sections deal with all the possible 6-parameters
models of size 3ˆ 3. In Section 3, a complete theoretical study is led encompassing all the particular
situations, whereas in Section 4 an illustrative example focusing on the evolution of the purines,
cytosines, and thymines triplet is given for ura3. We finally conclude this work in Section 5.

2 General Model of Size 2 ˆ 2

In this section, a first general genome evolution model focusing on purines versus pyrimidines is
proposed, to illustrate the method and as a pattern for further investigations. This model is applied to
the case of the yeast Saccharomyces cerevisiae.

2.1 A convergence result
Let R and Y denote respectively the occurrence frequency of purines and pyrimidines in a sequence

of nucleotides, and M “

ˆ

a b
c d

˙

the associated mutation matrix, with a “ P pR Ñ Rq, b “ P pR Ñ

Y q, c “ P pY Ñ Rq, and d “ P pY Ñ Y q satisfying
#

a ` b “ 1,

c ` d “ 1,
(2.1)

and thus M “

ˆ

a 1 ´ a
c 1 ´ c

˙

.

The initial probability is denoted by P0 “ pR0 Y0q, where R0 and Y0 denote respectively the initial
frequency of purines and pyrimidines. So the occurrence probability at generation n is Pn “ P0M

n,
where Pn “ pRpnq Y pnqq is a probability vector such that Rpnq (resp. Y pnq) is the rate of purines
(resp. pyrimidines) after n generations. The following theorem states the time asymptotic behavior of
the probabilit Pn.

We recall the following result was proved in [11]:

thm 2.1. Consider a DNA sequence under evolution, whose mutation matrix is M “

ˆ

a 1 ´ a
c 1 ´ c

˙

with a “ P pR Ñ Rq and c “ P pY Ñ Rq.

• If a “ 1, c “ 0, then the frequencies of purines and pyrimidines do not change as the
generation pass.

• If a “ 0, c “ 1, then these frequencies oscillate at each generation between pR0 Y0q (even
generations) and pY0 R0q (odd generations).

• Else the value Pn “ pRpnq Y pnqq of purines and pyrimidines frequencies at generation n is
convergent to the following limit:

lim
nÑ8

Pn “
1

c ` 1 ´ a

`

c 1 ´ a
˘

.
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rem 2.1. Note that the case a ‰ 1 ´ c, resp. a ‰ c, translates the non symmetry property, resp. the
time reversibility property.

2.2 Numerical Application
For numerical application, we will consider mutations rates in the ura3 gene of the Yeast Saccharomyces
cerevisiae, as obtained by Gregory I. Lang and Andrew W.Murray [12] and summed up in Table 1.
They have measured phenotypic mutation rates, indicating that the per-base pair mutation rate at
ura3 is m “ 3.0552 ˆ 10´7/generation for the whole gene.

For the majority of Yeasts they studied, ura3 is constituted by 804 bp: 133 cytosines, 211

thymines, 246 adenines, and 214 guanines. So R0 “
246 ` 214

804
« 0.572, and Y0 “

133 ` 211

804
«

0.428. Using these values in the historical model of Jukes and Cantor [1], we obtain the evolution
depicted in Figure 1.

0 1 2 3 4 5 6 7 8 9
Time (1 unit = 400000000 generations)

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

R
a
te

Nucleotides Evolution Rates

Purine
Pyrimidine

Figure 1: Prediction of purine/pyrimidine evolution of ura3 gene in symmetric Cantor
model.

Theorem 2.1 allows us to compute the limit of the rates of purines and pyrimidines:

Computation of probability a. P pR Ñ Rq “ p1 ´ mq

`P pA Ñ Gq
PApnq

PApnq ` PGpnq
` P pG Ñ Aq

PGpnq

PApnq ` PGpnq
. The use of Table 1 and the

hypothesis that the base frequencies have already reached their steady states implies that

a “ p1 ´ mq `

ˆ

m
0

46 ` 121

˙

ˆ

246
804

246
804

` 214
804

`

ˆ

m
26

46 ` 121

˙

ˆ

214
804

246
804

` 214
804

. We thus obtain that

a “ 1 ´
17814m

19205
« 0.999999716.

Computation of probability c. Similarly, P pY Ñ Y q “ p1 ´ mq ` P pC Ñ T q
PC

PC ` PT
` P pT Ñ

Cq
PT

PC ` PT
“ p1´mq`m

16

46 ` 121
ˆ

133

133 ` 211
`m

4

46 ` 121
ˆ

211

133 ` 211
“ 1´m`m

743

14362
.
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0 1 2 3 4 5 6 7 8 9
Time (1 unit = 1 mutation)

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

R
a
te

Nucleotides Evolution Rates

Purine
Pyrimidine

Figure 2: Prediction of purine/pyrimidine evolution of ura3 gene in general model of size
2 ˆ 2.

So c “ P pY Ñ Rq “ m

ˆ

1 ´
743

14362

˙

« 2.897 ˆ 10´7.

As a consequence the purine/pyrimidine mutation matrix that corresponds to the values of Table 1
is:

M “ m

¨

˚

˚

˝

1391

19205

17814

19205

13619

14362

743

14362

˛

‹

‹

‚

. (2.2)

where m “ 3.0552 ˆ 10´7 as mentionned previously.
Using the value of m for the ura3 gene leads to 1 ´ a “ 2.83391 ˆ 10´7 and c “ 2.89714 ˆ 10´7,

which can be used in Theorem 2.1 to conclude that the rate of pyrimidines is convergent to 49.45%
whereas the rate of purines converge to 50.55%. Numerical simulations using data published in [12]
are given in Figure 2, leading to a similar conclusion.

3 A First Genomes Evolution Model of size 3 ˆ 3 having 6
Parameters without Time-reversibility hypothesis

In order to investigate the evolution of the frequencies of cytosines and thymines in the gene ura3, a
model of size 3ˆ3 compatible with real mutation rates of the yeast Saccharomyces cerevisiae is now
presented.

3.1 Formalization
Let us consider a line of yeasts where a given gene is sequenced at each generation, in order to clarify
explanations. The n´th generation is obtained at time n, and the frequences of purines, cytosines,
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and thymines at time n are respectively denoted by PRpnq, PCpnq, and PT pnq.
Let a be the probability that a purine is changed into a cytosine between two generations, that is:

a “ P pR Ñ Cq. Similarly, denote by b, c, d, e, f the respective probabilities: P pR Ñ T q, P pC Ñ Rq,
P pC Ñ T q, P pT Ñ Rq, and P pT Ñ Cq. Contrary to existing approaches, P pR Ñ Cq is not supposed
to be equal to P pC Ñ Rq, and the same statement holds for the other probabilities. For the sake of
simplicity, we will suppose in all that follows that a, b, c, d, e, f are not time dependent.

Let

M “

¨

˝

1 ´ a ´ b a b
c 1 ´ c ´ d d
e f 1 ´ e ´ f

˛

‚

be the mutation matrix associated to the probabilities mentioned above, and Pn the vector of occurrence,
at time n, of each of the three kind of nucleotides. In other words, Pn “ pPRpnq PCpnq PT pnqq. Under
that hypothesis, Pn is a probability vector: @n P N,

• PRpnq, PCpnq, PT pnq P r0, 1s,

• PRpnq ` PCpnq ` PT pnq “ 1,

Let P0 “ pPRp0q PCp0q PT p0qq P r0, 1s3 be the initial probability vector. We have obviously:

PRpn ` 1q “ PRpnqP pR Ñ Rq ` PCpnqP pC Ñ Rq ` PT pnqP pT Ñ Rq,

with similar equalities for PCpn ` 1q and PT pn ` 1q so that

Pn “ Pn´1M “ P0M
n. (3.1)

In all that follows we wonder if, given the parameters a, b, c, d, e, f as in [12], one can determine the
frequency of occurrence of any of the three kind of nucleotides when n is sufficiently large, in other
words if the limit of Pn is accessible by computations.

3.2 Resolution

This section, that is a preliminary of the convergence study, is devoted to the determination of the
powers of matrix M in the general case and some particular situations

3.2.1 Determination of Mn in the general case

The characteristic polynomial of M is equal to

χM pxq “ x3 ` ps ´ 3qx2 ` pp ´ 2s ` 3qx ´ 1 ` s ´ p
“ px ´ 1q

`

x2 ` ps ´ 2qx ` p1 ´ s ` pq
˘

,

where

s “ a ` b ` c ` d ` e ` f,

p “ ad ` ae ` af ` bc ` bd ` bf ` ce ` cf ` de,

detpMq “ 1 ´ s ` p.

The discriminant of the polynomial of degree 2 in the factorization of χM is equal to ∆ “ ps ´

2q2 ´ 4p1 ´ s ´ pq “ s2 ´ 4p. Let x1 and x2 the two roots (potentially complex or equal) of χM , given
by

x1 “
´s ` 2 ´

a

s2 ´ 4p

2
and x2 “

´s ` 2 `
a

s2 ´ 4p

2
. (3.2)
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Let n P N, n ě 2. As χM is a polynomial of degree 3, a division algorithm of Xn by χM pXq leads
to the existence and uniqueness of two polynomials Qn and Rn, such that

Xn
“ QnpXqχ2pXq ` RnpXq, (3.3)

where the degree of Rn is lower than or equal to the degree of χM , i.e., RnpXq “ anX
2 ` bnX ` cn

with an, bn, cn P R for every n P N. By evaluating (3.3) in the three roots of χM , we find the system
$

&

%

1 “ an ` bn ` cn
xn
1 “ anx

2
1 ` bnx1 ` cn

xn
2 “ anx

2
2 ` bnx2 ` cn

This system is equivalent to
$

&

%

cn ` bn ` an “ 1
bnpx1 ´ 1q ` anpx2

1 ´ 1q “ xn
1 ´ 1

bnpx2 ´ 1q ` anpx2
2 ´ 1q “ xn

2 ´ 1

If we suppose that x1 ‰ 1, x2 ‰ 1, and x1 ‰ x2, then standard algebraic computations give
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

an “
1

x2 ´ x1

„

xn
2 ´ 1

x2 ´ 1
´

xn
1 ´ 1

x1 ´ 1

ȷ

,

bn “
x1 ` 1

x1 ´ x2

xn
2 ´ 1

x2 ´ 1
`

x2 ` 1

x2 ´ x1

xn
1 ´ 1

x1 ´ 1
,

cn “ 1 ´ an ´ bn.

Using for i “ 1, 2 and n P N the following notation,

Xipnq “
xn
i ´ 1

xi ´ 1
, (3.4)

and since x2 ´ x1 “
?
∆, the system above can be rewritten as

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

an “
X2pnq ´ X1pnq

?
∆

,

bn “
px2 ` 1qX1pnq ´ px1 ` 1qX2pnq

?
∆

,

cn “ 1 `
x1X2pnq ´ x2X1pnq

?
∆

.

(3.5)

By evaluating (3.3) in M and due to the theorem of Cayley-Hamilton, we finally have for every integer
n ě 1,

Mn
“ anM

2
` bnM ` cnI3, (3.6)

where I3 is the identity matrix of size 3, an, bn, and cn are given by (3.5), and M2 is given by

M2
“

¨

˚

˚

˚

˚

˚

˚

˝

a2 ` 2ab ` ac ´ 2a ´a2 ´ ab ´ ac ´ab ` ad ´ b2

`b2 ` be ´ 2b ` 1 ´ad ` 2a ` bf ´be ´ bf ` 2b

´ac ´ bc ´ c2 ac ` c2 ` 2cd ´ 2c bc ´ cd ´ d2

´cd ` 2c ` de `d2 ` df ´ 2d ` 1 ´de ´ df ` 2d

´ae ´ be ` cf ae ´ cf ´ df be ` df ` e2 ` 2ef
´e2 ´ ef ` 2e ´ef ´ f2 ` 2f ´2e ` f2 ´ 2f ` 1

˛

‹

‹

‹

‹

‹

‹

‚

.
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3.2.2 Determination of Mn in particular situations

Formulations of (3.5) only hold for x1 ‰ x2, x1 ‰ 1, and x2 ‰ 1. We now investigate these latter
cases.

Preliminaries Let us firstly remark that, as the mutation matrix M is stochastic, we have necessarily
0 ď a`b ď 1, 0 ď c`d ď 1, and 0 ď e`f ď 1. These inequalities imply that s P r0, 3s. Consequently
from the definition of p one can check that p “ ad ` ape ` fq ` bpc ` dq ` bf ` cpe ` fq ` de ď

ad ` a ` b ` bf ` c ` de ď s, as each parameter is in r0, 1s. To sum up,

0 ď p ď s ď 3. (3.7)

Suppose now that ∆ ě 0. Then (3.2) and (3.7) imply that

x1 “
´s ` 2 ´

?
∆

2
P r´2; 1s , x2 “

´s ` 2 `
?
∆

2
P

„

´
1

2
;
5

2

ȷ

(3.8)

Note that, as we deal with a stochastic process, the module of the eigenvalues of M are smaller than
1, so |x1| ď 1 and |x2| ď 1.

Suppose that x1 “ 1 Then ´s “
a

s2 ´ 4p ðñ s “ p “ 0. So a “ b “ c “ d “ e “ f “ 0,
and the mutation matrix is equal to the identity of size 3. Conversely, if a “ b “ c “ d “ e “ f “ 0,
then x1 “ 1.

In that situation, the system does not evolve.

Suppose that x2 “ 1 (and x1 ‰ 1) Then s “
a

s2 ´ 4p ðñ p “ 0. In that situation,
x1 “ 1 ´ s and 1 is root of multiplicity 2 of χ2, whereas x1 “ 1 ´ s is its third root. As the case x1 “ 1
has already been regarded, we can consider that s ‰ 0. Using (3.3), These facts lead to the following
system:

$

&

%

1 “ an ` bn ` cn,
n “ 2an ` bn,

p1 ´ sqn “ p1 ´ sq2an ` p1 ´ sqbn ` cn.

Standard computations then give the following formula:

$

’

’

’

’

&

’

’

’

’

%

an “
´1 ` sn ` p1 ´ sqn

s2
,

bn “
p3 ´ sq ` ps2 ´ 2sqn ` ps ´ 3qp1 ´ sqn

s
,

cn “
ps ´ 1qp2s ´ 1q ´ sps ´ 1q2n ´ ps2 ´ 3s ` 1qp1 ´ sqn

s2
.

(3.9)

Case x1 “ x2 ‰ 1 (∆ “ 0) Then (3.8) implies that x1 “ 1´s{2 P
“

´ 1
2
, 1

˘

. From a differentiation
of (3.3) one deduces that x1 satisfies the following system for every n P N˚,

$

&

%

1 “ an ` bn ` cn
xn
1 “ anx

2
1 ` bnx1 ` cn

nxn´1
1 “ 2anx1 ` bn
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Standard algebraic computations give, since x1 ‰ 1,
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

an “ n
xn´1
1

x1 ´ 1
´

X1pnq

x1 ´ 1

bn “ X1pnq ´ anpx1 ` 1q

cn “ 1 ´ an ´ bn

(3.10)

where X1pnq is defined in (3.4).

3.3 Convergence study

3.3.1 Convergence study in the general case

We suppose in this section that x1 ‰ x2, x1 ‰ 1, and x2 ‰ 1. So formulations of (3.5) hold for an, bn,
and cn. We split the study convergence in several sub-cases, that are the objects of Theorems
3.1-3.5.

thm 3.1. Suppose that |x1| ă 1 and |x2| ă 1. Then the frequencies PRpnq, PCpnq, and PT pnq of
occurrence at time n of purines, cytosines, and thymines in the considered gene, converge to the
following values:

• PRpnq ÝÑ
ce ` cf ` de

p ´ bf ` df

• PCpnq ÝÑ
ae ` af ` bf

p ´ bf ` df

• PT pnq ÝÑ
ad ` bc ` bd

p ´ bf ` df

Proof. If |x1| ă 1 and |x2| ă 1 then Xipnq ÝÑ
1

1 ´ xi
for i “ 1, 2 and so

an ÝÑ
1

?
∆

ˆ

1

1 ´ x2
´

1

1 ´ x1

˙

.

Denote by a8 this limit. We have

a8 “
x2 ´ x1

?
∆p1 ´ x2qp1 ´ x1q

“
1

p1 ´ x2qp1 ´ x1q
“

1

s `
?
∆

2

s ´
?
∆

2

,

and finally

a8 “
4

s2 ´ ∆
“

1

p
.

Similarly, bn “ X1pnq ´ anpx1 ` 1q satisfies

bn ÝÑ
1

1 ´ x1
´

x1 ` 1

p
.

The following computations

1

1 ´ x1
“

2

s `
?
∆

“
2ps ´

?
∆q

s2 ´ ∆
“

s ´
?
∆

2p
,

x1 ` 1

p
“

´s ` 4 ´
?
∆

2p
,
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finally yield

b8 “
s ´ 2

p
.

So
cn ÝÑ 1 ´ a8 ´ b8 “

p ´ s ` 1

p
,

and to sum up, the distribution limit is given by
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

a8 “
1

p

b8 “
s ´ 2

p

c8 “
p ´ s ` 1

p

(3.11)

Using the latter values in (3.6), we can determine the limit of Mn, which is a8M2 ` b8M ` c8I3. All
computations done, we find the following limit for Mn,

1

p ´ bf ` df

¨

˝

ce ` cf ` de ae ` af ` bf ad ` bc ` bd
ce ` cf ` de ae ` af ` bf ad ` bc ` bd
ce ` cf ` de ae ` af ` bf ad ` bc ` bd

˛

‚.

Using (3.1), we can thus finally determine the limit of Pn “ P0M
n

“ pPRp0q PCp0q PT p0qqMn.

thm 3.2. Suppose that |x1| “ 1, x1 ‰ 1, and |x2| ‰ 1. Then the evolutionary model is not convergent.
More precisely, we have:

• PRp2nq “ pa2 `2ab`ac´2a` b2 ` be´2b`1qPRp0q ` p´a2 ´ab´ac´ad`2a` bfqPCp0q `

p´ab ` ad ´ b2 ´ be ´ bf ` 2bqPT p0q,

• PRp2n ` 1q “ p1 ´ a ´ bqPRp0q ` aPCp0q ` bPT p0q,

• PCp2nq “ p´ac´ bc´ c2 ´ cd`2c`deqPRp0q ` pac` c2 `2cd´2c`d2 `df ´2d`1qPCp0q `

pbc ´ cd ´ d2 ´ de ´ df ` 2dqPT p0q,

• PCp2n ` 1q “ cPRp0q ` p1 ´ c ´ dqPCp0q ` dPT p0q,

• PT p2nq “ p´ae ´ be ` cf ´ e2 ´ ef ` 2eqPRp0q ` pae ´ cf ´ df ´ ef ´ f2 ` 2fqPCp0q ` pbe `

df ` e2 ` 2ef ´ 2e ` f2 ´ 2f ` 1qPT p0q,

• PT p2n ` 1q “ ePRp0q ` fPCp0q ` p1 ´ e ´ fqPT p0q,

Proof. Suppose that |x1| “ 1 and |x2| ‰ 1. Then x1, x2 P R, and so x1 “ 1 or x1 “ ´1. The first
case has yet been regarded.

If x1 “ ´1, then ´s` 2´
?
∆ “ ´2 (due to (3.2)). So s “ 4´

?
∆, and so s2 ´ 4p “ 4´ 4s` s2.

Consequently, p “ s ´ 1. But x1x2 “ 1 ´ s ` p, so x1x2 “ 0, which leads to x2 “ 0. Using (3.5),

we can thus conclude that an “ 1 ´
p´1qn ´ 1

´2
“

1 ` p´1qn

2
. So a2n “ 1 and a2n`1 “ 0. Similarly,

b2n “ 0 and b2n`1 “ 1, and finally cn “ 0,@n P N.
These values for an, bn, and cn lead to the following values for Mn:

"

M2n “ M2

M2n`1 “ M.
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rem 3.1. The case |x1| ‰ 1 and |x2| “ 1 necessarilly implies that x2 “ 1, which is in contradiction
with the assumptions made in preamble of Section 3.3.1.

thm 3.3. If |x1| “ |x2|, but x1, x2 P CzR, then pPRpnq PCpnq PT pnqq “ pPRp0q PCp0q PT p0qq ˆ

panM
2 ` bnM ` cnI3q, where

• an “ ´
sin

`

nθ
2

˘

sin
´

pn´1qθ
2

¯

sin
`

θ
2

˘

sinpθq
,

• bn “
2 sin

`

nθ
2

˘

sin
´

pn´2qθ
2

¯

cos
`

θ
2

˘

sinpθq sin
`

θ
2

˘ ,

• cn “ 1 ´
sin

`

nθ
2

˘

sin
´

pn´3qθ
2

¯

sinpθq sin
`

θ
2

˘ .

with e´iθ “ x1.

Proof. Suppose that |x1| “ |x2|, but x1, x2 P CzR. Then x1 and x2 are complex and conjugate, of the
form x1 “ e´iθ, x2 “ eiθ, with θ ı 0rπs. So x1 ´ x2 “

?
∆ “ e´iθ ´ eiθ “ ´2i sinpθq, and

an “
X2pnq ´ X1pnq

?
∆

“
X1pnq ´ X2pnq

2i sinpθq

2i sinpθq an “
e´inθ ´ 1

e´iθ ´ 1
´

einθ ´ 1

eiθ ´ 1

“
e´in θ

2

e´i θ
2

e´in θ
2 ´ ein

θ
2

e´i θ
2 ´ ei

θ
2

´
ein

θ
2

ei
θ
2

ein
θ
2 ´ e´in θ

2

ei
θ
2 ´ e´i θ

2

“ e´i
pn´1qθ

2
´2i sin

`

nθ
2

˘

´2i sin
`

θ
2

˘ ´ ei
pn´1qθ

2
2i sin

`

nθ
2

˘

2i sin
`

θ
2

˘

“
sin

`

nθ
2

˘

sin
`

θ
2

˘

´

e´i
pn´1qθ

2 ´ ei
pn´1qθ

2

¯

.

Finally,

an “ ´
sin

`

nθ
2

˘

sin
´

pn´1qθ
2

¯

sin
`

θ
2

˘

sinpθq
.

Similarly,
?
∆bn “ px2 ` 1qX1pnq ´ px1 ` 1qX2pnq

´2i sinpθqbn “
`

eiθ ` 1
˘

e´i
pn´1qθ

2
sin

`

nθ
2

˘

sin
`

θ
2

˘ ´
`

e´iθ ` 1
˘

ei
pn´1qθ

2
sin

`

nθ
2

˘

sin
`

θ
2

˘

“
sin

`

nθ
2

˘

sin
`

θ
2

˘

”

e´i
pn´3qθ

2 ` e´i
pn´1qθ

2 ´ ei
pn´3qθ

2 ´ ei
pn´1qθ

2

ı

bn “
sin

`

nθ
2

˘

sinpθqsin
`

θ
2

˘

´

sin
´

pn´3qθ
2

¯

` sin
´

pn´1qθ
2

¯¯

.
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and finally,

bn “
2 sin

`

nθ
2

˘

sin
´

pn´2qθ
2

¯

cos
`

θ
2

˘

sinpθq sin
`

θ
2

˘ .

As cn “ 1 ´ an ´ bn, we have:

cn “ 1 ´
sin

`

nθ
2

˘

sin
´

pn´3qθ
2

¯

sinpθq sin
`

θ
2

˘ .

3.3.2 Convergence study in particular situations

The case where x1 “ 1 has already been discussed, it implies that a “ b “ c “ d “ e “ f “ 0, and
so the system does not evolve. The other particular situations are invastigated in the two following
theorems.

thm 3.4. Suppose that x2 “ 1 and x1 ‰ 1 (or equivalently p “ 0). Then the system is well formulated
if and only if M2 ` sps ´ 2qM ´ ps ´ 1q2I3 ‰ 0. In that situation, we have:

• either s Ps0, 2r, and so pPRpnq PCpnq PT pnqq ÝÑ pPRp0q PCp0q PT p0qq ˆ
1

s2
r´M2 ` sp3 ´

sqM ` ps ´ 1qp2s ´ 1qI3s.

• or s “ 2, and so pPRp2nq PCp2nq PT p2nqq ÝÑ pPRp0q PCp0q PT p0qq whereas pPRp2n ` 1q PCp2n ` 1q PT p2n ` 1qq ÝÑ

pPRp0q PCp0q PT p0qq ˆ p´2M2 ` 4M ` 2I3q.

Proof. Using (3.9), we can deduce that Mn is equal to:
anM

2 ` bnM ` cnI3 “
n

s
rM2 ` sps ´ 2qM ´ ps ´ 1q2I3s

`
1

s2
p1 ´ sqnrM2 ` sps ´ 3qM ´ ps2 ´ 3s ` 1qI3s

`
1

s2
r´M2 ` sp3 ´ sqM ` ps ´ 1qp2s ´ 1qI3s.

Several cases can be deduced from this equality.

• If s Ps0, 2r, then Mn is bounded if and only if M2`sps´2qM ´ps´1q2I3 “ 0. In that condition,

Mn ÝÑ
1

s2
r´M2 ` sp3 ´ sqM ` ps ´ 1qp2s ´ 1qI3s.

• If s “ 2, then another time Mn is bounded if and only if M2 ` sps ´ 2qM ´ ps ´ 1q2I3 “ 0. In
that condition, M2n ÝÑ I3, whereas M2n`1 ÝÑ ´2M2 ` 4M ` 2I3.

• Finally, if s ą 2, then as s “ a ` b ` c ` d ` e ` f and a, b, c, d, e, f P r0, 1s, we have
necessarily at least three coefficients in a, b, c, d, e, f that are non zero. So at least one product
in abc, abd, abe, abf, acd, ace, acf, ade, adf, aef, bcd, bce, bcf, bde, bdf, bef, cde, cdf, cef, def is strictly
positive. This is impossible, as p “ ad ` ae ` af ` bc ` bd ` bf ` ce ` cf ` de is equal to 0.

thm 3.5. Suppose that x1 “ x2 ‰ 1 (or equivalently s2 “ 4p). Then the probabilities PRpnq, PCpnq,
and PT pnq of occurrence at time n of a purine, cytosine, and thymine on the considered nucleotide,
converge to the following values:

• PRpnq ÝÑ
4

s2
pce ` cf ` deq,
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• PCpnq ÝÑ
4

s2
pae ` af ` bfq,

• PT pnq ÝÑ
4

s2
pad ` bc ` bdq.

Proof. In that case ∆ “ 0, meaning that (3.10) holds. Since x1 P
“

´ 1
2
, 1

˘

, one gets the following
limits,

lim
nÑ8

X1pnq “ ´
1

1 ´ x1
,

lim
nÑ8

xn
1 “ 0, lim

nÑ8
nxn´1

1 “ 0,

and finally pan, bn, cnq converges to pa8, b8, c8q with
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

a8 “
1

p1 ´ x1q2
“

4

s2

b8 “
´2x1

p1 ´ x1q2
“ 4

s ´ 2

s2

c8 “
2x1 ´ 1

p1 ´ x1q2
` 1 “

ˆ

1 ´
2

s

˙2

Using these values in (3.6), we can determine the limit of Mn, which is a8M2 ` b8M ` c8I3,
where I3 is the identity matrix of size 3. All computations done, we find

Mn
ÝÑ

4

s2

¨

˝

M11 M12 M13

M21 M22 M23

M31 M32 M33

˛

‚

with M11 “
s2

4
´ p ` ce ` cf ` de, M12 “ ae ` af ` bf , M13 “ ad ` bc ` bd, M21 “ ce ` cf ` de,

M22 “
s2

4
´ p ` ae ` af ` bf , M23 “ ad ` bd ` bc, M31 “ ce ` de ` cf , M32 “ ae ` af ` bf , and

M33 “
s2

4
´ p ` ad ` bc ` bd. However, since x1 “ x2, we have ∆ “ s2 ´ 4p “ 0 and so

Mn
ÝÑ

4

s2

¨

˝

ce ` cf ` de ae ` af ` bf ad ` bc ` bd
ce ` cf ` de ae ` af ` bf ad ` bc ` bd
ce ` cf ` de ae ` af ` bf ad ` bc ` bd

˛

‚,

4 Application in Concrete Genomes Prediction
We consider another time the numerical values for mutations published in [12]. Gene ura3 of the
Yeast Saccharomyces cerevisiae has a mutation rate of 3.80ˆ10´10/bp/generation [12]. As this gene
is constituted by 804 nucleotides, we can deduce that its global mutation rate per generation is equal
to m “ 3.80 ˆ 10´10 ˆ 804 “ 3.0552 ˆ 10´7. Let us compute the values of a, b, c, d, e, and f . The
first line of the mutation matrix is constituted by 1 ´ a ´ b “ P pR Ñ Rq, a “ P pR Ñ T q, and
b “ P pR Ñ Cq. P pR Ñ Rq takes into account the fact that a purine can either be preserved (no
mutation, probability 1 ´ m), or mutate into another purine (A Ñ G, G Ñ A). As the generations
pass, authors of [12] have counted 0 mutations of kind A Ñ G, and 26 mutations of kind G Ñ A.
Similarly, there were 28 mutations G Ñ T and 8: A Ñ T , so 36: R Ñ T . Finally, 6: A Ñ C and 9:
G Ñ C lead to 15: R Ñ C mutations. The total of mutations to consider when evaluating the first line
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Figure 3: Prediction of evolution concerning the purine, thymine, and cytosine rates in
ura3. Non-symmetric Model of size 3 ˆ 3.

is so equal to 77. All these considerations lead to the fact that 1 ´ a´ b “ p1 ´mq ` m
26

77
, a “

36m

77
,

and b “
15m

77
. A similar reasoning leads to c “

19m

23
, d “

4m

23
, e “

51m

67
, and f “

16m

67
.

In that situation, s “ a ` b ` c ` d ` e ` f “
205m

77
« 8.134 ˆ 10´7, and p “

207488m2

118657
«

1.632 ˆ 10´13. So ∆ “ s2 ´ 4p “
854221m2

9136589
ą 0, x1 “ 1 ´

m

2

ˆ

205

77
`

c

854221

9136589

˙

, and x2 “

1 ´
m

2

ˆ

205

77
´

c

854221

9136589

˙

. As x1 « 0.9999685 P r0, 1s and x2 « 0.9999686 P r0, 1s, we have, due

to Theorem 3.1:

• PRpnq ÝÑ
ce ` cf ` de

p ´ bf ` df

• PCpnq ÝÑ
ae ` af ` bf

p ´ bf ` df

• PT pnq ÝÑ
ad ` bc ` bd

p ´ bf ` df

Using the data of [12], we find that PRp0q “
460

804
« 0.572, PCp0q “

133

804
« 0.165, and

PT p0q “
211

804
« 0.263. So PRpnq ÝÑ 0.549, PCpnq ÝÑ 0.292, and PT pnq ÝÑ 0.159. Simulations

corresponding to this example are given in Fig. 3.

5 Conclusion
In this document, a formulation of the non symmetric discrete model of size 2ˆ2 has been proposed,
which studies a DNA evolution taking into account purines and pyrimidines mutation rates. A simulation
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has been performed, to compare the proposal to the well known Jukes and Cantor model. Then all
non-symmetrical models of size 3x3 that have 6 parameters have been studied theoretically. They
have been tested with numerical simulations, to make a distinction between cytosines and thymines
in the former proposal. These two models still remain generic, and can be adapted to a large panel
of applications, replacing either the couple (purines, pyrimidines) or the tuple (purines, cytosines,
thymines) by any categories of interest.

Remark that the ura3 gene is not the unique example of a DNA sequence of interest such that
none of the existing nucleotides evolution models cannot be applied due to a complex mutation matrix.
For instance, a second gene called can1 has been studied too by the authors of [12]. Similarly to gene
ura3, usual models cannot be used to predict the evolution of can1, whereas a study following a same
canvas than what has been proposed in this research work can be realized.

In future work, biological consequences of the results produces by these models will be systema-
tically investigated. Then, the most general non symmetric model of size 4 will be regarded in some
particular cases taken from biological case studies, and the possibility of mutations non uniformly
distributed will then be regarded. Finally, this 4 ˆ 4 general case will be investigated using Perron-
Frobenius based approaches instead of using methods directly inspired by linear algebra, in order to
obtain the most global results on mutation matrices.
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